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Abstract

We consider the classical multi-armed bandit problem and design simple-to-
implement new policies that simultaneously enjoy two properties: worst-case
optimality for the expected regret, and safety against heavy-tailed risk for the regret
distribution. Recently, [10] showed that information-theoretic optimized bandit
policies as well as standard UCB policies suffer from some serious heavy-tailed
risk; that is, the probability of incurring a linear regret slowly decays at a polyno-
mial rate of 1/T , as T (the time horizon) increases. Inspired by their result, we
further show that any policy that incurs an instance-dependent O(lnT ) regret must
incur a linear regret with probability Ω(poly(1/T )) and that the heavy-tailed risk
actually exists for all “instance-dependent consistent" policies. Next, for the two-
armed bandit setting, we provide a simple policy design that (i) has the worst-case
optimality for the expected regret at order Õ(

√
T ) and (ii) has the worst-case tail

probability of incurring a linear regret decay at an exponential rate exp(−Ω(
√
T )).

We further prove that this exponential decaying rate of the tail probability is optimal
across all policies that have worst-case optimality for the expected regret. Finally,
we generalize the policy design and analysis to the general setting with an arbitrary
K number of arms. We provide detailed characterization of the tail probability
bound for any regret threshold under our policy design. Numerical experiments
are conducted to illustrate the theoretical findings. Our results reveal insights on
the incompatibility between consistency and light-tailed risk, whereas indicate that
worst-case optimality on expected regret and light-tailed risk are compatible.

1 Introduction

The stochastic multi-armed bandit (MAB) problem is a widely studied problem in the domain of
sequential decision-making under uncertainty, with many applications such as online advertising,
recommendation systems, clinical trials, financial portfolio design, etc. It also has valuable theoretical
insights exhibiting the exploration-exploitation trade-off For policy design and analysis, much of
the MAB literature uses the metric of maximizing the expected cumulative reward, or equivalently
minimizing the expected regret (where regret is defined as the difference between the cumulative
reward obtained by always pulling the best arm and by executing a policy that does not a priori
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know the reward distributions). The optimality of a policy is often characterized through its expected
regret’s rate (order of dependence) on the experiment horizon T .

In this paper, however, we show that renowned policies (such as the standard Upper Confidence
Bound (UCB) policy, the Successive Elimination (SE) policy and the Thompson Sampling (TS)
policy) that are designed to enjoy optimality in terms of expected regret can incur a “heavy-tailed risk”.
That is, the distribution of the regret has a heavy tail — the probability of incurring a linear regret
slowly decays at a polynomial rate Ω(poly(1/T )) as T tends to infinity. In contrast, a “light-tailed”
risk means that the probability of a policy incurring a linear regret decays at an exponential rate
exp(−Ω(T β)) for some β > 0. The heavy-tailed risk can be undesired when an MAB policy is used
in applications that are sensitive to tail risks (e.g., finance, healthcare, supply chain). Our work is
primarily motivated by trying to answer the following question. Can we design a simple policy that
on one hand enjoys the optimality under the expected regret notion, whereas on the other hand
has light-tailed risk? The results of our work are summarized as follows.

1. Instant-dependent consistency and light-tailed risk are incompatible. Inspired by the results
in [8], we adapt their change of measure argument to show that any policy that incurs an instance-
dependent O(lnT ) regret must incur a linear regret with probability Ω(poly(1/T )). We additionally
show that any instant-dependent consistent policy cannot be light-tailed: if an instant-dependent
consistent policy has the probability of incurring a linear regret decay as exp(−f(T )), then f(T )
must be o(T β) as T → +∞ for any β > 0.

2. Worst-case optimality and light-tailed risk can co-exist. Starting from the two-armed bandit
setting, we provide a simple policy design and prove that it enjoys both the worst-case optimality
Õ(
√
T ) for the expected regret and the light-tailed risk exp(−Ω(

√
T )) for the regret distribution. We

also show that such exponential decaying rate of the tail probability is optimal within the class of
worst-case optimal policies.

3. Extensions and Experiments. We extend the result from the two-armed bandit to the general
K-armed bandit and characterize the tail probability bound for any regret threshold in an explicit
form. We prove that under our policy design, the worst-case probability of incurring a regret larger
than x is bounded by exp(−Ω(x/K

√
T )). We find that the associated proof techniques are new and

may benefit broader analysis on regret distribution and tail risk. Our result also partially solves an
open problem raised in [14]. Experiments are also conducted to illustrate our theoretical findings.

1.1 Related Work

Our work builds upon the vast literature of designing and analyzing policies for the multi-armed bandit
(MAB) problem and its various extensions. A comprehensive review can be found in [6, 17, 14]. A
standard paradigm for obtaining a near-optimal regret is to first fix some confidence parameter δ > 0.
Then a “good event” is defined such that good properties are retained conditioned on the event (for
example, in the MAB problem, the good event is such that the mean of each arm always lies in the
confidence bound). Then one can obtain both high-probability and worst-case expected regret bounds
through careful analysis on the good event. It is known that the MAB problem has the following regret
bound: for any fixed δ ∈ (0, 1), the regret bound of UCB is bounded by O(

√
KT ln(T/δ)) with

probability at least 1− δ. Or equivalently speaking, the probability of incurring a Ω(
√
KT ln(T/δ))

regret is bounded by δ. However, the parameter δ must be an input parameter for the policy. We will
discuss this issue in more details in Section 3. In Section 17.1 of [14], an open question is asked: is it
possible to design a single policy such that the worst-case probability of incurring a Ω(

√
KT ln(1/δ))

regret is bounded by δ for any δ > 0? We partially solve this question by designing a policy such that
for any δ > 0, the probability of incurring a Ω(K

√
T (
√
lnT + ln(1/δ))) regret is bounded by δ.

There has been not much work on understanding the tail risk of bandit algorithms. Our work is
inspired by [10]. They showed that optimized UCB bandit designs are fragile to mis-specifications
and they modified UCB algorithms to ensure a desired polynomial rate of tail risk, which makes the
algorithms more robust to mis-specifications. Different from their work, we propose a simple and
new policy design that leads to both light-tailed risk (tail bound exponentially decaying with

√
T )

and worst-case optimality (expected regret bounded by Õ(
√
T )). Besides [10], two earlier works

are [5, 15] and they study the concentration properties of the regret around the instance-dependent
mean O(lnT ). They show that in general the regret of the policies concentrate only at a polynomial
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rate. That is, the probability of incurring a regret of c(lnT )p (with c > 0 and p > 1 fixed) is
approximately polynomially decaying with T . Different from our work, the concentration in their
work is under an instance-dependent environment, and so such polynomial rate might be different
across different instances. Nevertheless, their results indicate that standard bandit algorithms generally
have undesirable concentration properties. Recently, [4] show that an online learning policy with the
goal of obtaining logarithmic regret can be fragile, in the sense that a mis-specified risk parameter
(e.g., the parameter for subgaussian noises) in the policy can incur an instance-dependent expected
regret polynomially dependent on T . They then focus on robust algorithm development to circumvent
the issue. Note that their goal is to handle mis-specification related with risk, but still the task is to
minimize the expected regret.

Very recently, there are some works trying to understand the behaviour of UCB and TS policies by
considering the diffusion approximations (see, e.g., [3, 19, 9, 12]). Although some distributional
characterizations of regret are obtained in these works, the asymptotic regime is typically set such that
the gaps between arm means shrink with the total time horizon. This makes their results incomparable
to ours because we study how the tail probability decays with T under unchanged environments.
Another line of works closely related with ours involve solving risk-averse formulations of the MAB
problem (see, e.g., [16, 11, 20, 18, 8, 13]). Compared to standard MAB problems, the main difference
in their works is that arm optimality is defined using formulations other than the expected value, such
as mean-variance criteria and (conditional) value-at-risk. These formulations consider some single
metric that is different compared to the expected regret. From the formulation perspective, our work
is different in the sense that we develop policies that on one hand maintain the classical worst-case
optimal expected regret, whereas simultaneously achieve light-tailed risk bound. The policy design
and analysis in our work are therefore also different from the literature.

2 Setup and Notation

The setting is described as follows. Fix a time horizon of T and the number of arms as K. In each
time t ∈ [T ], the decision maker (DM) needs to decide which arm At ∈ [K] should be pulled. To
be more precise, let Ht = {A1, X1, · · · , At−1, Xt−1} be the history prior to time t. When t = 1,
H1 = ∅. In time t, the DM adopt a policy πt : Ht 7−→ At that maps the history Ht to an action
At, where At follows a discrete probability distribution on [K] determined by Ht. The environment
then independently samples a reward rt,At

= θAt
+ ϵt,At

and reveals it to the DM. Here, θAt
is the

mean reward of arm At, and ϵt,At
is an independent zero-mean noise term. We assume that ϵt,At

is
σ-subgaussian. That is, there exists a σ > 0 such that for any time t and arm k,

max {P (ϵt,k ≥ x) ,P (ϵt,k ≤ −x)} ≤ exp(−x2/(2σ2)).

Let θ = (θ1, · · · , θK) be the mean vector. Let θ∗ = max{θ1, · · · , θK} be the optimal mean reward
among the K arms. Note that DM does not know θ at the beginning, except that θ ∈ [0, 1]K . The
empirical regret of the policy π = (π1, · · · , πT ) under the mean vector θ over a time horizon of T is
defined as

R̂π
θ (T ) = θ∗ · T −

T∑
t=1

(θAt + ϵt,At).

Let ∆k = θ∗ − θk be the gap between the optimal arm and the kth arm. Let nt,k be the number of
times arm k has been pulled up to time t. That is, nt,k =

∑t
s=1 1{As = k}. For simplicity, we will

also use nk = nT,k to denote the total number of times arm k is pulled throughout the whole time
horizon. We define tk(n) as the time period that arm k is pulled for the nth time. Define the pseudo
regret as

Rπ
θ (T ) =

K∑
k=1

nk∆k

and the genuine noise as

Nπ(T ) =

T∑
t=1

ϵt,At =

K∑
k=1

nk∑
m=1

ϵtk(m),k.

Then the empirical regret can also be written as R̂π
θ (T ) = Rπ

θ (T )−Nπ(T ). The following simple
lemma gives the mean and the tail probability of the genuine noise Nπ(T ). Intuitively, it shows
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when bounding the mean or the tail probability of the empirical regret, one only need to consider the
pseudo regret term. We will make it more precise when we discuss the proof of main theorems.

Lemma 1 We have E[Nπ(T )] = 0 and

max {P (Nπ(T ) ≥ x) ,P (Nπ(T ) ≤ −x)} ≤ exp

(
−x2

2σ2T

)
.

Before proceeding, we introduce some other notations. Throughout the paper, we use O(·) (Õ(·)) and
Ω(·) (Ω̃(·)) to present upper and lower bounds on the growth rate up to constant (logarithmic) factors,
and Θ(·) (Θ̃(·)) to characterize the rate when the upper and lower bounds match up to constant
(logarithmic) factors. We use o(·) to present strictly dominating upper bounds. In addition, for any
a, b ∈ R, a ∧ b = min{a, b} and a ∨ b = max{a, b}. For any a ∈ R, a+ = max{a, 0}.

2.1 Light-tailed Risk, Instance-dependent Consistency, Worst-case Optimality

Now we discuss several core concepts that we are interested in.

1. Light-tailed risk. A policy is called light-tailed, if for any constant c > 0, there exists some β > 0
and constant C > 0 such that

lim sup
T→+∞

ln
{
supθ P

(
R̂π

θ (T ) > cT
)}

T β
≤ −C.

Note that here, we allow β and C to be dependent on c. In brief, a policy has light-tailed risk if the
probability of incurring a linear regret can be bounded by an exponential term of polynomial T :

sup
θ

P(R̂π
θ (T ) ≥ cT ) = exp(−Ω(T β))

for some β > 0. If a policy is not light-tailed, we say it is heavy-tailed.

2. Instance-dependent consistency. A policy is called consistent, if for any underlying true mean
vector θ, the policy has that

lim sup
T→+∞

E
[
R̂π

θ (T )
]

T β
= 0

holds for any β > 0. We emphasize that here “instant-dependent" means the formula above holds for
any fixed environment parameter θ. In brief, a policy is consistent if the expected regret can never be
polynomially growing in T for any fixed instance.

3. Worst-case optimality. A policy is said to be worst-case optimal, if for any β > 0, we have

lim sup
T→+∞

supθ E
[
R̂π

θ (T )
]

T 1/2+β
= 0.

In brief, a policy is worst-case optimal if the worst-case expected regret can never be growing in
a polynomial rate faster than T 1/2. Note that here we adopt a relaxed definition of optimality, in
the sense that we do not clarify how the regret scale with the number of arms K compared to that
in literature. The notion of worst-case optimality in this work focuses on the dependence on T .
For example, a policy with worst-case regret O(poly(K)

√
T · poly(lnT )) is also optimal by our

definition.

It is well known that for the multi-armed bandit problem, one can design algorithms to achieve both
instance-dependent consistency and worst-case optimality. Among them, two types of policies are of
prominent interest: Successive Elimination (SE) and Upper Confidence Bound (UCB). We list the
algorithm paradigms in Algorithm 1 and 2. The bonus term rad(n) is typically set as

rad(n) = σ

√
η lnT

n
(1)
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with η > 0 being some tuning parameter.

Algorithm 1 Successive Elimination

1: A = [K]. t← 0.
2: while t < T do
3: Pull each arm in A once. t← t+K.
4: Eliminate any k ∈ A from A if

∃k′ : µ̂t,k′ − rad(nt,k′) > µ̂t,k + rad(nt,k)

5: end while

Algorithm 2 Upper Confidence Bound

1: A = [K]. t← 0.
2: while t < T do
3: t← t+ 1.
4: Pull the arm with the highest UCB:

UCBt−1,k = µ̂t−1,k + rad(nt−1,k).

5: end while

3 Main Results: Two-armed Bandit

We start from the simple two-armed bandit setting. The general multi-armed setting is deferred to the
next section. We first show that standard policies considered widely in the literature are heavy-tailed.
The result reveals a fundamental incompatibility between consistency and light-tailed risk. Then we
show how to add a simple twist to standard confidence bound based policies to obtain light-tailed
policies. Moreover, we show that our design leads to an optimal tail decaying rate.

3.1 Instance-dependent Consistency Causes Heavy-tailed Risk

Theorem 1 If a policy π is instance-dependent consistent, then it can never be light-tailed. Moreover,
if π satisfies

lim sup
T→+∞

E
[
R̂π

θ (T )
]

lnT
< +∞, (2)

then we have the following stronger argument. For any c > 0, there exists Cπ > 0 such that

lim inf
T→+∞

ln
{
supθ P

(
R̂π

θ (T ) > cT
)}

lnT
≥ −Cπ. (3)

Theorem 1 suggests that a consistent policy must have a risk tail heavier than an exponential one.
The proof of Theorem 1 relies on a change of measure argument appeared in [10]. We consider
the environment where the noise ϵ is Gaussian with standard deviation σ. Intuitively speaking,
if we want a policy to be adaptive enough to handle different instances, then the policy will be
sensitive to risk. Moreover, if the policy achieves O(lnT ) regret for any fixed instance θ (the
constant is typically dependent on θ), then the probability of incurring a linear regret becomes
exp(−O(lnT )) = Ω(poly(1/T )). One special case is the family of confidence bound related
policies (SE and UCB) where from Theorem 1 one can see that the standard bonus term (1) will
always lead to a tail polynomially dependent on T . Another example is the Thompson Sampling (TS)
policy. It has been established that π = TS with Beta or Gaussian priors has the property (2) (see,
e.g., Theorem 1 and 2 in [1], proof of Theorem 1.3 in [2]). Theorem 1 then suggests that (3) also
holds for π = TS.

We need to remark on the difference between Theorem 1 and high-probability bounds in previous
literature. It has been well-established that UCB or SE with

rad(n) = σ

√
η ln(1/δ)

n

achieves Õ(
√
T · polylog(T/δ)) regret with probability at least 1− δ (see, e.g., Section 1.3 in [17],

Section 7.1 in [14]). Such design also leads to a consistent policy. However, the bound holds only
for fixed δ. In fact, one can see that the bonus design is dependent on the confidence parameter δ. If
δ = exp(−Ω(T β)) with β > 0, then the scaling speed of the expected regret with respect to T can
only be greater than 1/2, which is sub-optimal. As a comparison, in our problem, ideally we seek to
find a single policy such that it achieves Õ(

√
T · polylog(T/δ)) regret for any δ > 0.

Up till now, we make two core observations. First, from standard MAB results, consistency and
optimality can hold simultaneously. Second, from Theorem 1, consistency and light-tailed risk
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are always incompatible. Then a natural question arises: Can we design a policy that enjoys both
optimality and light-tailed risk? If we can, then can we make the tail risk decay with T in an optimal
rate? We answer these two questions with an affirmative “yes” in the next section.

3.2 A New Policy Design Achieving Light-tailed Risk and Worst-case Optimality

In this section, we propose a new policy design that achieves both light-tailed risk and worst-case
optimality. The design is simple. We still use the idea of confidence bounds, but instead of setting the
bonus as (1), we set

rad(n) = σ

√
ηT lnT

n
(4)

with η > 0 being a tuning parameter. Theorem 2 gives performance guarantees for the mean and the
tail probability of the empirical regret when π = SE.

Theorem 2 For the two-armed bandit problem, the SE policy with η ≥ 4 and the bonus term being
(4) satisfies the following two properties. 1. supθ E[R̂π

θ ] = O(
√
T lnT ). 2. For any c > 0 and any

α ∈ (1/2, 1], we have

sup
θ

P(R̂π
θ (T ) ≥ cTα) = exp(−Ω(Tα−1/2)).

The first item in Theorem 2 means that with the modified bonus term, the worst case regret is
still bounded by O(

√
T lnT ), which is the same as the regret bounds for SE and UCB with the

standard bonus term (1). The second item shows that the tail probability of incurring a Ω(Tα)
regret (α > 1/2) is exponentially decaying in Ω(Tα−1/2), and thus the policy is light-tailed. The
detailed proof of Theorem 2 is provided in the supplementary material. An illustrative road-map
of the proof is delegated to Section 4, where we provide the proof idea for a theorem that is a strict
generalization of Theorem 2. Here, we give some intuition on the new bonus design. Our new bonus
term inflates the standard one by a factor of

√
T/n. This means our policy is more conservative than

the traditional confidence bound methods, especially at the beginning. In fact, one can observe that
for the first Θ(

√
T ) time periods, our policy consistently explores between arm 1 and 2, regardless of

the environment. A natural corollary is that our policy is never “consistent”, and this is reasonable
following Theorem 1. However, the bonus term (4) decays at a faster rate on the number of pulling
times n compared to (1). This means as the experiment goes on, the policy leans towards exploitation.
We need to stress that this is not the same as the explore-then commit policy, which is well-known to
achieve a sub-optimal Θ(T 2/3) regret (see, e.g., Section 1.2 in [17], Section 6.1 in [14]).

The following theorem shows that the risk tail in Theorem 2 is not improvable. That is, if the policy
π is worst-case optimal, then for fixed α ∈ (1/2, 1], the exponent of α− 1/2 is tight.

Theorem 3 Let c ∈ (0, 1/2). Consider the 2-armed bandit problem with Gaussian noise. Let π be a
worst-case optimal policy. That is, for any α > 1/2,

lim sup
T

supθ E[R̂π
θ (T )]

Tα
= 0.

Then for any α ∈ (1/2, 1],

lim inf
T

ln
{
supθ P(R̂π

θ (T ) ≥ cTα)
}

T β
= 0

holds for any β > α− 1/2.

Theorem 3 also relies on the change of measure argument appeared in Theorem 1. However, there
are two important differences: we only have worst-case optimality rather than consistency, and the
regret threshold cTα is in general not linear in T . Therefore, we need to take care of constructing the
specific “hard” instance when doing the change of measure. The detailed proof is delegated to the
supplementary material.
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4 Extensions: Multi-armed Bandit

In this section, we provide an extension of our previous tail probability bound in Theorem 2 from the
following three aspects: (a) a general K-armed bandit setting; (b) an analysis for UCB aside from
SE; (c) a detailed characterization of the tail bound for any fixed regret threshold.

Theorem 4 For the K-armed bandit problem, π = SE or π = UCB with

rad(n) = σ

√
ηT lnT

n

satisfy the following two properties. 1. If η ≥ 4, then supθ E [Rπ
θ ] ≤ 4K + 4Kσ

√
ηT lnT . 2. If

η > 0, then for any x > 0, we have

sup
θ

P(Rπ
θ (T ) ≥ x)

≤ exp

(
− x2

2Kσ2T

)
+ 2K exp

(
−
(x− 2K − 4Kσ

√
ηT lnT )2+

32σ2K2T

)
+K2T exp

(
−x
√
η lnT

8σK
√
T

)
.

Proof Idea. We provide a road-map of proving Theorem 4. The expected regret bound is proved using
standard techniques. That is, we define the good event to be such that the mean of each arm always
lies in the confidence bounds throughout the whole time horizon. Conditioned on the good event, the
regret of each arm is bounded by O(

√
T lnT ), and thus the total expected regret is O(K

√
T lnT ).

The proof of the tail bound requires more effort. Without loss of generality, we assume arm 1 is
optimal. We first illustrate the proof for π = SE.

Step 1. We use

sup
θ

P(R̂π
θ (T ) ≥ x) ≤ P

(
Nπ(T ) ≤ −x/

√
K
)
+ sup

θ
P
(
Rπ

θ (T ) ≥ x(1− 1/
√
K)
)

The term with the genuine noise can be easily bounded using Lemma 1. We are left to bound the tail
of the pseudo regret. By a union bound, we observe that

P
(
Rπ

θ (T ) ≥ x(1− 1/
√
K)
)
≤
∑
k ̸=1

P
(
nk∆k ≥ x/(K +

√
K)
)
≤
∑
k ̸=1

P (nk∆k ≥ x/(2K))

Thus, we reduce bounding the sum of the regret incurred by different arms to bounding that by a
single sub-optimal arm.

Step 2. For any k ̸= 1, we define

Sk = {Arm 1 is not eliminated before arm k}.

With a slight abuse of notation, we let n0 = ⌈x/(2K∆k)⌉ − 1. If both nk∆k ≥ x/(2K) and Sk

happen, then arm 1 and k are not eliminated after each of them being pulled n0 times. This indicates

µ̂t1(n0),1 −
σ
√
ηT lnT

n0
≤ µ̂tk(n0),k +

σ
√
ηT lnT

n0

The probability of this event can be bounded using concentration of subgaussian variables, which
yields the second term in the tail bound in Theorem 4. The choice of n0 is important. We note that at
this step, even if we replace our new bonus term by the standard one, the bound still holds.

Step 3. Now consider the situtation when S̄k happens. This means after some phase n, the optimal arm
1 is eliminated by some arm k′, while arm k is not eliminated. Note that k = k′ does not necessarily
hold when K > 2. As a consequence, we have the following two events hold simultaneously:

µ̂tk′ (n),k′− σ
√
ηT lnT

n
≥ µ̂t1(n),1+

σ
√
ηT lnT

n
, µ̂tk(n),k+

σ
√
ηT lnT

n
≥ µ̂t1(n),1+

σ
√
ηT lnT

n
.

The first event leads to

Mean of some noise terms ≥ 2σ
√
ηT lnT

n
+∆k′ ≥ 2σ

√
ηT lnT

n
.
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The second event leads to

Mean of some noise terms ≥ ∆k ≥
x

2KT
.

Now comes the trick to deal with an arbitrary n. We bound the probabilities of the two events
separately and take the minimum of the two probabilities (P(A ∩B) ≤ min{P(A),P(B)} (∀A,B)).
Then such minimum can be further bounded using the basic inequality (a+ b)/2 ≥

√
ab (∀a, b ≥ 0).

This yields the last term in Theorem 4. We note that at this step, the standard bonus term (1) does not
suffice to get an exponential bound. The

√
T/n design in our new bonus term plays a crucial role.

We next illustrate the proof for π = UCB. The proof is in fact simpler. We use the first step in the
proof for π = SE. For fixed k, we also take the same n0 = ⌊x/(2K∆k)⌋ − 1. The difference here
is that we do not need to define the event Sk. When arm k is pulled for the (n0 + 1)th time, by the
design of the UCB policy, there exists some n such that

µ1 +

∑n
m=1 ϵt1(m),1 + σ

√
ηT lnT

n
≤ µk +

∑n0

m=1 ϵtk(m),k + σ
√
ηT lnT

n0
.

Now comes the trick. The event is included by a union of two events described as follows:∑n0

m=1 ϵtk(m),k + σ
√
ηT lnT

n0
≥ ∆k

2
and

∑n
m=1 ϵt1(m),1 + σ

√
ηT lnT

n
≤ −∆k

2
.

The probability of each of the two events can be bounded using similar techniques adopted when
π = SE. In fact, it is implicitly shown in our proof that UCB can yield better constants than SE. We
still need to emphasize that when bounding the second event, similar to the argument for π = SE, the
choice of our new bonus term is crucial.

Remarks. For the regret bound, we note that compared to the optimal Θ̃(
√
KT ) bound, we have an

additional
√
K term. We should point out that the additional

√
K term is not surprising under the

bonus term (4). An intuitive explanation is as follows. Compared to the bonus term (1), we widen the
bonus term by a factor of

√
T/n. Among the K − 1 arms, there must exist an arm such that it is

pulled no more than T/K times throughout the whole time horizon. That is, the bonus term of this
arm is always inflated by a factor of at least

√
K. The standard regret bound analysis will, as a result,

lead to an additional
√
K factor compared to the optimal regret bound Θ̃(

√
KT ).

For the tail bound, from our proof road-map, one can see that the tail bound in Theorem 4 is also
valid for the pseudo-regret supθ P(Rπ

θ (T ) ≥ x). In fact, with some simple manipulations on the
inequality, if we let

y =

(
x− 2K − 16σK

√
(η ∨ 1/η)T lnT

)
+

8σK
√
T

,

then for any x ≥ 0, we can get a neat form (we illustrate this point in the supplementary material)

sup
θ

P(Rπ
θ (T ) ≥ x) ≤ 4K exp

(
−y2 ∧ y

√
η lnT

)
.

There are two observations:

(a) For any η > 0, our policy always yields a O(
√
T ) expected regret (although with a constant

larger than that in the first result in Theorem 4). In fact, notice that for any x > 0

E[R̂π
θ (T )] = E[Rπ

θ (T )] ≤ x+ P(Rπ
θ (T ) ≥ x) · T.

If we let x = 2K + CσK
√

(η ∨ 1/η)T lnT with C > 0 being moderately large, then
P(Rπ

θ (T ) ≥ x) · T = O(1). As a result, the worst-case regret becomes

O
(
K
√
(η ∨ 1/η)T lnT

)
.

This observation shows that the regret order of our policy design is not related to the
parameter η, as opposed to the standard UCB policy with (1), where a very small η may
possibly make the UCB policy no longer enjoy a Õ(

√
T ) worst-case regret1.

1We believe there is work in the literature that has precisely documented that a very small η may possibly
make the UCB policy no longer enjoy a Õ(

√
T ) worst-case regret, but we have not been able to identify one.

For completeness, we summarize this point as a lemma with a proof in the supplementary material.
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(b) If we set η = 1 and

δ = 4K exp
(
−(y −

√
lnT )+

√
lnT

)
≥ 4K exp

(
−y2 ∧ y

√
lnT

)
,

then one can see that for any δ > 0, with probability at least 1− δ, the regret of our policy
is bounded by

O

(
σK
√
T

(√
lnT +

ln(4K/δ)√
lnT

))
= O

(
σK
√
T

(√
lnT +

ln(1/δ)√
lnT

))
.

This partially solve the open question in Section 17.1 of [14] (we’ve mentioned it in the
introduction) up to a logarithmic factor.

5 Numerical Experiments

In this section, we provide a brief two-armed numerical experiment result and defer the experiment
details and other multi-armed experiment results to the supplementary material. We consider a two
armed-bandit problem with θ = (0.2, 0.8), σ = 1, T = 500 and Gaussian noise. We test four policies:
(i) SE and UCB with the classical bonus design described in (1), and SE_new and UCB_new with
the proposed new bonus design in (4). We let κ ≜ σ

√
η. The tuning parameter κ has 4 choices:

κ ∈ {0.1, 0.2, 0.4, 0.8}. We also consider the TS policy assuming the mean reward of each arm i
following the prior N (0, 1) and the sample from each arm i following N (θi, κ

2). That said, we
evaluate TS under mis-specified risk parameters. For each policy and κ, we run 5000 simulation paths
and for each path we collect the cumulative reward. We plot the empirical distribution (histogram)
for a policy’s cumulative reward in Figure 1. Indeed, one can observe that for SE and UCB with (1)
and TS, there is a significant part of distribution around 100, indicating a significant risk of incurring
a linear regret, especially when κ is small. In contrast, with the new design (4), the reward is highly
concentrated for every κ > 0 with almost no tail risk of getting a low total reward. Particularly, when
κ = 0.1, UCB_new achieves both high empirical mean and light-tailed distribution.

Figure 1: Empirical distribution for the cumulative reward; bottom two are new proposed policies

6 Conclusion

In this work, we consider the MAB problem with a joint goal of minimizing the worst-case expected
regret and obtaining light-tailed probability bound of the regret distribution. We characterize the
interplay among three concepts: light-tailed risk, instance-dependent consistency, and worst-case
optimality. We demonstrate that light-tailed risk and instance-dependent consistency are incompatible,
and show that light-tailed risk and worst-case optimality can co-exist through a simple new policy
design. We discuss insights and generalizations of our results, and study the empirical performance.
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An open question is whether we can improve the regret bound in Theorem 4 to Θ(
√
KT lnT ) and

get a probability bound of

ln

{
sup
θ

P(Rπ
θ (T ) ≥ x)

}
= −Ω

(
x√
KT

)
. (5)

Another interesting direction is to generalize our policy design to the setting where noises are not
sub-Gaussian, but come from general distributions. In fact, there is a separate line of literature
studying bandit problems with non sub-Gaussian noise (see, e.g., [7]). We hope our framework can
be integrated with this line of literature to handle certain types of non sub-Gaussian noise, provided
with controls on the tail behavior of the random noises.
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A Proofs for Section 3

To prove Theorem 1, we need the following lemma.

Lemma 2 Consider the two-armed bandit problem with σ-Gaussian noise. Let π be a policy such
that for any true mean vector θ,

lim sup
T→+∞

E
[
R̂π

θ (T )
]

T
= 0.

That is, the expected regret under π is always sub-linear in T . Then for any θ̃ = (θ̃1, θ̃2) where
θ̃1 > θ̃2, and any δ > 0, we have

lim sup
T→+∞

Pπ
θ̃
(|µ̂T,2 − θ̃2| > δ) = 0.

Proof of Lemma 2. Define

ET =
{
|µ̂T,2 − θ̃2| ≤ δ

}
.

Fix any positive integer N , we have

Pπ
θ̃
(ĒT ) = Pπ

θ̃
(ĒT ;nT,2 < N) + Pπ

θ̃
(ĒT ;nT,2 ≥ N)

≤ Pπ
θ̃
(nT,2 < N) +

+∞∑
n=N

Pπ
θ̃
(ĒT ;nT,2 = n)

≤ Pπ
θ̃
(nT,2 < N) +

+∞∑
n=N

2 exp(−nδ2

2σ2
).

Thus,

lim sup
T

Pπ
θ̃
(ĒT ) ≤ lim sup

T
Pπ
θ̃
(nT,2 < N) +

+∞∑
n=N

2 exp(−nδ2

2σ2
)

holds for any N . Note that the last term converges to 0 as N → +∞. It suffices to show Pπ
θ̃
(nT,2 <

N) → 0 as T → +∞ for any fixed N . Suppose this does not hold, then we can find p > 0 and a
sequence {T (m)}+∞

m=1 such that
Pπ
θ̃
(nT (m),2 < N) > p.

Let M be some large number such that q ≜ p − N exp(−M2

2σ2 ) > 0. Consider an alternative
environment θ = (θ1, θ2) where θ2 > θ1 = θ̃1. Using the change of measure argument, we have

Pπ
θ (nT (m),2 < N)

= Eπ
θ [1{nT (m),2 < N}]

= Eπ
θ̃

[
exp

(nT (m),2∑
n=1

(Xt2(n),2 − θ̃2)
2 − (Xt2(n),2 − θ2)

2

2σ2

)
1{nT (m),2 < N}

]

= Eπ
θ̃

[
exp

(
nT (m),2

(
θ̃22 − θ22
2σ2

+
(θ2 − θ̃2)θ̂T (m),2

σ2

))
1{nT (m),2 < N}

]

≥ Eπ
θ̃

[
exp

(
nT (m),2

(
θ̃22 − θ22
2σ2

+
(θ2 − θ̃2)θ̂T (m),2

σ2

))
1{θ̂T (m),2 > θ̃2 −M,nT (m),2 < N}

]

≥ Eπ
θ̃

[
exp

(
N

(
− (θ̃2 − θ2)

2

2σ2
− M(θ2 − θ̃2)

σ2

))
1{θ̂T (m),2 > θ̃2 −M,nT (m),2 < N}

]

= exp

(
N

(
− (θ̃2 − θ2)

2

2σ2
− M(θ2 − θ̃2)

σ2

))
Pπ
θ̃
(θ̂T (m),2 > θ̃2 −M,nT (m),2 < N).
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Note that

Pπ
θ̃
(θ̂T (m),2 > θ̃2 −M,nT (m),2 < N)

= p−
N−1∑
n=1

Pπ
θ̃
(θ̂T (m),2 ≤ θ̃2 −M,nT (m),2 = n)

≥ p−
N−1∑
n=1

exp(−nM2

2σ2
) ≥ p−N exp(−M2

2σ2
) = q > 0.

Therefore, there exists a constant positive probability such that π pulls arm 2 no more than N times
under θ. As a result, π incurs a linear expected regret under θ, leading to a contradiction.

□

Proof of Theorem 1.

We consider the environment where the noise ϵ is gaussian with standard deviation σ. Let θ1 = 1/2.
Let θ = (θ1, θ2) and θ̃ = (θ1, θ̃2), where θ2 = θ1 +

1
2 and θ̃2 = θ1 − 1

2 . Let c′ ∈ (c, 1/2). Define

ET =
{
|µ̂T,2 − θ̃2| ≤ δ

}
where δ > 0 is a small number, and

FT = {n2 ≤ f(T )}.

Here, f(T ) > 0 is a strictly increasing function such that

lim sup
T

f(T )

T
= 0.

We will detail how f(T ) should be chosen under different conditions in the last step of the proof.
Then there exists T0 such that f(T ) < (1− 2c′)T for any T > T0. Now we fix any T > T0. Under
the environment θ̃, we have

Pπ
θ̃
(F̄T ) = Pπ

θ̃
(n2 > f(T )) ≤

Eπ
θ̃
[n2]

f(T )
≤

2E[Rπ
θ̃
(T )]

f(T )
=

2E[R̂π
θ̃
(T )]

f(T )
.

Combined with Lemma 2, we have

lim inf
T

Pπ
θ̃
(ET , FT ) ≥ 1− lim sup

T

2E[R̂π
θ̃
(T )]

f(T )
. (6)

Notice that

P
(
R̂π

θ (T ) ≥ cT
)

≥ P (Rπ
θ (T ) ≥ c′T,−Nπ(T ) ≥ −(c′ − c)T )

= P (Rπ
θ (T ) ≥ c′T )− P (Rπ

θ (T ) ≥ c′T,Nπ(T ) > (c′ − c)T )

≥ P (Rπ
θ (T ) ≥ c′T )− P (Nπ(T ) > (c′ − c)T )

≥ P (Rπ
θ (T ) ≥ c′T )− exp

(
− (c′ − c)2T

2σ2

)
The last inequality holds from Lemma 1. Now

P (Rπ
θ (T ) ≥ c′T )

≥ Pπ
θ (n1 ≥ 2c′T )

≥ Pπ
θ (n2 ≤ (1− 2c′)T )

≥ Pπ
θ (n2 ≤ f(T ))

≥ Pπ
θ (ET , FT )

= Eπ
θ [1{ETFT }]
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= Eπ
θ̃

[
exp

(
n2∑
n=1

(Xt2(n),2 − θ̃2)
2 − (Xt2(n),2 − θ2)

2

2σ2

)
1{ETFT }

]

= Eπ
θ̃

[
exp

(
n2

(
θ̃22 − θ22
2σ2

+
(θ2 − θ̃2)θ̂T,2

σ2

))
1{ETFT }

]

≥ Eπ
θ̃

[
exp

(
n2

(
θ̃22 − θ22
2σ2

+
(θ2 − θ̃2)(θ̃2 − δ)

σ2

))
1{ETFT }

]

= Eπ
θ̃

[
exp

(
n2

(
− (θ̃2 − θ2)

2

2σ2
− δ(θ2 − θ̃2)

σ2

))
1{ETFT }

]

≥ Eπ
θ̃

[
exp

(
f(T )

(
− (θ̃2 − θ2)

2

2σ2
− δ(θ2 − θ̃2)

σ2

))
1{ETFT }

]
= exp(−f(T )(1/2σ2 + δ/σ2))Pπ

θ̃
(ET , FT ).

Therefore,

lim inf
T

ln
{
supθ′ P

(
R̂π

θ′(T ) ≥ cT
)}

f(T )

≥ lim inf
T

ln
{
exp(−f(T )(1/2σ2 + δ/σ2))Pπ

θ̃
(ET , FT )− exp

(
− (c′−c)2T

2σ2

)}
f(T )

. (7)

Now assume that π is consistent. Then we set f(T ) = T β with β ∈ (0, 1). From (6), we have

lim inf
T

Pπ
θ̃
(ET , FT ) ≥ 1− lim sup

T

2E[R̂π
θ̃
(T )]

T β
= 1.

Then from (7), we have

lim inf
T

ln
{
supθ′ P(R̂π

θ′(T ) ≥ cT )
}

T β
≥ −(1/2σ2 + δ/σ2).

Since δ > 0 is arbitrary, we have

lim inf
T

ln
{
supθ′ P(R̂π

θ′(T ) ≥ cT )
}

T β
≥ −1/2σ2.

Note again that β > 0 is arbitrary. Now let 0 < β′ < β, we have

lim inf
T

ln
{
supθ′ P(R̂π

θ′(T ) ≥ cT )
}

T β
= lim inf

T

ln
{
supθ′ P(R̂π

θ′(T ) ≥ cT )
}

T β′ · lim inf
T

T β′−β

≥ −1/2σ2 · 0 = 0.

Now assume that π satisfies

lim sup
T

E[R̂π
θ (T )]

lnT
= cπσ

2 < +∞.

for any θ. Note that when π = SE and π = UCB with the bonus term (1), the property above always
holds. Let f(T ) = 4cπσ

2 lnT . From (6), we have

lim inf
T

Pπ
θ̃
(ET , FT ) ≥ 1− lim sup

T

2E[R̂π
θ̃
(T )]

4cπσ2 lnT
= 1/2.

Then from (7), we have

lim inf
T

ln
{
supθ′ P(R̂π

θ′(T ) ≥ cT )
}

4cπσ2 lnT
≥ −(1/2σ2 + δ/σ2).
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Since δ > 0 is arbitrary, we have

lim inf
T

ln
{
supθ′ P(R̂π

θ′(T ) ≥ cT )
}

4cπσ2 lnT
≥ −1/2σ2.

Let Cπ = 2cπ , we have

lim inf
T

ln
{
supθ′ P(R̂π

θ′(T ) ≥ cT )
}

lnT
≥ −Cπ.

□

Proof of Theorem 2. Without loss of generality, we assume θ1 > θ2. We prove the results one by
one. Since the environment θ is fixed, we will write P (E) instead of Pπ

θ (Eπ
θ ).

1. From Lemma 1,

E[R̂π
θ (T )] = E[Rπ

θ (T )] = E[n2] ·∆2.

Let G be the event such that

G = {µk ∈ CIt,k, ∀(t, k)}.

Then

P(Ḡ) ≤
∑
(t,k)

P(µk /∈ CIt,k) ≤ 2

T∑
n=1

2 exp(−2ηT lnT

n
) ≤ 4T 1−2η.

Thus,

E[n2] = E[n2|G]P(G) + E[n2|Ḡ]P(Ḡ)

≤ E[n2|G] + T · P(Ḡ)

≤ E[n2|G] + 4T 2−2η ≤ E[n2|G] + 4.

With a slight abuse of notation, we let t be the largest time period such that arm 2 is pulled but
subsequently not eliminated from A. Then under G, we have

µ1 − 2σ

√
ηT lnT

nt,2 − 1
≤ µ1 − 2σ

√
ηT lnT

nt,1
≤ µ̂t,1 − σ

√
ηT lnT

nt,1

≤ µ̂t,2 + σ

√
ηT lnT

nt,2 − 1
≤ µ2 + 2σ

√
ηT lnT

nt,2 − 1
.

Therefore,

nt,2 ≤ 1 + 4σ

√
ηT lnT

∆2

and thus,

n2 ≤ 2 + 4σ

√
ηT lnT

∆2
.

As a result,

E[Rπ
θ (T )] ≤ 2∆2 + 4σ

√
ηT lnT + 4 = O(

√
T lnT ).

2. We have

P(Rπ
θ (T ) ≥ cTα) ≤ P(R̂π

θ (T ) ≥ cTα/2) + P(Nπ
θ (T ) ≤ −cTα/2)

From Lemma 1, the second term can be bounded as

P(Nπ
θ (T ) ≤ −cTα/2) ≤ exp

(
−c2T 2α

2σ2T

)
= exp

(
−c2T 2α−1

2σ2

)
. (8)
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We are left to bound P(R̂π
θ (T ) ≥ cTα/2). Let S be the event defined as

S = {Arm 1 is never eliminated throughout the whole time horizon}.
Then

S̄ = {∃t such that arm 1 is eliminated at time t}.
So

P(R̂π
θ (T ) ≥ cTα/2) = P(R̂π

θ (T ) ≥ cTα/2, S) + P(R̂π
θ (T ) ≥ cTα/2, S̄).

Let T be such that

cTα ≥ max{4, 16σ
√
ηT lnT}.

Let n0 = ⌈cTα/2∆2⌉ - 1, then

n0 ≥ cTα/4∆2.

Also, if R̂π
θ (T ) ≥ cTα/2, we must have

T ≥ cTα/2∆2,

which means ∆2 ≥ cTα−1/2. We have

P(R̂π
θ (T ) ≥ cTα/2, S)

= P(n2 ≥ cTα/2∆2, S)

≤ P(n2 ≥ n0 + 1, arm 1 and 2 are pulled in turn for (n0 + 1) times)
≤ P(arm 1 and 2 are pulled in turn for n0 times and arm 1 and 2 are both not eliminated)

≤ P
(
µ̂t1(n0),1 −

σ
√
ηT lnT

n0
≤ µ̂t2(n0),2 +

σ
√
ηT lnT

n0

)
= P

(
µ1 −

∑n0

m=1 ϵt1(m),1 + σ
√
ηT lnT

n0
≤ µ2 +

∑n0

m=1 ϵt2(m),2 + σ
√
ηT lnT

n0

)
= P

(∑n0

m=1(ϵt1(m),1 − ϵt2(m),2)

n0
≥ ∆2 −

2σ
√
ηT lnT

n0

)
≤ P

(∑n0

m=1 ϵt1(m),1

n0
≥ ∆2

2
− σ
√
ηT lnT

n0

)
+ P

(∑n0

m=1 ϵt2(m),2

n0
≥ ∆2

2
− σ
√
ηT lnT

n0

)
≤ 2 exp

(
−n0

(
∆2

2
− σ
√
ηT lnT

n0

)2 /
2σ2

)

= 2 exp

(
−n0∆

2
2

(
1− 8σ

√
ηT lnT

cTα

)2 /
2σ2

)

≤ 2 exp

(
−n0∆

2
2

8σ2

)
≤ 2 exp

(
−cTα · cTα−1

128σ2

)
= 2 exp

(
−c2T 2α−1

128σ2

)
. (9)

Meanwhile,

P(R̂π
θ (T ) ≥ cTα/2, S̄)

≤ P(S̄)

= P
(
∃n ≤ T/2 : µ̂t1(n),1 +

σ
√
ηT lnT

n
< µ̂t2(n),2 −

σ
√
ηT lnT

n

)
= P

(
∃n ≤ T/2 : µ1 +

∑n
m=1 ϵt1(m),1 + σ

√
ηT lnT

n
< µ2 +

∑n
m=1 ϵt2(m),2 − σ

√
ηT lnT

n

)

≤
⌊T/2⌋∑
n=1

P
(∑n

m=1(ϵt2(m),2 − ϵt1(m),1)

n
> ∆2 +

2σ
√
ηT lnT

n

)
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≤
⌊T/2⌋∑
n=1

P
(∑n

m=1 ϵt2(m),2

n
>

∆2

2
+

σ
√
ηT lnT

n

)

+

⌊T/2⌋∑
n=1

P
(∑n

m=1−ϵt1(m),1

n
>

∆2

2
+

σ
√
ηT lnT

n

)

≤ 2

⌊T/2⌋∑
n=1

exp

(
−n
(
∆2

2
+

σ
√
ηT lnT

n

)2 /
2σ2

)
(The new bonus is important. Otherwise the following steps fail.)

≤ T exp

(
−2n∆2

σ
√
ηT lnT

n

/
2σ2

)
≤ T exp(−σ · cTα−1 ·

√
ηT lnT

/
2σ2)

= exp

(
−cTα−1/2

√
η lnT − σ lnT

2σ

)
≤ exp

(
−cTα−1/2

√
η lnT

4σ

)
≤ exp

(
−cTα−1/2

16σ

)
. (10)

Note that the equations above hold for any instance θ. Combining (8), (9), (10) yields

sup
θ

P(Rπ
θ (T ) ≥ cTα) ≤ 4 exp

(
cTα−1/2

16σ

)
.

□

Proof of Theorem 3.

We consider the environment where the noise ϵ is gaussian with standard deviation σ. Fix any α > 1/2.
Let θ1 = 1/2. Let θ(T ) = (θ1, θ2(T )) and θ̃(T ) = (θ1, θ̃2(T )), where θ2(T ) = θ1 +

1
2T 1−α and

θ̃2(T ) = θ1 − 1
2T 1−α . Let

γ ∈ (3/2− α, min{1, β + 2− 2α}).

Such γ always exists because β+2−2α > α−1/2+2−2α = 3/2−α and 3/2−α < 3/2−1/2 = 1.
For notation simplicity, we will write θ (θ̃) instead of θ(T ) (θ̃(T )), but we must keep in mind that θ
(θ̃) is dependent on T . Define

ET =
{
|µ̂T,2 − θ̃2| ≤ δ

}
where δ > 0 is a small number, and

FT = {n2 ≤ T γ}.

Then under the environment θ̃, we have

Pπ
θ̃
(F̄T ) = Pπ

θ̃
(n2 > T γ) ≤

Eπ
θ̃
[n2]

T γ
≤

E[Rπ
θ̃
(T )]

T γ+α−1
≤ supθ′ E[Rπ

θ′(T )]

T γ+α−1
−→ 0

as T → +∞. Combined with Lemma 2, we have

lim inf
T

Pπ
θ̃
(ET , FT ) = 1.

Let c′ ∈ (c, 1/2). There exists T0 such that (1− 2c′)T > T γ for any T > T0. Fix T > T0. Notice
that

P
(
R̂π

θ (T ) ≥ cTα
)

≥ P (Rπ
θ (T ) ≥ c′Tα,−Nπ(T ) ≥ −(c′ − c)Tα)

= P (Rπ
θ (T ) ≥ c′T )− P (Rπ

θ (T ) ≥ c′Tα, Nπ(T ) > (c′ − c)Tα)
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≥ P (Rπ
θ (T ) ≥ c′Tα)− P (Nπ(T ) > (c′ − c)Tα)

≥ P (Rπ
θ (T ) ≥ c′Tα)− exp

(
− (c′ − c)2T 2α−1

2σ2

)
The last inequality holds from Lemma 1. Now

P (Rπ
θ (T ) ≥ c′Tα)

≥ Pπ
θ (n1 ≥ 2c′T )

≥ Pπ
θ (n2 ≤ (1− 2c′)T )

≥ Pπ
θ (n2 ≤ T γ)

≥ Pπ
θ (ET , FT )

= Eπ
θ [1{ETFT }]

= Eπ
θ̃

[
exp

(
n2∑
n=1

(Xt2(n),2 − θ̃2)
2 − (Xt2(n),2 − θ2)

2

2σ2

)
1{ETFT }

]

= Eπ
θ̃

[
exp

(
n2

(
θ̃22 − θ22
2σ2

+
(θ2 − θ̃2)θ̂T,2

σ2

))
1{ETFT }

]

≥ Eπ
θ̃

[
exp

(
n2

(
θ̃22 − θ22
2σ2

+
(θ2 − θ̃2)(θ̃2 − δ)

σ2

))
1{ETFT }

]

= Eπ
θ̃

[
exp

(
n2

(
− (θ̃2 − θ2)

2

2σ2
− δ(θ2 − θ̃2)

σ2

))
1{ETFT }

]

≥ Eπ
θ̃

[
exp

(
T γ

(
− (θ̃2 − θ2)

2

2σ2
− δ(θ2 − θ̃2)

σ2

))
1{ETFT }

]
= exp(−T γ+2α−2/2σ2 − δT γ+α−1/σ2)Pπ

θ̃
(ET , FT ).

Notice that

γ + 2α− 2 < 2α− 1, γ + 2α− 2 ≤ γ + α− 1,

and δ > 0 can be arbitrary. Therefore,

lim inf
T

ln
{
supθ′ P(R̂π

θ′(T ) ≥ cTα)
}

T β

≥ lim inf
T

−T γ+2α−2/2σ2

T β

= 0.

Since ln {supθ P(Rπ
θ (T ) ≥ cTα)} ≤ 0 always holds, we obtain the result.

□

B Proofs for Section 4

Proof of Theorem 4. Without loss of generality, we assume θ1 = θ∗. We prove the results one by
one.

1. From Lemma 1,

E[Rπ
θ ] = E[R̂π

θ ] =

K∑
k=2

E[nk] ·∆k.

Let G be the event such that

G = {µk ∈ CIt,k, ∀(t, k)}.
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Then

P(Ḡ) ≤
∑
(t,k)

P(µk /∈ CIt,k) ≤ K

T∑
n=1

2 exp(−ηT lnT

2n
) ≤ 2KT 1−η/2.

Thus,

E[Rπ
θ ] =

K∑
k=2

(
E[nk|G]P(G) + E[nk|Ḡ]P(Ḡ)

)
∆k

≤
K∑

k=2

E[nk|G] + T · P(Ḡ)

≤
K∑

k=2

E[nk|G] + 2KT 2−η/2 ≤
K∑

k=2

E[nk|G] + 2K.

(a) Let π = SE. Fix any arm k ̸= 1. We let t′k be the largest time period such that we
have traversed all the arms in A, and meanwhile arm k is not eliminated from A. Then
nk = nt′k,k

+ 1. When doing the elimination after tk, arm 1 and k are both pulled nt′k,k

times. Under G, we have

µ1 − 2σ

√
ηT lnT

nt′k,k
≤ µ1 − 2σ

√
ηT lnT

nt′k,1
≤ µ̂t′k,1

− σ

√
ηT lnT

nt′k,1

≤ µ̂t′k,k
+ σ

√
ηT lnT

nt′k,k
≤ µk + 2σ

√
ηT lnT

nt′k,k
.

Therefore,

nt′k,k
≤ 1 + 4σ

√
ηT lnT

∆k

and thus,

nk ≤ 2 + 4σ

√
ηT lnT

∆k
.

As a result,

E[R̂π
θ (T )] ≤ 2

K∑
k=2

∆k + 4

K∑
k=2

σ
√
ηT lnT + 2K ≤ 4K + 4Kσ

√
ηT lnT .

(b) Let π = UCB. Fix any arm k ̸= 1. We let tk be the largest time period such that arm k is
pulled. Then nk = ntk,k = ntk−1,k + 1. Under G, we have

µ1 ≤ µ̂tk−1,1 + σ

√
ηT lnT

ntk−1,1
≤ µ̂tk−1,k + σ

√
ηT lnT

ntk−1,k
≤ µk + 2σ

√
ηT lnT

ntk−1,k

Therefore,

ntk−1,k ≤ 2σ

√
ηT lnT

∆k

and thus,

nk ≤ 1 + 2σ

√
ηT lnT

∆k
.

As a result,

E[R̂π
θ (T )] ≤

K∑
k=2

∆k + 2

K∑
k=2

σ
√
ηT lnT + 2K ≤ 3K + 2Kσ

√
ηT lnT .
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2. We have

P(R̂π
θ (T ) ≥ x) ≤ P

(
Rπ

θ (T ) ≥ x(1− 1/
√
K)
)
+ P

(
Nπ

θ (T ) ≤ −x/
√
K
)

From Lemma 1, the second term can be bounded as

P (Nπ
θ (T ) ≤ −x/K) ≤ exp

(
− x2

2Kσ2T

)
. (11)

We are left to bound P
(
Rπ

θ (T ) ≥ x(1− 1/
√
K)
)

.

(a) Let π = SE. For any k ̸= 1, let Sk be the event defined as

Sk = {Arm 1 is not eliminated before arm k}.

Then

S̄k = {Arm 1 is eliminated before arm k}.

So

P
(
Rπ

θ (T ) ≥ x(1− 1/
√
K)
)
≤

K∑
k=2

P
(
nk∆k ≥ x/(K +

√
K)
)

=

K∑
k=2

P(nk∆k ≥ x/2K,Sk) + P(nk∆k ≥ x/2K, S̄k).

Let x > 0. Fix any k ̸= 1. With a slight abuse of notation, we let n0 = ⌈x/2K∆k⌉ - 1, then

n0 ≥ x/2K∆k − 1 ≥ (x− 2K)/2K∆k.

Also, if nk∆k ≥ x/2K, we must have

T ≥ x/2K∆k,

which means ∆k ≥ x/2KT . By the definition of n0, arm k is not eliminated after being
pulled n0 times. So under Sk, after arm 1 being pulled n0 times, it is still in the active set.
We have

P(nk∆k ≥ x/2K,Sk)

= P(nk ≥ x/2K∆k, Sk)

≤ P(arm 1 and k are both not eliminated after each of them being pulled n0 times)

≤ P
(
µ̂t1(n0),1 −

σ
√
ηT lnT

n0
≤ µ̂tk(n0),k +

σ
√
ηT lnT

n0

)
= P

(
µ1 −

∑n0

m=1 ϵt1(m),1 + σ
√
ηT lnT

n0
≤ µk +

∑n0

m=1 ϵtk(m),k + σ
√
ηT lnT

n0

)
= P

(∑n0

m=1(ϵt1(m),1 − ϵtk(m),k)

n0
≥ ∆k −

2σ
√
ηT lnT

n0

)
≤ P

(∑n0

m=1 ϵt1(m),1

n0
≥ ∆k

2
− σ
√
ηT lnT

n0

)
+ P

(∑n0

m=1 ϵtk(m),k

n0
≥ ∆k

2
− σ
√
ηT lnT

n0

)
≤ 2 exp

(
−n0

(
∆k

2
− σ
√
ηT lnT

n0

)2

+

/
2σ2

)

= 2 exp

(
−n0∆

2
k

(
1− 2σ

√
ηT lnT

n0∆k

)2

+

/
8σ2

)
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≤ 2 exp

(
−x(x− 2K)+

4KT

(
1− 4K2σ

√
ηT lnT

x− 2K

)2

+

/
8σ2

)

≤ 2 exp

(
−
(x− 2K − 4Kσ

√
ηT lnT )2+

32σ2K2T

)
. (12)

In the following, we bound P(nk∆k ≥ x/2K, S̄k). Suppose that after n phases, arm 1
is eliminated by arm k′ (k′ is not necessarily k). By the definition of S̄k, arm k is not
eliminated. Therefore, we have

µ̂tk′ (n),k′ − σ
√
ηT lnT

n
≥ µ̂t1(n),1 +

σ
√
ηT lnT

n
,

µ̂tk(n),k +
σ
√
ηT lnT

n
≥ µ̂t1(n),1 +

σ
√
ηT lnT

n
(13)

holds simultaneously. The first inequality holds because arm 1 is eliminated. The second
inequality holds because arm k is not eliminated. Now for fixed n,

P
(

(13) happens; ∆k ≥
x

2KT

)
≤ P

(
∃k′ : µ̂tk′ (n),k′ − σ

√
ηT lnT

n
≥ µ̂t1(n),1 +

σ
√
ηT lnT

n

)
∧ P

(
µ̂tk(n),k +

σ
√
ηT lnT

n
≥ µ̂t1(n),1 +

σ
√
ηT lnT

n
; ∆k ≥ x/2KT

)
≤ P

(
∃k′ :

∑n
m=1(ϵtk′ (m),k′ − ϵt1(m),1)

n
≥ 2σ

√
ηT lnT

n

)
∧ P

(∑n
m=1(ϵtk(m),k − ϵt1(m),1)

n
> ∆k; ∆k ≥ x/2KT

)
≤
∑
k′ ̸=1

P
(∑n

m=1 ϵtk′ (m),k′

n
≥ σ
√
ηT lnT

n

)
+ P

(∑n
m=1 ϵt1(m),1

n
≤ −σ

√
ηT lnT

n

)

∧
(
P
(∑n

m=1 ϵtk(m),k

n
≥ x

4KT

)
+ P

(∑n
m=1 ϵt1(m),1

n
≤ − x

4KT

))
≤ 2K exp

(
−ηT lnT

2n

)
∧ 2K exp

(
− nx2

32σ2K2T 2

)
= 2K exp

(
−
(
ηT lnT

2n
∨ nx2

32σ2K2T 2

))
≤ 2K exp

(
−x
√
η lnT

8σK
√
T

)
Therefore,

P(nk∆k ≥ x/2K, S̄)

= P (∃n ≤ T/2 : (13) happens;nk∆k ≥ x/2K)

≤
⌊T/2⌋∑
n=1

P
(

(13) happens; ∆k ≥
x

2KT

)
≤ KT exp

(
−x
√
η lnT

8σK
√
T

)
. (14)

Note that the equations above hold for any instance θ. Combining (11), (12), (14) yields

sup
θ

P(Rπ
θ (T ) ≥ x)

≤ exp

(
− x2

2Kσ2T

)
+ 2K exp

(
−
(x− 2K − 4Kσ

√
ηT lnT )2+

32σ2K2T

)
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+K2T exp

(
−x
√
η lnT

8σK
√
T

)
(b) Let π = UCB. From (a), we know that

P
(
Rπ

θ (T ) ≥ x(1− 1/
√
K)
)
≤

K∑
k=2

P
(
nk∆k ≥ x/(K +

√
K)
)

≤
K∑

k=2

P(nk∆k ≥ x/2K).

Let x > 0. Fix k ̸= 1. With a slight abuse of notation, we let n0 = ⌈x/2K∆k⌉ − 1.
Remember that tk(n0 + 1) is the time period that arm k is pulled for the (n0 + 1)th time.
We emphasize again that ∆k ≥ x/(2KT ). Then

P(nk∆k ≥ x/2K)

= P(nk ≥ x/2K∆k)

≤ P
(
µ̂tk(n0+1)−1,1 +

σ
√
ηT lnT

ntk(n0+1)−1,1

≤ µ̂tk(n0+1)−1,k +
σ
√
ηT lnT

n0

)
= P

(
µ1 +

∑ntk(n0+1)−1,1

m=1 ϵt1(m),1 + σ
√
ηT lnT

ntk(n0+1)−1,1

≤ µk +

∑n0
m=1 ϵtk(m),k + σ

√
ηT lnT

n0

)

≤ P
(
∃n ∈ [T ] :

∑n0
m=1 ϵtk(m),k + σ

√
ηT lnT

n0
−
∑n

m=1 ϵt1(m),1 + σ
√
ηT lnT

n
≥ ∆k

)
≤ P

(∑n0
m=1 ϵtk(m),k + σ

√
ηT lnT

n0
≥ ∆k

2

)
+ P

(
∃n ∈ [T ] :

∑n
m=1 ϵt1(m),1 + σ

√
ηT lnT

n
≤ −∆k

2

)
≤ P

(∑n0
m=1 ϵtk(m),k + σ

√
ηT lnT

n0
≥ ∆k

2

)
+

T∑
n=1

P
(∑n

m=1 −ϵt1(m),1

n
≥ ∆k

2
+

σ
√
ηT lnT

n

)

≤ P
(∑n0

m=1 ϵtk(m),k + σ
√
ηT lnT

n0
≥ ∆k

2

)
+

T∑
n=1

P

(∑n
m=1 −ϵt1(m),1

n
≥
√

xσ
√
ηT lnT

nKT

)

≤ exp

(
− (x− 2K − 4Kσ

√
ηT lnT )2+

32σ2KT

)
+ T exp

(
−x

√
ηT lnT

2σKT

)
. (15)

The last inequality holds from (12) and concentration of subgaussian variables. Note that
the equations above hold for any instance θ. Combining (11), (15) yields

sup
θ

P(Rπ
θ (T ) ≥ x)

≤ exp

(
− x2

2Kσ2T

)
+K exp

(
−
(x− 2K − 4Kσ

√
ηT lnT )2+

32σ2KT

)
+K2T exp

(
−x
√
ηT lnT

8σKT

)
.

□

Remarks for Theorem 4. To get a neat form of the tail bound, one can notice that the last term in
the bound can be written as

K exp

(
−x
√
η lnT − 8σK

√
T ln(KT )

8σK
√
T

)
≤ K exp

(
−
(x− 16Kσ

√
1/η · T lnT )

√
η lnT

8σK
√
T

)
Since the tail probability has a trivial upper bound of 1, the last term can be replaced by

K exp

(
−
(x− 16Kσ

√
1/η · T lnT )+

√
η lnT

8σK
√
T

)
.
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Then if we let

y =

(
x− 2K − 16σK

√
(η ∨ 1/η)T lnT

)
+

8σK
√
T

,

then the bound can be written as

sup
θ

P(Rπ
θ (T ) ≥ x)

≤ exp
(
−y2

)
+K exp

(
−y2

)
+K exp

(
−y
√
η lnT

)
≤ 4K exp

(
−(y2 ∧ y

√
η lnT )

)
.

(a) Lemma: SE and UCB may get sub-optimal regret with the standard bonus term (1)
when η is too small.
Let θ = (1, 0) and σ = 1 with independent Gaussian noise. We first consider π = SE. The
probability that arm 1 is eliminated after the first phase is

P
(
µ̂1,1 +

√
η lnT < µ̂2,2 −

√
η lnT

)
= P

(
ϵ1,1 − ϵ2,2 < −1− 2

√
η lnT

)
≥ 1√

2π

1/
√
2 +
√
2η lnT

1 + (1/
√
2 +
√
2η lnT )2

exp(−(1/
√
2 +

√
2η lnT )2/2)

= Θ

(
T−η

√
lnT

)
The inequality holds because for a standard normal variable X , it is established that

P(X > t) ≥ 1√
2π

t

1 + t2
exp(−t2/2).

Therefore, the expected regret is at least

Θ

(
T−η

√
lnT

)
· (T − 2) = Θ

(
T 1−η

√
lnT

)
.

If η is very small, then apparently the regret is sub-optimal.
Now we consider π = UCB. The probability that arm 1 is pulled only once is

P

(
∀2 ≤ t ≤ T : µ̂1,1 +

√
η lnT < µ̂t,2 +

√
η lnT

t− 1

)
≥ P

(
∀2 ≤ t ≤ T : µ̂1,1 +

√
η lnT < µ̂t,2

)
≥ P

({
µ̂1,1 < −1− 2

√
η lnT

}⋂{
∀1 ≤ t < T :

t+1∑
s=2

ϵs,2 > −1− t
√

η lnT

})

= P
({

ϵ1,1 < −2− 2
√
η lnT

})
· P

({
∀1 ≤ t < T :

t+1∑
s=2

ϵs,2 > −1− t
√
η lnT

})
We have

P
({

ϵ1,1 < −2− 2
√
η lnT

})
≥ 1√

2π

2 + 2
√
η lnT

1 + (2 + 2
√
η lnT )2

exp(−(2 + 2
√
η lnT )2/2)

= Θ

(
T−2η

√
lnT

)
We use a martingale argument and the optional sampling theorem to bound the second
probability. Define Zt =

∑t+1
s=2 ϵs,2. Define the stopping time

τ = inf
t
{Zt ≤ −1− t

√
η lnT}
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Then

P

({
∀1 ≤ t < T :

t+1∑
s=2

ϵs,2 > −1− t
√

η lnT

})
= P(τ ≥ T )

For fixed T , τ ∧ (T − 1) is finite. Notice that

exp(−2
√

η lnTZt − 2η lnT · t)

is a martingale with mean 1. By the optional sampling theorem, we have

1 = E
[
exp(−2

√
η lnTZτ∧(T−1) − 2η lnT · (τ ∧ (T − 1)))

]
≥ E

[
exp(−2

√
η lnTZτ − 2η lnT · τ)1{τ < T}

]
≥ exp(2

√
η lnT )P (τ < T )

Therefore, the second probability is bounded by

1− exp(−2
√
η lnT ).

The expected regret is at least

Θ

(
T−2η

√
lnT

)
·
(
1− exp(−2

√
η lnT )

)
· (T − 2) = Ω

(
T 1−2η

√
lnT

)
.

C Additional Experiments for Section 5

For the first experiment presented in the main body of the paper, we provide the empirical mean for
the cumulative reward in Table 1. We note that there is no direct implication by comparing the four
different algorithms at the same value of κ, because the algorithms use the parameter κ in different
ways and in different format of the bonus term. For example, for some value of κ, SE has a higher
empirical mean for the cumulative reward compared to SE_new, whereas for some other value of
κ, SE has a smaller empirical mean compared to SE_new. There is no direct implication by fixing
a value of κ and comparing different algorithms. Nevertheless, we do observe that TS performs
similarly to UCB, from both Figure 1 and Table 1, and so we put our discussion on confidence bound
policies.

Here is what Table 1 implies. Table 1 shows that, SE_new (or UCB_new) achieves empirical mean
for the cumulative reward as high as that SE (or UCB) can achieve. The highest empirical mean for
the cumulative reward that can be achieved by SE_new with various choices of κ is comparable to the
highest empirical mean that can be achieved by SE. However, Figure 1 in the main body has shown
that, compared to SE, SE_new has much lower probability of incurring a low cumulative reward. The
implication is that (i) in terms of the empirical mean of cumulative reward, SE_new is as good as SE;
(ii) in terms of the risk of incurring a low cumulative reward, SE_new is much better (i.e., lower risk)
than SE. The same implication holds analogously for the comparison between UCB_new and UCB.

Policy
κ

0.1 0.2 0.4 0.8

SE 311.60 336.46 375.53 374.69
UCB 349.68 359.68 377.17 390.23
TS 351.00 360.71 377.94 390.32

SE_new 388.16 376.69 354.25 309.58
UCB_new 393.27 387.48 377.72 360.69
Table 1: Empirical mean for the cumulative reward

Next, we consider a 4-armed bandit problem with θ = (0.2, 0.4, 0.6, 0.8), σ = 1, T = 500 and
Gaussian noise. We test four policies: SE and UCB with the classical bonus design described in (1),
and SE_new and UCB_new with the proposed new bonus design in (4). The tuning parameter has 4
choices: κ ∈ {0.1, 0.2, 0.4, 0.8}. For each policy and κ, we run 5000 simulation paths and for each
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path we collect the cumulative reward. We plot the empirical distribution (histogram) for a policy’s
cumulative reward in Figure 2. We also report the empirical mean in Table 2. Indeed, one can observe
that for TS and both SE and UCB with (1), there is a significant part of distribution around 200 and
300, which means that with an non-negligible probability the two policies always pull arm 2 or 3,
incurring a linear regret. Such phenomenon becomes more significant when κ is small. In contrast,
with the new design (4), the reward is highly concentrated for every κ > 0. Particularly, when
κ = 0.1, either SE_new or UCB_new achieves both high empirical mean and light-tailed distribution.
When κ is relatively large, e.g., κ = 0.8, the empirical mean is not very satisfactory. But this is
consistent with our analysis in Theorem 4, which indicates an additional

√
K factor compared to the

optimal Õ(
√
KT ) expected regret.

Figure 2: Empirical distribution for the cumulative reward; bottom two are new proposed policies

Policy
κ

0.1 0.2 0.4 0.8

SE 292.12 307.45 349.35 316.83
UCB 339.41 348.52 360.26 369.25
TS 341.05 349.86 359.82 365.26

SE_new 361.93 334.18 283.69 251.52
UCB_new 370.72 360.02 339.29 308.96
Table 2: Empirical mean for the cumulative reward

D Additional Discussions on the Setup

In our current model, if arm k is pulled in the time period t, we write that the observed reward is
rt,k = θk + ϵt,k, where θk is the true expected reward and ϵt,k represents a mean zero random noise.
We have assumed this mean-zero random noise to be σ sub-Gaussian, which appears to be a standard
assumption in the literature and includes distributions such as Gaussian and Bernoulli.

Instead of modeling the random reward using additive noise, one may alternatively model the
random reward using multiplicative noise. That is, if arm k is pulled in the time period t, the
observed reward rt,k = θk · ϵ′t,k where θk is the true expected reward and ϵ′t,k represents a mean-one
random noise. Some assumptions are needed to describe the distribution of the multiplicative noise
ϵ′t,k. If the multiplicative noise ϵ′t,k is σ sub-Gaussian, then if we rewrite the observed reward as
rt,k = θk · ϵ′t,k = θk + θk(ϵ

′
t,k − 1), the multiplicative noise can be transformed into an additive

noise with the additive part given by θk(ϵ
′
t,k − 1). If ϵ′t,k is σ sub-Gaussian, then the random term

θk(ϵ
′
t,k−1) is sub-Gaussian, and therefore the multiplicative case may be transformed into an additive

case with moderate modifications. If otherwise, ϵ′t,k is not σ sub-Gaussian, then it means that the
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random term θk(ϵ
′
t,k − 1) is likely also not sub-Gaussian. This would project the question back into

how we should deal with policy designs if the additive noise is not sub-Gaussian. That is, noises
come from general distributions. In fact, there is a separate line of literature studying bandit problems
with non sub-Gaussian noise (see, e.g., [7]). We hope our framework can be integrated with this line
of literature to handle certain types of non sub-Gaussian noise, provided with controls on the tail
behavior of the random noises.

As is discussed in Section 6, this interesting question is left for future work.
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