
Optimal Transport of Classifiers to Fairness: Appendix

A Derivations and Proofs

A.1 Proof of Proposition 1

With hi > 0, we assume that the null-space of G is non-empty, i.e.

∃f ∈ Rn : f ̸= 0n ∧Gf = 0dF .

Then, Gf = 0dF implies that uniformly rescaled score vectors sf with s ∈ R are also fair. One of
those fair, rescaled score vectors will have the same total mass as h:

∃s ∈ R : G(sf) = 0dF ∧ (sf)T1n = hT1n.

Therefore, for such a G there is always a fair score function that h can be transported to (i.e.
ΠF (h) ̸= ∅). Such OTϵ problems always have a solution coupling [6]. Thus, there exists an optimal
coupling for the OTFϵ problem.

The objective cost of OTFϵ is the strictly convex functional

⟨C,P⟩ − ϵH(P)

and the equality constraints that define the valid set of couplings ΠF (h) are affine. The OTFϵ problem
is thus convex and enjoys strong duality. Due to the strict convexity of the objective cost, the optimal
coupling solution is unique.

Recall that H(P) = −
∑

ij Pij (log (Pij)− 1). The Lagrangian of the OTFϵ problem is given by

Λ(P,λ,µ) =
∑
ij

CijPij−
∑
i

λi

∑
j

Pij − hi

−∑
c

µc

∑
ij

PijGcj

+ϵ
∑
ij

Pij (logPij − 1)

where λ ∈ Rn and µ ∈ RdF denote the dual variable vectors for the marginalization and fairness
constraints respectively.

The Lagrangian, which is continuously differentiable around the optimal coupling, is written as a sum
over the elements of P. We can thus minimize Λ(P,λ,µ) by setting the derivative ∂Λ(P,λ,µ)

∂Pij
= 0:

∂Λ(P,λ,µ)

∂Pij
= Cij − λi −

∑
c

µcGcj + ϵ logPij = 0

=⇒ P∗
ij(λ,µ) = exp

(
1

ϵ

[
−Cij + λi +

∑
c

µcGcj

])
.

This results in the dual function

L(λ,µ) = Λ(P∗(λ,µ),λ,µ) =
∑
i

λihi − ϵ
∑
ij

exp

(
1

ϵ

[
−Cij + λi +

∑
c

µcGcj

])
.

Due to the strong duality, the values of the optimal coupling in OTFϵ are given by P∗
ij(λ

∗,µ∗), with
the optimal dual variables (λ∗,µ∗) = argmax(λ,µ) L(λ,µ).
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A.2 Derivation of the Update Eq. (9) and Eq. (10)

We aim to update the λi and µc variables through exact coordinate ascent of the dual function
L(λ,µ). To this end, we derive expressions for the univariate updates of L(λ,µ). For λi, the update
is given by

∂L(λ,µ)

∂λi
= hi − exp

(
λi

ϵ

)∑
j

exp

(
1

ϵ

[
−Cij +

∑
c

µcGcj

])
= 0

=⇒ λ∗
i (λ1, ...,λi−1,λi+1, ...,λn,µ) = ϵ loghi − ϵ log

∑
j

exp

(
1

ϵ

[
−Cij +

∑
c

µcGcj

])
where λ∗

i (λ1, ...,λi−1,λi+1, ...,λn,µ) denotes the value of λi that maximizes L(λ,µ).
This update has the useful property that it is independent of other variables in λ, i.e.
λ∗
i (λ1, ...,λi−1,λi+1, ...,λn,µ) = λ

∗
i (µ)

The update for µc generally does not have a closed form expression, because it can not be isolated
from the expression of the gradient:

∂L(λ,µ)

∂µc
= −

∑
j

Gcjηj(λ) exp

∑
k ̸=c

µkGkj

ϵ

 exp

(
µcGcj

ϵ

)
with ηj(λ) =

∑
i exp

(
1
ϵ [−Cij + λi]

)
.

Instead, we maximize the dual function L(λ,µ) with respect to µc numerically.

µ∗
c(λ,µ1, ...,µc−1,µc+1, ...,µdF ) = argmax

µc

L(λ,µ)

= argmax
µc

−ϵ
∑
j

ηj(λ) exp

1

ϵ

∑
k ̸=c

µkGkj

 exp

(
1

ϵ
µcGcj

)

= argmin
µc

∑
j

ηj(λ) exp

1

ϵ

∑
k ̸=c

µkGkj

 exp

(
1

ϵ
µcGcj

)

Let λ(t)
i and µ(t)

c denote the variables at the end of iteration t. In every iteration t, we set

∀i ∈ [n] : λ
(t)
i ← λ∗

i (λ
(t)
1 , ...,λ

(t)
i−1,λ

(t−1)
i+1 , ...,λ(t−1)

n ,µ(t−1))

∀c ∈ [dF ] : µ
(t)
c ← µ∗

c(λ
(t),µ

(t)
1 , ...,µ

(t)
c−1,µ

(t−1)
c+1 , ...,µ

(t−1)
dF

)

A.3 Proof of Proposition 2

Per Definition 1, we have that h ∈ F ⇐⇒ Gh = 0dF . In this case, the column constraints upon
the set of valid couplings for OTFRϵ(h) are simplified as follows:

|GPT1n| ≤ |Gh| ⇐⇒ |GPT1n| ≤ |0dF | ⇐⇒ GPT1n = 0dF

These simplified column constraints are equal to those posed upon couplings for OTFϵ(h). Since the
other constraints and objective cost were already the same, we thus have that

h ∈ F =⇒ OTFϵ(h) = OTFRϵ(h)

Thus, for h ∈ F , the adjusted OTF0
ϵ(h) cost is

OTF0
ϵ(h) = OTFϵ(h)− OTFRϵ(h) = 0.

We leave a study of the assumptions needed for the opposite implication(
OTF0

ϵ(h) = 0
?

=⇒ h ∈ F
)

for future work. For now, we observe that OTFϵ(h) = OTFRϵ(h) is
possible for a non-fair h /∈ F if the optimal coupling of the relaxed OTFRϵ(h) cost coincidentally
happens to transport h to a score vector that is fair.

2



A.4 Computation of OTFRϵ(h)

The only difference between the OTFϵ and OTFRϵ problems is in the column constraints posed upon
the couplings. The equality constraint in OTFϵ (i.e. GPT1n = 0dF ) is relaxed to bounds on the
unfairness of h in OTFRϵ (i.e. |GPT1n| ≤ |Gh|). Because the objective of OTFRϵ remains strongly
convex, and the relaxed constraints are still affine, we maintain the existence, uniqueness and strong
duality properties from Proposition 1. Similarly to OTFϵ, we thus solve the dual problem for OTFRϵ.

For OTFRϵ, we write out the Lagrangian as follows:

Λ(P,κ,ϕ,ψ) =
∑
ij

CijPij + ϵ
∑
ij

Pij (logPij − 1)−
∑
i

κi

∑
j

Pij − hi


−
∑
c

ϕc

∑
ij

PijGcj − γc

−∑
c

ψc

−∑
ij

PijGcj − γc


with κ ∈ Rn the dual variable vector for the row constraints and ϕ ∈ Rd

F and ψ ∈ Rd
F the dual

variable vectors for the fairness bounds, where we require that ϕc < 0 and ψc < 0. We also use
γc = |

∑
j Gcjhj | to simplify notation.

We minimize Λ(P,κ,ϕ,ψ) by setting the derivative ∂Λ(P,κ,ϕ,ψ)
∂Pij

= 0:

∂Λ(P,κ,ϕ,ψ)

∂Pij
= Cij − κi −

∑
c

(ϕc −ψc)Gcj + ϵ logPij = 0

=⇒ P∗
ij(κ,ϕ) = exp

(
1

ϵ

[
−Cij + κi +

∑
c

(ϕc −ψc)Gcj

])
.

This results in the dual function Λ(P∗(κ,ϕ,ψ),κ,ϕ,ψ) = L(κ,ϕ,ψ)

L(κ,ϕ,ψ) =
∑
i

κihi +
∑
c

(ϕc +ψc)γc − ϵ
∑
ij

exp

(
1

ϵ

[
−Cij + κi +

∑
c

(ϕc −ψc)Gcj

])
.

We again maximize L(κ,ϕ,ψ) through the exact coordinate ascent scheme described in Appendix
A.2. The update equations are as follows:

κ∗
i ← ϵ loghi − ϵ log

∑
j

exp

(
1

ϵ

[
−Cij +

∑
c

(ϕc −ψc)Gcj

])

ϕ∗
c ← argmax

ϕc

γcϕc − ϵ
∑
j

ηj(κ) exp

(
1

ϵ

∑
k

(ϕk −ψk)Gkj

)

ψ∗
c ← argmax

ψc

γcψc − ϵ
∑
j

ηj(κ) exp

(
1

ϵ

∑
k

(ϕk −ψk)Gkj

)

where we again note the possibility to precompute ηj(κ) =
∑

i exp
(
1
ϵ [−Cij + κi]

)
.

B Additional Experiment Results

B.1 Post-Processing using OTF0
ϵ(h)

Though we jointly minimize LY (h) and OTF0
ϵ(h) in our main experiments, we visualize the use

of OTF0
ϵ(h) as a post-processing approach in Fig. 1. This was done by first training the logistic

regression classifier h on the Adult dataset for 25 epochs by only minimizing cross-entropy (i.e.
with α = 0), and afterwards minimizing only the adjusted OTF0

ϵ cost for 25 epochs with α = 1 and
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ϵ = 10−3. Here, the violation of the PDP fairness constraint with respect to only the SEX attribute
was minimized. We average out over five such runs with different random seeds and train-test splits.

We observe that OTFϵ(h) and OTFRϵ(h) are indeed not zero, because their optimizations involve
maximizing the entropy term H(P). However, as shown by the trajectory of the OTF0

ϵ(h) curve, the
gap between them exponentially decreases from approximately 10−2 to 10−4. As their gap decreases,
we also see that the PDP violation, measured as the maximal Pearson correlation discussed in Sec. 5.2,
trends towards zero.
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Figure 1: For 25 epochs of post-processing of a trained classifier, these plots show the trends of the
OTFϵ(h) and OTFRϵ(h) terms, their gap defined as OTF0

ϵ(h), and the violation of the PDP fairness
constraint with respect to the SEX attribute. Since the experiment was repeated five times, we show
the mean curves and the confidence interval for the first standard deviation.

B.2 Impact of Smoothing Factor ϵ

We aim to provide some empirical intuition for how the smoothing factor ϵ impacts the use of the
OTF0

ϵ cost as a fairness regularizer. For this experiment, we used OTF0
ϵ for varying strengths of α

and ϵ in order to minimize the violation of PDP with respect to only the SEX attribute in the Adult
dataset. All other settings are the same as those described in Sec. 5. The score distributions of these
configurations are reported in Fig. 2.

It can be seen that for ϵ = 0.001 and ϵ = 0.01 the score distributions are made more similar for
stronger α values. However, some properties, such as the more noticeable ’peak’ for the samples in
the female group compared to the male group, are maintained to some extent.
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α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

ϵ = 0.001

ϵ = 0.01

ϵ = 0.1

ϵ = 1

ϵ = 10

Figure 2: For a model jointly trained with the OTF0
ϵ regularizer for different ϵ and α configurations,

these are the violin plots of the probability scores for samples with SEX attribute female (blue) versus
male (orange). For each plot, the x-axis was normalized such that the maximum horizontal deviation
from the center is constant. Dashed lines show the quartiles.

For ϵ = 0.1 and ϵ = 1, the scores appear to be squished to very low or very high values, and they
do not appear fair. We hypothesize that the relatively high value of the entropy term in the OTFϵ(h)
and OTFRϵ(h) objectives overshadows the ⟨C,P⟩ term, which assigns a cost to how much score
mass needs to be moved to make h fair. Thus, the model may try to minimize OTF0

ϵ(h) mainly
by minimizing the entropy term. This can indeed be accomplished by assigning very low or high
element-wise probability scores.

For the even stronger smoothing with ϵ = 10, we see that the fairness regularizer has no impact at all,
because changes in α do not impact the score distributions that are eventually learned. For such a
high ϵ, both the OTFϵ(h) and OTFRϵ(h) solutions almost only strive to maximize entropy, causing
these costs to cancel out. This causes OTF0

ϵ(h) to be close to zero even though h itself may not yet
be fair.

We conclude that high ϵ values should be avoided, as the strong smoothing causes the unfairness
signal in OTF0

ϵ(h) to be lost. It is then longer interesting as a fairness regularization term.

B.3 Train Set Results for the Main Experiment

As discussed in Sec. 5.2, we only report the test set results in the main paper. Results on the train set,
which is far larger, are shown in Fig 3. They follow the same mean trends but are less noisy due to
the larger amount of samples. We thus draw the same conclusions as for the test set results discussed
in Sec. 5.3.
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Figure 3: Train set results for the methods that were trained to reduce the evaluated fairness measure
(PDP or PEO). Violation of PDP (and PEO) is computed as the maximal absolute Pearson correlation
between the probability scores (conditioned on the output labels) and each sensitive attribute.

C Additional Clarification

C.1 Tying Measures to Score Functions

A score function f : X → [0, 1] is involved in two domains: it operates on elements from the input
space X , but then produces a probability for value 1 in the output space {0, 1}. In some prior work
on OT for classifiers, [2, 3], the OT problem was posed using measures and a cost function over the
output space. Yet, our intention is to avoid transports between inputs that are highly dissimilar. We
therefore tie classifiers to measures over the input space X endowed with the Borel σ-algebra:

θf (E) ≜
∑

x∈DX

f(x)δx(E) (1)

with E ⊆ X , δe the Dirac measure (i.e. δe(E) = 1 if e ∈ E, else δe(E) = 0) and DX all input
features of samples in the dataset D, gathered from the sample space Z . Note that the input space
measure θf is not normalized (i.e. θf (X ) ̸= 1), though this is not necessary to apply OT theory,
which is most generally defined without any constraints on the total mass of the measures [6].

In our formulation, we use Eq. (1) to implicitly consider the score functions h and f as their
corresponding input space measures θh and θf when used in the OT problem.
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C.2 Datasets

All datasets are well-known in fairness literature [4] and highly anonymized. The datasets are
popularly used Both datasets are some of the most popular datasets hosted by the UCI repository [1].
The data is highly anonymized.

For the Adult1 dataset, gathered from the American Housing Survey. The task is to predict whether an
individual earns more than $50K/yr. We follow the default data preprocessing implemented by the AI
Fairness 3602 framework and retain 45222 samples. The sensitive features are simplified to two binary
sensitive attributes: SEX (with values {male, female}) and RACE (with values {white, non-white}).
In the Bank3 dataset [5], the target is whether a client will subscribe to a product offered by a bank.
For the 41188 data samples of individuals, the sensitive attribute is the age of the clients, which is
traditionally converted to a categorical value by dividing the age into a limited number of bins. As
sensitive attributes, we study both the original continuous AGE values and the quantized version based
on the median age of 38, i.e. AGE_BINNED (with values {< 38,≥ 38}).
The Dutch Census dataset4 [8] involves predicting whether the occupation of individuals is classified
as ‘prestigious’ or not. We followed the preprocessing outlined in [4] and end up with 60420 samples.
For this dataset, we only consider one sensitive attribute, the binary SEX with values {male, female}.
Finally, samples in the Diabetes dataset5 [7], represents features of patients for whom it should be
predicted whether they will be readmitted within 30 days. Again following the preprocessing from
[4], we end up with 45715 samples and use the listed GENDER of the patient as sensitive attribute
with values {male, female}.

C.3 Hyperparameters

For all methods, we used an unregularized, logistic regression model as the probabilistic classifier. We
trained for 100 epochs with a learning rate of 10−3 and a batch size of 1000. The sensitive features
were not included in the input X to the model. For the OTF and Norm methods, we evaluated fairness
regularization strengths α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
Also for OTF, we chose ϵ = 10−3 from {10−4, 10−3, 10−2, 10−1}. We chose this value because it
consistently resulted in an effective trade-off between AUC and fairness. For a discussion on the
impact of setting ϵ too high, we refer to Sec. B.2.

For the Barycenter method, we use the Wasserstein-1 distance for the penalized logistic regression
mentioned in Eq. (3) of [3]. We set β = 1000 and used fairness strengths α ∈ {0.01, 0.05, 0.1, 0.2}.
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