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Abstract

Learning medical visual representations directly from paired radiology reports has
become an emerging topic in representation learning. However, existing medical
image-text joint learning methods are limited by instance or local supervision anal-
ysis, ignoring disease-level semantic correspondences. In this paper, we present a
novel Multi-Granularity Cross-modal Alignment (MGCA) framework for general-
ized medical visual representation learning by harnessing the naturally exhibited
semantic correspondences between medical image and radiology reports at three
different levels, i.e., pathological region-level, instance-level, and disease-level.
Specifically, we first incorporate the instance-wise alignment module by maximiz-
ing the agreement between image-report pairs. Further, for token-wise alignment,
we introduce a bidirectional cross-attention strategy to explicitly learn the match-
ing between fine-grained visual tokens and text tokens, followed by contrastive
learning to align them. More important, to leverage the high-level inter-subject re-
lationship semantic (e.g., disease) correspondences, we design a novel cross-modal
disease-level alignment paradigm to enforce the cross-modal cluster assignment
consistency. Extensive experimental results on seven downstream medical image
datasets covering image classification, object detection, and semantic segmentation
tasks demonstrate the stable and superior performance of our framework.

1 Introduction

In recent decades, deep learning techniques have significantly advanced medical image understanding
when large-scale labeled datasets are available [46, 20, 14, 9, 44]. However, assembling such
large annotated data is expensive and time-consuming. As an alternative, learning directly from
radiology reports accompanied by medical images becomes mainstream without any extra manual
annotation, which aims to learn general medical vision representations from physicians’ detailed
medical records and then transfer the learned representations to downstream tasks. In the previous
literature, image-text contrastive learning has achieved huge success for a wide range of medical
downstream tasks [61, 27, 62] by predicting which radiology report goes with which medical image.
Considering one limitation that pathologies usually occupy a small part of the whole image, Huang et
al. [27] proposed attention-based contrastive learning strategy to learn local representations, which
can capture fine-grained semantics in medical images to facilitate localized downstream tasks, e.g.,
medical object detection and medical semantic segmentation.

As we can see in Figure 1, medical images and radiology reports naturally exhibit multi-granularity
semantic correspondence at different levels, e.g., disease-level, instance-level, and pathological region-
level. However, existing image-text joint learning methods are limited to explore correspondence
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Figure 1: The multi-granularity (disease-level, instance-level, and pathological region-level) semantic
correspondences across medical images and radiology reports.

supervision from only a part of levels [4, 24, 61, 27, 42], leading to inefficient usage of the valuable
medical image/report information and insufficient representation capability of models. Thus, how to
effectively leverage this intrinsic multi-granularity cross-modal correspondences between medical
images and radiology reports from all three levels to enhance medical visual representation remains
an open question.

In this paper, we present a novel Multi-Granularity Cross-modal Alignment (MGCA) framework
to seamlessly leverage the multi-granular semantic correspondences between medical images and
radiology reports for generalized medical visual representation learning. Specifically, we incorporate
well-known instance-wise alignment, fine-grained token-wise alignment, and disease-level alignment
via contrastive learning to enhance the generalizability of learned visual representations. Particularly,
for token-wise alignment, we introduce an effective bidirectional cross-attention strategy to explicitly
learn the soft matching between local image-text representations, and then adopt a cross-modal
contrastive learning scheme to improve the sensitivity of local features. For disease-level alignment,
we leverage the inter-subject relationship correspondence between medical images and radiology
reports by enforcing the cross-modal cluster assignment consistency. By exploiting multi-granular
cross-modal correspondences from three aspects, our MGCA framework has the ability to boost
downstream tasks at both image and pixel levels, where only limited annotated data are required. We
pre-train our MGCA framework with a large-scale medical image and report dataset, i.e., MIMIC-
CXR, and then validate our learned medical visual representations with seven downstream datasets,
belonging to three medical tasks: image classification, object detection, and semantic segmentation.
Experimental results demonstrate that our model achieves stable superior transfer performance even
training with 1% of training data, when compared with existing state-of-the-art medical image-text
pre-training methods. Our code is in https://github.com/fuying-wang/MGCA.

2 Related Work

Learning Medical Visual Representations from Reports There are two mainstream paradigms
to learn medical visual representations from report supervision. The first is to extract disease
labels from radiology reports via human-designed rules [29, 31, 55] and then pre-train an image
model for downstream tasks. However, defining such rules requires a lot of human labor and
expert knowledge. Also, the trained models may be suboptimal, as the extracted labels are usually
noisy [55]. The second focuses on leveraging vision-language contrastive learning to pre-train image
and text encoders in an unsupervised manner [61, 27, 42, 62]. Supervised by naturally occurring of
medical images and radiology reports, these methods demonstrate remarkable performance in various
medical image downstream tasks (e.g., image classification [61, 27], semantic segmentation [27],
image-image retrieval [61], image-text retrieval [61, 27]). However, these methods only utilize
partial correspondence supervision of cross-modal semantics, leading to suboptimal performance for
downstream tasks.
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Figure 2: Illustration of our proposed multi-granularity cross-modal alignment framework. CTA,
ITA, and CPA represent token-wise alignment, instance-wise alignment, and prototype (disease)-level
alignment respectively. The green arrow represents information flow of visual features, while the
purple arrow represents information flow of textural features.

Contrastive Learning Contrastive learning [22, 4, 24, 17] aims to learn an embedding space where
positive instances stay close to each other, while negative pairs are far apart. One of the key technique
is to find effective positive and negative pairs. To improve the efficiency of contrastive learning, some
recent works proposed to predict one view’s representations from another view [4, 19]. Moreover,
[3, 23, 49, 17] brought the power of contrastive learning into medical image domain and have achieved
substantial performance . We refer the readers to the survey [32, 30] for more details. Recently, some
prototypical contrast learning approaches were proposed to exploit the prototype-level semantics in
the dataset. For example, [35, 54, 21] proposed contrasting instance features with its paired prototype
features, while [37, 2] proposed clustering-based methods to contrast prototype-prototype pairs.
Different from these methods working on a single modality, we propose a cross-modal prototype
alignment module to exploit the cross-modal prototype-level semantic consistency.

Unsupervised Learning for Dense Prediction Learning fine-grained semantic correspondence
is essential for dense prediction tasks, e.g., object detection [15, 38], semantic segmentation [6],
etc.Recent studies have proposed various paradigms to tackle this problem [33, 28, 36, 11, 59]. How-
ever, most of these methods require a pre-trained object detector to generate proposals of interested
objects. Dense contrastive learning is thus proposed to learn fine-grained visual representations
without a pre-trained object detector [58, 57, 56, 3]. By optimizing a contrastive loss at pixel-level (or
region-level) between two views of input images, these methods effectively learn the correspondence
between local features, which significantly benefits dense prediction tasks.

3 Method

3.1 Overview

We aim to learn a generalized medical image representations from radiology reports to benefit various
downstream medical image recognition tasks where annotated data is limited. Given a training
set of N image-report pairs D = {(xv,1, xt,1), (xv,2, xt,2), ..., (xv,N , xt,N )}, we utilize an image
encoder fv (e.g., ViT [12]) and a text encoder ft (e.g., BERT [10]) to map D into the latent space
E = {(v1, t1), (v2, t2), ..., (vN , tN )}, where vi = fv(xv,i), ti = ft(xt,i). In detail, for the i-th
image-report pair (xv,i, xt,i), the image encoder generates a sequence of encoded visual tokens
Ri = {r1i , r2i , ..., rSi } and a global image representation vi. Similarly, the text encoder generates a
sequence of encoded text tokens Zi = {z1i , z2i , ..., zLi } and a global report representation ti. Here, S
and L denote the total number of visual tokens and text tokens, respectively.

As illustrated in Figure 2, we design a novel multi-granularity cross-modal alignment framework for
representation learning by exploiting the naturally exhibited multi-granularity cross-modal correspon-
dences, i.e., disease (prototype)-level, instance-level, and pathology region (token)-level, between
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images and reports. Specifically, we incorporate an instance-wise image-text alignment (ITA) module
to retain the cross-modal smoothness by maximizing the agreement between true image-report pairs
(vi, ti) versus random pairs. Meanwhile, to harness the benefits of naturally existing fine-grained cor-
respondence between visual and text tokens, we also introduce a bidirectional cross-attention-based
token-wise alignment (CTA) module to learn the soft matching between the visual token sequence
Ri and text token sequence Zi, as well as align them via the contrastive learning. More important,
we design a novel cross-modal prototype alignment (CPA) module to benefit the high-level semantic
(e.g., disease) understanding by capturing the inter-subject relationship correspondence between two
modalities.

3.2 Multi-granularity Cross-modal Alignment

Instance-wise Cross-modal Alignment As the core workhorses in our framework, we incorporate
an instance-wise Image-Text Alignment (ITA) module to encourage the framework to map correct
image-report pairs nearby in the latent space, while mapping random pairs far apart. Specifically,
following common practice [4], we first use two non-linear projection layers (gv and gt) to transform
vi and ti into normalized lower-dimensional embeddings ṽi ∈ Rd and t̃i ∈ Rd, respectively. Then,
the cosine similarity of i-th image-report pair is denoted as:

sim(xv,i, xt,i) = ṽT
i t̃i,where ṽi = gv(vi), t̃i = gt(ti). (1)

For i-th image-report pair (xv,i, xt,i) in a minibatch, we regard two modality data as queries and keys
alternatively to learn the correct image-report pairings. This results in two symmetric temperature-
normalized InfoNCE [43] losses (image-to-text contrastive loss and text-to-image contrastive loss) to
maximally preserve the mutual information between the true pairs in latent space:

ℓv2ti = −log
exp(sim(xv,i, xt,i)/τ1)∑B

k=1 exp(sim(xv,i, xt,k)/τ1)
, ℓt2vi = −log

exp(sim(xt,i, xv,i)/τ1)∑B
k=1 exp(sim(xt,i, xv,k)/τ1)

, (2)

where B is the batch size and τ1 is the instance-level temperature hyperparameter. The overall
objective of our instance-wise cross-modal alignment is the average of the two losses:

LITA =
1

2N

N∑
i=1

(ℓv2ti + ℓt2vi ), (3)

where N is the total number of image-report pairs.

Token-wise Cross-modal Alignment Fine-grained information is more significant in medical
field: pathologies only occupy a small portion of the whole image and only a few disease tags in a
report depict the crucial medical condition. Considering that these important subtle clues are likely
to be ignored when optimizing the global instance-wise representations, we introduce an effective
bidirectional Cross-attention-based Token-wise Alignment (CTA) module to explicitly match and
align the cross-modal local presentations between medical images and radiology reports.

Specifically, for the i-th image-report pair (xv,i, xt,i), the generated visual and text token embeddings
will first be projected into normalized lower-dimensional embeddings, which results in R̃i =
{r̃1i , r̃2i , ..., r̃Si } and Z̃i = {z̃1i , z̃2i , ..., z̃Li }, where r̃i ∈ Rd, z̃i ∈ Rd. In order to conduct the token-
wise alignment, we need to find the matching between visual and text tokens. Instead of directly
computing the cosine similarity of different tokens [27], we propose to calculate the soft matching
between generated visual and text tokens with the cross-attention mechanism [52, 5, 41]. Formally,
for the j-th visual token embedding r̃ji in i-th image-report pair, we let r̃ji attend to all text token
embeddings in Z̃i and then calculate its corresponded cross-modal text embedding oj

i ,

oj
i =

N∑
k=1

O(αj2k
i (V z̃ki )), α

j2k
i = softmax(

(Qr̃ji )
T (Kz̃ki )√
d

), (4)

where Q ∈ Rd×d,K ∈ Rd×d, V ∈ Rd×d are learnable matrices. After that, we adopt a Local
Image-to-text Alignment (LIA) loss LLIA to pull r̃ji close to its cross-modal text embedding oj

i

but push r̃ji away from other cross-modal text embeddings, which maximizes the lower bound on
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local cross-modal mutual information within each image-report pair [43]. Considering that different
visual tokens have various importance (e.g., visual tokens containing pathologies are obviously more
important than those with irrelevant information), we further assign a weight wj

i to the j-th visual
token when calculating the LIA loss. So the LIA loss can be formulated as:

LLIA = − 1

2NS

N∑
i=1

S∑
j=1

wj
i (log

exp(sim(r̃ji ,o
j
i )/τ2)∑S

k=1 exp(sim(r̃ji ,o
k
i )/τ2)

+ log
exp(sim(oj

i , r̃
j
i )/τ2)∑S

k=1 exp(sim(oj
i , r̃

k
i )/τ2)

),

(5)
where τ2 is the token-level temperature hyperparameter. Similar with the instance-level alignment,
we also employ two symmetric InfoNCE losses by taking the visual token embedding r̃ji and its
cross-modal text embedding oj

i as queries, respectively. Note that we set wj
i as the last-layer attention

weight from j-th visual token to [CLS] token averaged across multiple heads. Similarly, for j-th text
token embedding z̃ji in i-th image-report pair, we also calculate a cross-modal image embedding ôj

i
with the same manner and construct a Local Text-to-image alignment (LTA) loss LLTA by contrasting
z̃ij with ôj

i . The final objective of our CTA module is the combination of LIA and LTA losses:

LCTA =
1

2
(LLIA + LLTA). (6)

Discussion Note that our token-wise alignment is different from the local contrastive loss in [27]. Our
module explicitly contrasts similarities between local tokens to maximize their mutual information
and calculates per-token InfoNCE, whereas the local contrastive loss in [27] contrasts aggregated
instance-level similarities and still calculates per-instance InfoNCE.

Disease-level Cross-modal Alignment Both ITA and CTA treat two samples as a negative pair as
long as they are from different instances. Many pairs sharing the similar high-level semantics (e.g.,
disease) are undesirably pushed apart in the embedding space. Therefore, we design a novel Cross-
modal Prototype Alignment (CPA) module to harness the cross-modal inter-subject correspondences
between medical images and reports.

For each image-report embedding pair (ṽi, t̃i) in (1), we employ the iterative Sinkhorn-Knopp
clustering algorithm [8] to acquire two soft cluster assignment codes qv,i ∈ RK and qt,i ∈ RK , by
individually assigning ṽi and t̃i into K clusters. Meanwhile, we also pre-define K trainable cross-
modal prototypes as C = {c1, ..., cK}, where ck ∈ Rd. After that, we calculate the visual softmax
probability pv,i ∈ RK of the cosine similarities between ṽi and all cross-modal prototypes in C,
and the text softmax probability pt,i ∈ RK of the cosine similarities between t̃i and all cross-modal
prototypes in C,

p
(k)
v,i =

exp(ṽT
i ck/τ3)∑

k′ exp(ṽT
i c

′
k/τ3)

, p
(k)
t,i =

exp(t̃Ti ck/τ3)∑
k′ exp(t̃Ti c

′
k/τ3)

, (7)

where τ3 is the prototype-level temperature parameter and (k) indicates the k-th element of the vector.
The cross-modal disease-level (i.e., prototype) alignment is achieved by conducting cross-modal
prediction and optimizing the following two cross-entropy losses:

ℓ(ṽi,qt,i) =

K∑
k=1

q
(k)
t,i logp

(k)
v,i , ℓ(t̃i,qv,i) =

K∑
k=1

q
(k)
v,i logp

(k)
t,i . (8)

Here, the cross-modal prediction is implemented by taking the soft text cluster assignment code qt,i

as "pseudo-label" to train the image representation ṽi and taking the soft image cluster assignment
code qv,i as "pseudo-label" to train the report representation t̃i. Finally, the overall CPA loss is the
average of two prediction losses over all the image-report pairs:

LCPA =
1

2N

N∑
i=1

(ℓ(ṽi,qt,i) + ℓ(t̃i,qv,i)). (9)
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3.3 Overall Objective

We train our MGCA framework with jointly optimizing the three cross-modal alignment modules,
encouraging the network to learn discriminative and generalizable medical image representation. The
overall training objective can be represented as:

L = λ1 ∗ LITA + λ2 ∗ LCTA + λ3 ∗ LCPA, (10)
where λ1, λ2, and λ3 are hyperparameters to balance three-level cross-modal alignments.

4 Experiments

We pre-train our MGCA framework on a large-scale medical image-report dataset and then evaluate
the effectiveness of learned medical image representations on seven datasets from three important
downstream tasks in medical imaging. In the following subsections, we first introduce the exper-
imental setup of pre-training in Section 4.1 and three downstream tasks in Section 4.2. Then, we
compare our proposed framework with state-of-the-art medical image-text pre-training methods and
show the comparison results in Section 4.3-4.5. Finally, we analyze our framework in Section 4.6.
More analysis results can be found in the Appendix.

4.1 Pre-Training Setup

Dataset We pre-train our MGCA framework on the JPG version of MIMIC-CXR 2.0.0 dataset [31].
We follow [61] to preprocess the dataset. We remove all lateral views from the dataset, as the
downstream datasets only contain frontal-view chest images. Also, we extract the impression and
finding sections from free-text reports to obtain detailed descriptions of medical diseases and remove
reports which are empty or have less than 3 tokens, resulting in roughly 217k image-text pairs.

Implementation Details Following [27], we use BioClinicalBERT [1] as the text encoder. We
choose ViT-B/16 [12] as the image encoder backbone by default for unified modal architecture design.
It is worth noting that our framework is model-agnostic to the image encoder backbone and we also
report the results with ResNet50 [25] as image encoder backbone for fair comparison with other
methods. We train our framework 50 epochs on 2 pieces of RTX 3090 GPUs with batch size of
144. The optimizer is AdamW [40] with learning rate of 2e− 5 and weight decay of 0.05. We use
a linear warmup with cosine annealing scheduler [39]. We initialize learning rate as 1e − 8 and
warmup epoch as 20. Following the practice in contrastive learning [4, 24], the dimension d = 128
and the temperature hyperparameters are τ1 = 0.1, τ2 = 0.07, τ3 = 0.2. The number of prototypes is
K = 500. We set λ1 = 1, λ2 = 1, λ3 = 1. More pre-training details can be found in the Appendix.

4.2 Downstream Tasks and Experimental Setup

Medical Image Classification We conduct medical image classification on three representative
datasets: (1) CheXpert [29], which contains 191, 229 frontal chest radiographs. The task is to
classify each image into 5 individual binary labels: atelectasis, cardiomegaly, consolidation, edema,
and pleural effusion. Following [61, 27], we hold out the expert-labeled validation set as test data
and randomly select 5, 000 radiographs from training data for validation. (2) RSNA Pneumonia [47].
We use the stage 2 version, which contains around 29, 700 frontal view chest radiographs. The
task is a binary classification, i.e., classifying each chest image into normal or pneumothorax
positive. Following [27], we manually split the dataset into training, validation, and test set with
70%/15%/15% ratio. (3) COVIDx [53], which contains over 30k CXR images from a multinational
cohort of over 16, 600 patients. This dataset contains 16, 490 positive COVID-19 images from over
2, 800 patients. We use the latest version 6 of this dataset. The task is a three-class classification, i.e.,
classifying each radiograph into COVID-19, non-COVID pneumonia or normal. We use the original
validation dataset as test data and manually split 10% of original training set for validation.

Following the previous work [27], we use the Linear Classification setting to evaluate the transferabil-
ity of our pre-trained image encoder, i.e., freezing the pre-trained ViT/ResNet-50 image encoder and
only training a randomly initialized linear classification head for the downstream classification task.
Also, we evaluate our model with 1%, 10%, and 100% training data on each classification dataset to
further verify the data efficiency of our method. We report area under the ROC curve (AUROC) on
CheXpert and RSNA and acuracy (ACC) on COVIDx-v6 as the evaluation metric following [61].
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Table 1: Linear classification results on CheXpert, RSNA and COVIDx with 1%, 10%, 100% training
data. Area under ROC curve (AUROC [%]) are reported for CheXpert and RSNA dataset, and
accuracy (ACC [%]) is reported for COVIDx dataset. The best and second-best results are highlighted
in red and blue, respectively.

CheXpert (AUC) RSNA (AUC) COVIDx (ACC)
Method 1% 10% 100% 1% 10% 100% 1% 10% 100%

Random Init 56.1 62.6 65.7 58.9 69.4 74.1 50.5 60.3 70.0
ImageNet Init 74.4 79.7 81.4 74.9 74.5 76.3 64.8 78.8 86.3
pre-trained on CheXpert
DSVE [13] 50.1 51.0 51.5 49.7 52.1 57.8 - - -
VSE++ [16] 50.3 51.2 52.4 49.4 57.2 67.9 - - -
GLoRIA [27] 86.6 87.8 88.1 86.1 88.0 88.6 67.3 77.8 89.0
pre-trained on MIMIC-CXR
Caption-Transformer [7] 77.2 82.6 83.9 - - - - - -
Caption-LSTM [60] 85.2 85.3 86.2 - - - - - -
Contrastive-Binary [50][48] 84.5 85.6 85.8 - - - - - -
ConVIRT [61] 85.9 86.8 87.3 77.4 80.1 81.3 72.5 82.5 92.0
GLoRIA-MIMIC [27] 87.1 88.7 88.0 87.0 89.4 90.2 66.5 80.5 88.8
MGCA(Ours, ResNet-50) 87.6 88.0 88.2 88.6 89.1 89.9 72.0 83.5 90.5
MGCA(Ours, ViT-B/16) 88.8 89.1 89.7 89.1 89.9 90.8 74.8 84.8 92.3

Table 2: Object detection results (mAP [%]) on RSNA and Object CXR. Each dataset is fine-tuned
with 1%, 10%, 100% training data. Best results are in boldface. “-" means mAP is smaller than 1%.

RSNA Object CXR
Method 1% 10% 100% 1% 10% 100%

Random 1.00 4.00 8.90 - 0.49 4.40
ImageNet 3.60 8.00 15.7 - 2.90 8.30
ConVIRT [61] 8.20 15.6 17.9 - 8.60 15.9
GLoRIA [27] 9.80 14.8 18.8 - 10.6 15.6
GLoRIA-MIMIC [27] 11.6 16.1 24.8 - 8.90 16.6
MGCA (Ours) 12.9 16.8 24.9 - 12.1 19.2

Medical Object Detection We evaluate the localized performance of pre-trained image encoder
on two object detection tasks: (1) RNSA Pneumonia [47] contains 29700 frontal view radiograph.
The task is to predict bounding boxes indicating evidence of pneumonia. We randomly split the
original training set into 16, 010/5, 337/5, 337 for training/validation/testing. (2) Object CXR [26]
contains 9, 000 frontal-view chest X-rays with detection targets for foreign objects. We use the
original development set as test set (1, 000) and randomly split the original training set into training
(6, 400) and validation (1, 600) sets.

We evaluate the detection performance by YOLOv3 [45] frozen setting, i.e., using the pre-trained
ResNet-50 image encoder as a frozen backbone of a YOLOv3 model and only fine-tuning the non-
backbone layers. Similarly, we fine-tune the model by 1%, 10% and 100% training data to evaluate
the data efficiency. Mean Average Precisions (mAP) are reported as evaluation metric with IOU
thresholds 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75.

Medical Semantic Segmentation We also evaluate the performance of our framework for medical
semantic segmentation on SIIM and RNSA datasets: (1) SIIM Pneumothorax [18] dataset contains
12047 chest radiographs with manually annotated segmentation mask of pneumothorax. Follow-
ing [27], train/validation/test split respectively constitutes 70%/30%/30% of original dataset. (2)
RNSA Pneumonia [47] is with the same split protocol as object detection task. We convert object
detection ground truths into masks for semantic segmentation.

Following [27], we evaluate the segmentation performance by U-Net [46] fine-tuning protocol. We
use the pre-trained ResNet-50 image encoder as a frozen encoder backbone of U-Net and train the
decoder portion using 1%, 10% and 100% training data. Dice scores are reported to evaluate the
segmentation performance. The other downstream experimental setup can be found in the Appendix.
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Table 3: Semantic segmentation results (Dice [%]) on SIIM and RSNA. Each dataset is fine-tuned
with 1%, 10%, 100% training data. Best results of each setting are in boldface.

SIIM RSNA
Method 1% 10% 100% 1% 10% 100%

Random 9.00 28.6 54.3 6.90 10.6 18.5
ImageNet 10.2 35.5 63.5 34.8 39.9 64.0
ConVIRT[61] 25.0 43.2 59.9 55.0 67.4 67.5
GLoRIA[27] 35.8 46.9 63.4 59.3 67.5 67.8
GLoRIA-MIMIC [27] 37.4 57.1 64.0 60.3 68.7 68.3
MGCA (Ours) 49.7 59.3 64.2 63.0 68.3 69.8

4.3 Results

Results on Medical Image Classification Table 1 reports the results on three classification tasks.
The results of other methods on CheXpert and RSNA are from original papers2. According to the
pre-training dataset, we group the existing pre-training methods into two categories : pre-trained
on CheXpert and pre-trained on MIMIC-CXR. As GLoRIA only reports results with pre-training
on CheXpert dataset, we also reimplement their method with pre-training on MIMIC-CXR dataset
(GLoRIA-MIMIC) for a fair comparison. It is observed that our MGCA with ViT-B/16 backbone
shows the best performance in all nine settings, outperforming state-of-the-art GLoRIA [27] and
ConVIRT [61]. With the same ResNet-50 image encoder backbone, our framework also achieves
second-best performance on four settings and competitive performance on the remaining five settings,
showing the effectiveness of our framework. When fine-tuning with 1% proportion of data, our
MGCA with ViT-B/16 backbone outperforms GLoRIA-MIMIC with 1.7% AUROC on CheXpert,
2.1% AUROC on RSNA dataset and 8.3% ACC on COVIDx dataset, showing larger improvement
than other methods and also indicating the data efficiency of our method.

Results on Medical Object Detection Table 2 reports the object detection performance on RSNA and
Object CXR datasets. All methods adopt the same ResNet-50-YOLOv3 architecture. It is observed
that under each setting, our MGCA outperforms ConVIRT, GLoRIA, and GLoRIA-MIMIC by a
large margin. Importantly, our model shows superior detection performance when fine-tuning on 1%
training data, indicating that multi-granularity semantic alignment benefits the image encoder to learn
more discriminative localized representations.

Results on Medical Semantic Segmentation Table 3 shows the semantic segmentation performance
on SIIM and RSNA datasets with the same ResNet50-U-Net architecture. Compared with GLoRIA,
GLoRIA-MIMIC, and ConVIRT, our MGCA shows higher dice scores on five over six settings.
When training with 1% portion of data, our MGCA achieves 12.3% and 2.7% Dice improvement
than GLoRIA-MIMIC on SIIM and RSNA segmentation tasks, respectively. This comparison further
validates the data efficiency of our method when transferring into dense prediction tasks.

2The results of ConVIRT [61] on RSNA dataset are from the reimplemented results in [27] as the RSNA
dataset are updated by the organizer.

8



Table 4: Ablation study of our framework on linear classification (CheXpert and RSNA) and semantic
segmentation (SIIM) settings. We report Area under ROC curve (AUROC [%]) on CheXpert and
RSNA datasets, and (Dice [%]) on SIIM dataset. Best results of each setting are in boldface.

Training tasks CheXpert (AUC) RSNA (AUC) SIIM (Dice)
ITA CTA CPA 1% 10% 100% 1% 10% 100% 1% 10% 100%

✓ 87.6 88.2 88.5 88.4 89.5 90.5 25.0 43.2 59.9
✓ ✓ 88.3 88.9 89.1 88.9 89.8 90.7 47.6 54.4 61.3
✓ ✓ 88.5 88.9 89.0 88.6 89.2 90.4 37.4 46.7 55.0
✓ ✓ ✓ 88.8 89.1 89.7 89.1 89.9 90.8 49.7 59.3 64.2

Table 5: Results of natural VLP pre-trained models on linear classification setting.
CheXpert (AUC) RSNA (AUC)

1% 10% 100% 1% 10% 100%

BLIP [34] 69.1 74.9 77.7 53.7 82.0 84.1
MGCA (Ours) 88.8 89.1 89.7 89.1 89.9 90.8

4.4 Analysis of Our Framework

Visualization To better understand the behaviour of our MGCA framework, we visualize the
learned local correspondence of radiographs and medical reports in Figure 3. Our MGCA learns
meaningful local correspondence between visual tokens and text tokens, which is helpful for the local
discriminative feature learning. Moreover, we select 1600 medical images, each with one excluded
abnormality, and present t-SNE plots [51] in Figure 4 to visualize image embeddings. The colors
represent the ground truth and cluster assignment in left and right sub-figures. It is observed that our
multi-modal prototypes can learn reasonable disease-level semantic information.

Ablation Study of Component Design Table 4 shows the ablation study results on two settings:
medical image classification on CheXpert and RSNA datasets with ViT-B/16 as the image encoder
backbone, and medical semantic segmentation on SIIM dataset with ResNet50 as the image encoder
backbone. It is observed that CTA and CPA modules can both improve the classification performance,
indicating that token-level alignment and prototype-level alignment facilitate the image encoder to
learn more generalizable representations for downstream tasks. When combining CTA and CPA,
we can obtain further improvement on all datasets, indicating that the benefits of CTA and CPA are
complementary. According to the results on SIIM dataset, we notice that CTA and CPA can both
improve semantic segmentation performance when combined with ITA. Interestingly, CTA improves
a larger margin on the semantic segmentation performance than CPA, which further elaborates that
CTA is helpful to learn fine-grained information. When we train ITA, CTA, and CPA jointly, it
achieves the best performance.

Results of Natural Vision-Language Pre-trained Model Table 5 shows the results of fine-tuning the
state-of-the-art natural Vision-Language Pre-trained (VLP) model BLIP [34], which is pre-trained on
14M image-text pairs. Due to the large domain discrepancy between natural image-text and medical
image-text, directly transferring the pre-trained BLIP model to the downstream medical image tasks
leads to inferior performance. This comparison indicates that pre-training on medical image-text
datasets is necessary for capturing useful medical prior knowledge.

Analysis of Error Bars Table 6 shows error bars of our method on linear classification setting
with ViT-B/16 as the image encoder backbone. We re-run each downstream task three times and
calculate the mean and standard deviations. It is observed that the error bars are relatively small while
comparing against other methods, which shows that our proposed method performs stably in these
downstream tasks.

Table 6: Error bar of our methods on linear classification setting.
1% 10% 100%

CheXpert (AUC) 88.7± 0.18 89.13± 0.16 89.5± 0.21
RSNA (AUC) 89.03± 0.11 89.92± 0.14 90.77± 0.04

COVIDX (ACC) 73.9± 0.64 84.75± 0.22 92.85± 0.50
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5 Discussion and Conclusion

This work presents MGCA, a multi-granularity cross-modal alignment framework for learning gener-
alized medical visual representations from free-text radiology reports. By harnessing the naturally
exhibited multi-granularity semantic correspondences across medical images and reports, our frame-
work can learn generalized and discriminative medical image presentations for versatile downstream
tasks to reduce the annotation burden. Extensive experimental results on seven downstream datasets
demonstrate that our framework achieves substantial performance with limited annotated data.

Limitations and Future Work As our work mainly focuses on medical visual representation learning,
we did not conduct experiments on image-image or image-text retrieval downstream tasks, which
can be regarded as a limitation of our work. Our current framework learns the multi-granularity
cross-modal alignment in parallel. In future work, we would like to explore how to leverage the
multi-granularity correspondence in a holistic manner. Moreover, this paper mainly investigates
the discrimination-based image-text pre-training. We also plan to extend our framework as the
integration of discrimination-based and generation-based pre-training methods for medical image
and text learning.

Social Impacts Our MGCA provides a promising solution to automatically diagnose abnormality of
chest X-rays with limited annotated data, which can assist in reducing the workload of radiologists
and promote the health in poor area. On the other hand, medical data (e.g., chest X-rays, radiology
reports etc.) may contain unintended private information or harmful texts, and we highly recommend
users conduct a careful analysis of data before employing our model into practical applications.
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