
A Full Background

In this appendix, for technical and theoretical completeness, we expand upon information given in
the background of the paper.

A.1 Multi-Agent Reinforcement Learning

We consider the case of Decentralized Partially Observable Markov Decision Processes (Dec-
POMDPs) [28] augmented with communication between agents. In a Dec-POMDP, at each timestep
t every agent i 2 {1, ..., N} gets a local observation o

t
i, takes an action a

t
i, and receives a reward r

t
i .

The objective is to maximize the agent rewards over the actions. We consider two agent paradigms:
value-based and actor-critic.

In value-based methods, such as MADQN [53], the aim is to learn a function Q✓ with parameters
✓ that estimates the value of taking an action ai after observing oi. Such methods are often trained
using a replay buffer, to which tuples (O,A,O

0
, R) are added, where O = {o1, ..., oN} is the set of

observations, A is the set of actions, O0 is the set of next observations, and R is the set of rewards.
If the environment includes communication, the underlying communication graph C can also be
included in the replay buffer. These experiences are added to the buffer whilst the agents interact
with the environment. To collect diverse experiences, methods such as ✏-greedy exploration [55] can
be used. For training, random minibatches of size B are sampled from the buffer, and loss similar to
the following is minimized:

L(✓) =
1

B

BX

b=1

1

N

NX

i=1

(yi �Q✓(oi, ai))
2

where yi = ri + � maxa0Q✓0(oi0, ai0). In this formula, Q✓0 is referred to as the target network, and
its parameters ✓0 are updated softly or intermittently from ✓ during training.

In actor-critic methods such as MADDPG [32], the aim is to learn a policy function ⇡✓ that maps
observations onto distributions over actions, where the action most likely to maximize the reward is
assigned the highest probability. The policy gradient is estimated by the following:

r✓J(✓) = Eo⇠⇢⇡, a⇠⇡✓ [
TX

t=1

r✓ log ⇡✓(at|ot)(Rt � V (ot))]

where ⇢⇡ is the observation distribution, ⇡✓ is the policy distribution, Rt =
PT

t0=t �
t0�t

r(st0 , at0)
is the discounted reward, and V is a learned value function, used to decrease the variance of the
estimated policy gradient.

For brevity, we collectively refer to the policy network / value function or Q-network as the actor
network. Often in MARL, instead of learning an actor network for each agent, a single shared network
will be used for all agents. For example, COMA [15], Q-Mix [45], and Mean Field RL [62] all share
parameters in their neural networks. This parameter sharing typically yields faster and more stable
training [18].

A.2 Communication in MARL

Many environments require agents to coordinate to solve tasks. Communication is crucial for enabling
this. Foerster et al. [14], Sukhbaatar et al. [51] were among the first to propose learned communication
in multi-agent reinforcement learning. Since then, many different methods for communication in
MARL have been proposed [67]. When communicating, there is a helpful structural inductive bias
which can be used: the order in which incoming messages from other agents are processed should not
affect the outcome. More formally: agents ought to be permutation invariant when using incoming
messages. A function ⇢ is permutation invariant if for any input X = (x1, x2, ..., xk) and any
permutation � on X , ⇢(X) = ⇢(� �X).

In Section 3.1, we define Graph Decision Networks (GDNs) using the framework of GNNs, a neural
architecture which respects permutation invariance between nodes when doing message passing.

16

Many of the most successful models for MARL communication fall within this paradigm, including
CommNet [51], IC3Net [49], GA-Comm [29], MAGIC [37], Agent-Entity Graph [2], IP [44],
TARMAC [9], IMMAC [52], DGN [24], VBC [64], MAGNet [33], and TMC [65]. Other models
such as ATOC [23] and BiCNet [43] do not fall within the paradigm since they use LSTMs for
combining messages, which are not permutation invariant, and models such as RIAL, DIAL [14],
ETCNet [21], and SchedNet [25] do not since they used a fixed message-passing structure.

A.3 Graph Neural Networks

A graph consists of nodes and edges connecting them. Nodes and edges can have attributes (also
referred to as features or labels), which often take the form of real vectors. Formally, we define an
attributed graph G as a triple (V,E, a), where V (G) is a finite set of nodes, E(G) ✓ {(u, v) | u, v 2
V (G)} is a set of directed edges, and a : V (G) [E(G) ! Rd is an attribute function where d > 0.
For w 2 V (G) [E(G), a(w) is the attribute of w. Undirected graphs are ones in which E(G) is a
symmetric relation on V (G). Graphs are found in many different areas of application, leading to a
plethora of research of how to learn using graph structured data [3, 13, 48].

When considering functions operating on graphs, it is sensible to demand permutation invariance
and equivariance. Intuitively: the output of any function on a graph should not depend on the order
of the nodes (invariance), and if the function provides outputs for each node, then re-ordering the
nodes of the input graph should be equivalent to applying the same re-ordering to the output values
(equivariance). Formally, let S(V (G)) be the set of all permutations of V (G), D a set of graphs, and
L a set of potential output attributes (e.g. R3). Then a function f : D ! L is invariant if:

8 graphs G 2 D, 8 permutations � 2 S(V (G)), f(G) = f(� �G)

A function f : D ! L
|V (G)| is likewise equivariant if instead f(� �G) = � � f(G).

GNNs belong to a class of neural methods that operate upon graphs. The term is often used to refer to
a large variety of models; in this paper, we define the term “Graph Neural Networks” to correspond
to the definition of Message Passing Neural Networks (MPNNs) by Gilmer et al. [17], which is the
most common GNN architecture. Notable instances of this architecture include Graph Convolutional
Networks (GCNs) [12], GraphSAGE [19], and Graph Attention Networks (GATs) [56]. A GNN
consists of multiple message-passing layers, where each layer aggregates node attribute information
to every node from its neighbours in the graph, and then uses the aggregated information with the
current node attribute to assign a new value to the attribute, passing all updated node attributes to
the next GNN layer. GNNs are often augmented with global readouts, where in each layer we also
aggregate a feature vector for the whole graph and use it in conjunction with the local aggregations
[4]. For layer m and node i with current attribute v

m
i , the new attribute v

m+1
i is computed as

v
m+1
i := f

✓m
update(v

m
i , f

✓0
m

aggr({vmj | j 2 N(i)}), f✓00
m

read({v
m
j | j 2 V (G)}))

where N(i) is all nodes with edges connecting to i and ✓m, ✓
0
m, ✓

00
m are the (possibly trainable)

parameters of the update, aggregation, and readout functions for layer m. Parameters may be shared
between layers, e.g. ✓0 = ✓1. The functions f✓0

m
aggr, f

✓00
m

read are permutation invariant. A global graph
feature can be computed by having a final readout layer which aggregates all node attributes into a
single feature. Importantly, GNNs are invariant / equivariant graph functions.

A.4 Expressivity and Related Work

Morris et al. [34], Xu et al. [61] concurrently showed that any GNN cannot be more powerful than
the 1-WL graph-coloring algorithm in terms of distinguishing non-isomorphic graphs, meaning that
there are pairs of non-isomorphic graphs G1, G2 which for any GNN f , f(G1) = f(G2). Morris
et al. [34] also define k-GNNs, a class of higher-order GNNs which have the same expressive power
as the k-WL algorithm. Chen et al. [8] prove that GNNs cannot count certain types of sub-structures
and that certain higher-order GNNs can.

Garg et al. [16] prove that some important graph properties cannot be computed by GNNs, and also
provide data dependent generalization bounds for GNNs. Nt and Maehara [38] show that GNNs

17

Figure 6: A pair of graphs indistinguishable by 1-WL

only perform low-pass filtering on attributes and investigate their resilience to noise in the features.
Barceló et al. [4] prove a direct correspondence between GNNs and Boolean classifers expressed in
the first-order logic fragment FOC2.

Loukas [30] demonstrates how GNNs lose expressivity when their depth and width are restricted.
Loukas [31] further analyzes the expressive power of GNNs with respect to their communication
capacity, a measure of how much information the nodes of a network can exchange during message-
passing. Oono and Suzuki [40] analyze the expressive power of GNNs as the number of layers tends
to infinity, proving that under certain conditions, the output will carry no information other than node
degrees and connected components.

In the space of expressivity for reinforcement learning, Dong et al. [11] compare model-free re-
inforcement learning with the model-based approaches with respect to the expressive power of
neural networks for policies and Q-functions. Castellini et al. [6] empirically evaluate the represen-
tational power of different value-based RL network architectures using a series of one-shot games.
The simplistic games capture many of the issues that arise in the multi-agent setting, such as the
lack of an explicit coordination mechanism, which provides good motivation for the inclusion of
communication.

A.5 Weisfeiler-Lehman Expressivity

1-WL [60] is a graph coloring algorithm that tests if two graphs are non-isomorphic by iteratively re-
coloring the nodes. Given an initial graph coloring corresponding to the node labels, in each iteration,
two nodes with the same color get assigned different colors if the number of identically colored
neighbors is not equal. If, at some point, the number of nodes assigned a specific color is different
across the two graphs, the algorithm asserts that the graphs are not isomorphic. However, there are
non-isomorphic graphs which the algorithm will not recognize as non-isomorphic, e.g. in Figure 6.
Morris et al. [34], Xu et al. [61] proved that for any two non-isomorphic graphs indistinguishable by
1-WL, there is no GNN that can produce different outputs for the two graphs. Furthermore, there is
a fundamental link between this graph separation power and function approximation power. Chen
et al. [7] proved that a class of models can separate all graphs if and only if it can approximate any
continuous invariant function.

There are several GNN architectures which are designed to go beyond 1-WL expressivity. Morris
et al. [34] propose k-GNNs, which are equivalent to the k-WL algorithm. Morris et al. [35] also show
the link between k-order equivariant graph networks (EGNs) [26] and the k-WL algorithm. Other
attempts also include using unique node IDs and passing matrix features [57], relational pooling [36],
and random dropouts [42]. Morris et al. [35] provide an overview of many such higher-order models.
However, many of these models do not scale well and are computationally infeasible in practice.

A.6 Random Node Initialization

Sato et al. [47] propose augmenting GNNs with random node initialization (RNI), where for each
node in the input graph, a number of randomly sampled values are concatenated to the original node
attribute. For all graphs / nodes, the random values are sampled from the same distribution. Abboud
et al. [1] prove that such GNNs are universal and can approximate any permutation invariant graph
function. Technically, random initialization breaks the node invariance in GNNs, since the result of
the message passing will depend on the structure of the graph as well as the values of the random
initializations. However, when one views the model as computing a random variable, the random
variable is still invariant when using RNI. In expectation, the mean of random features will be used
for GNN predictions, and is the same across each node. However, the variability of the random

18

samples allow the GNN to discriminate between nodes that have different random initializations,
breaking the 1-WL upper bound.

The above is formally described by Abboud et al. [1] as follows. Let Gn be the class of all n-
node graphs (i.e. graphs that consist of at most n nodes) and let f : Gn ! R. We say that a
randomized function X that associates with every graph G 2 Gn a random variable X(G) is an
(✏, �)-approximation of f if for all G 2 Gn it holds that Pr(|f(G) � X(G)|  ✏) � 1 � �. Note
that an MPNN N with RNI computes such functions X . If X is computed by N , we say that N
(✏, �)-approximates f .

They state the following theorem:
Theorem. Let n � 1 and let f : Gn ! R be invariant. Then for all ✏, � > 0, there is an MPNN with
RNI that (✏, �)-approximates f .

A.7 Other Conditions for Expressivity

For another method of analyzing GDN expressivity through the lens of GNNs, consider the work of
Loukas [31], which defines the communication capacity / complexity cg of GNNs, a measure of how
much information the nodes can exchange during message passing. The following intuitive theorem
is proven:
Theorem. Let f be an MPNN with d layers, where each has width wm (attribute size), message size
am (output of aggregation), and a global state of size �m (output of global readout). For any disjoint
partition of V into Va, Vb, where cut(Va, Vb) is the size of the smallest cut separating Va, Vb:

cg  cut(Va, Vb)
dX

m=1

min(am, wm) +
dX

m=1

�m

Loukas [31] prove that MPNNs with sub-quadratic and sub-linear capacity (with respect to the number
of nodes) cannot compute the isomorphism class of graphs and trees respectively, demonstrating that
capacity is an important consideration for GNN expressivity. This is also supported empirically. When
designing a GNN model, we have no control over the structure of the input graphs. Thus, all features
apart from cut(Va, Vb) are important considerations for the architecture. In GDNs, this corresponds
to the message sizes m and the number of rounds of message passing d. We provide the practical
recommendation that when choosing {m, d}, one ought to scale them such that m ·d 2 ⌦(n2), where
n is the number of agents. In environments where communication is limited by range or obstacles,
the number of rounds of message passing is also important when it comes to increasing an agent’s
receptive field: from how many edges away information is propagated to the agent.

19

B Proofs

Before we dive into the proofs, here follows a few brief notes / clarifications on the theory outlined in
the paper.

Neural Network Function Approximation GNNs consist of the composition of update, aggregate,
and readout functions, all of which are approximated by neural networks. Thus, given that neural
networks are only universal approximators for continuous functions, if standard neural architectures
are used within GNNs, then GNNs can only ever approximate continuous functions. As such, if
standard neural networks are used, then all universal approximation results in this paper require the
additional assumption that the function being approximated is continuous.

GNN Vector Targeting For all theorems and proofs that utilize R, such as equivariant graph
functions with codomain Rn, note that the scalar R can be replaced with the vector Rk for any k > 1,
whilst maintaining correctness.

To demonstrate this, let k > 1 and consider an equivariant graph function f : Gn ! (Rk)n that
we are trying to approximate. We can instead approximate k different functions f1, f2, ..., fk with
fj : Gn ! Rn, such that 8G 2 Gn 8i 2 {1, 2, ..., n}, f(G)i = (f1(G)i, f2(G)i, ..., fn(G)i).
These functions can be approximated using the theoretical results we currently have, with GNNs
g1, g2, ..., gk. We will simulate the application of all of these GNNs using a single GNN.

Thus, f can also be approximated by the following construction: use an initial GNN layer with the
update function defined such that fupdate(v) := (v, v, ..., v), where v is transformed into k copies of
itself. Then, define the update, aggregation, and readout functions of each layer using the GNNs
g1, g2, ..., gk, conditioning each one on a portion of the node attributes. For example, the update
function of layer m for node i on attribute (v1, v2, ..., vk) is defined by f

✓m
update(v1, v2, ..., vk) :=

(g✓m1 update(v1), ..., g
✓m
k update(vk)).

This construction simulates the application of f1, f2, ..., fk in parallel and thus approximates f .

Recurrent GNNs In Section 3.1, it is stated that models with recurrent networks also fall within
the GDN paradigm, where the hidden or cell states for the networks can be considered as part of the
agent observations. In this section, we briefly demonstrate how this can be done.

More concretely, consider a scenario with n agents, where each GNN layer m 2 R ✓ {1, 2, ...,M}
uses hidden or cell states Cm�1 := {cm�1

1 , c
m�1
2 , ..., c

m�1
n }. In this case, R represents the list of

layers that use recurrent networks. In a non-recurrent GNN, if layer m is expressed as a function, it
takes as input only the node attributes from the previous layer: V m�1. In the recurrent case, it also
takes Cm�1 as input: m(V m�1

, C
m�1).

To express this in terms of a non-recurrent GNN, instead modify the initial node attributes V 0 =
{v01 , v02 , ..., v0n} such that for each node i, v0i := (v0i , c

1
i , c

2
i , ..., c

m0

i), where m
0 := max value in R.

Then in each layer m 2 {1, 2, ...,M} of the GNN and for each node i, only update v
m�1
i to v

m
i

in (vm�1
i , c

1
i , c

2
i , ..., c

m0

i), leaving all other portions of the attribute as-is. As input to the update, if
m 2 R then use only v

m�1
i and c

m
i , and otherwise use only v

m�1
i .

The above-described non-recurrent GNN computes the exact same output as the recurrent GNN it is
emulating, by simply pulling hidden or cell states from a portion of the initial node attributes that has
been set aside for them.

20

B.1 Theorem 1

Theorem. Given a GDN f , observations O = {o1, ..., on}, and communication graph G such that
nodes i and j are similar in G and oi = oj , then it holds that f(O)i = f(O)j .

Proof. Since f is a GDN, there exists a GNN g whose output when operating on the graph G
0, equal

to G augmented with initial node attributes of O, coincides with that of f on O.

Since i and j are similar in G and oi = oj , i and j are similar in G
0 (using the same automorphism).

Also g is a GNN, so g is an equivariant function on G
0. Thus

8 graphs G, 8 permutations � 2 S(V (G)), f(� �G) = � � f(G)

Define � := (i j), the permutation that maps i ! j and j ! i, while mapping all other nodes to
themselves. Note that since i and j are similar, � �G0 = G

0. Furthermore, � = �
�1. So

f(O)i = g(G0)i = (��1 � � � g(G0))i = (��1 � g(� �G0))i = g(� �G0)j = g(G0)j = f(O)j

B.2 Theorem 2

Theorem. Let n � 1 and let f : Gn ! Rn be equivariant. Then for all ✏, � > 0, there is a GNN
with RNI that (✏, �)-approximates f .

Proof. For this proof, we assume the reader to be familiar with the proofs in the appendix of Abboud
et al. [1], as we make use of their definitions, notation, lemmas, and proofs.

Abboud et al. [1] state and prove the following. Let Gn be the class of all n-node graphs (i.e., graphs
that consist of at most n nodes) and let f : Gn ! R. We say that a randomized function X that
associates with every graph G 2 Gn a random variable X(G) is an (✏, �)-approximation of f if
for all G 2 Gn it holds that Pr(|f(G) � X(G)|  ✏) � 1 � �. Note that an MPNN N with RNI
computes such functions X . If X is computed by N , we say that N (✏, �)-approximates f .

Theorem. Let n � 1 and let f : Gn ! R be invariant. Then for all ✏, � > 0, there is an MPNN with
RNI that (✏, �)-approximates f .

We extend this theorem to equivariant functions. Recall that we define the following. Let Gn be
the class of all n-node graphs. Let f : Gn ! Rn, a graph function which outputs a real value
for each node in V (G). We say that a randomized function X that associates with every graph
G 2 Gn a sequence of random variables X1(G), X2(G), ..., Xn(G), one for each node, is an (✏, �)-
approximation of f if for all G 2 Gn it holds that 8i 2 {1, 2, ..., n}, Pr(|f(G)i�Xi(G)|  ✏) � 1��,
where f(G)i is the output of f(G) for node i. Note that a GNN h with RNI computes such functions
X . If X is computed by h, we say h (✏, �)-approximates f .

We adapt the proof of Abboud et al. [1], shown in their appendix, to correspond to equivariant
functions instead. Notice that equivariant functions have their output at the node level instead of
the graph level, so instead of identifying graphs with C

2-sentences that have no input variables, we
identify a graph and a node in the graph by a 1-variable formula �(v), where v identifies the node.

Lemma A.3 from Abboud et al. [1] proves that for every individualized colored graph G there is
a C

2-sentence �G that identifies G. Thus, for every individualized colored graph G and node u,
the formula �G,u(v) := �G ^ Nodeu(v) identifies G and the node u, where Nodeu(v) is a Boolean
function that is only true when u = v. In fact, �G,u(v) := �u(v) := Nodeu(v) already identifies G
by identifying the exact node.

We can similarly adapt Lemma A.4 and state the following:

Lemma. Let h : Gn,k ! {0, 1}n be an equivariant Boolean function. Then there exists a 1-variable
formula �h(v) such that for all G 2 Gn,k and all v 2 G it holds that [[�h(v)]](G) = h(G)v .

21

To prove this, let V ✓ {V (G) | G 2 Gn,k} be the subset consisting of all nodes u with h(G)u = 1,
where G is the graph such that u 2 V (G). Then let

�h(v) :=
_

u2V
�u(v)

We eliminate duplicates in the disjunction. Since, up to isomorphism, the class Gn,k is finite, and
the number of nodes in each graph is upper-bounded by n, the disjunction over V is finite and hence
�h(v) is well-defined.

We adapt Corollary A.1 in the same way as Lemma A.4. Lemma A.5 can be used as-is to show that
RNI yields individualized colored graphs with high probability. From here, the remainder of the
proof works analogously, substituting in equivariant functions for invariant ones and �h(v) for h.

B.3 Theorem 3

Theorem. Let n � 1 and consider a set T , where each (G,A) 2 T is a graph-labels pair, such that
G 2 Gn and there is a multiset of target labels Ak 2 A for each orbit rk 2 R(G), with |Ak| = |rk|.
Then for all ✏, � > 0 there is a GNN with RNI g which satisfies:

8(G,A) 2 T 8rk 2 R(G), {g(G)i | i 2 rk} ⇠=✏,� Ak

Proof. Recall that we say two multisets A,B containing random variables are (✏, �)-equal, denoted
A ⇠=✏,� B, if there exists a bijection ⌧ : A ! B such that 8a 2 A, Pr(|a� ⌧(a)|  ✏) � 1� �.

We will define a GNN with RNI g by construction which satisfies the property required in the theorem.
We do this in 3 intuitive steps:

1. Define a GNN with RNI f that, for each node, outputs a unique identifier for the orbit of the
node and the original RNI value given to the node. Such a GNN exists because the function
it is approximating is equivariant.

2. Append n identical layers onto f , each of which identifies the node containing the highest
RNI value, gives that node a value from the target multiset of labels corresponding to its
orbit, marks off that particular value as claimed, and sets its RNI value to be small.

3. Append a final layer which extracts only the target labels from the node attributes; these
were given to the nodes by the preceding n layers.

First, notice that there exists a GNN with RNI f : Gn ! (R4)n that approximates the outputs
(ni, ri, 0, 0) for each node i in the input graph G, where ni is the random noise initially added by
RNI (before any message passing) and ri is a unique value corresponding to the graph orbit of i.
Formally: ri = rj () i and j are in the same orbit of the same graph (up to isomorphism). Put
another way: ri = rj () there exists an isomorphism ↵ : Gi ! Gj (the graphs containing nodes
i and j, respectively) such that ↵(i) = j.

Such a GNN f exists because the function it is approximating is equivariant, allowing us to use
Theorem 2. Without loss of generality, we assume that RNI values are sampled from the interval
(0, 1) and that we only augment each node with one RNI value.

We define a GNN with RNI g using f as a starting point: we will append further message-passing
layers to f . Append n identical message-passing layers to f , each of which is defined as follows.
Each node attribute in these layers will be a tuple (ni, ri, ci, ti), where ci is used as a counter and ti

is used to store the eventual node output value, corresponding to some target label. For this proof, we
assume that target labels Ak come from R, but note that the proof is easily extended to vectors from
R instead. Furthermore, we allow for Ak to be a multiset (i.e. with repeated elements). Define fread
by

fread({(nj , rj , ci, ti) | j 2 V (G)}) := argmax(nj ,rj ,cj ,tj) 8j2V (G) nj

22

In other words, fread extracts the tuple containing the maximum value of nj in the graph. Such a
unique maximum exists with probability 1, since finitely many RNI values are sampled from an
infinite distribution. Do not define faggr.

Define fupdate on the output (nj , rj , cj , tj) of fread and the current node value (ni, ri, ci, ti).

fupdate((ni, ri, ci, ti), (nj , rj , cj , tj)) :=

8
<

:

(ni, ri, ci, ti) if ri 6= rj

(ni, ri, ci + 1, ti) if ri = rj and ni 6= nj

(0, ri, ci + 1, (Ak)ci) if ri = rj and ni = nj

In the above, (Ak)ci denotes treating the multiset of target labels Ak as a sequence and retrieving the
element with index ci (first index is 0). The above has access to Ak since it can uniquely identify the
input graph and orbit of the node using ri, by how ri is defined.

As a consequence of its definition, the update function will retrieve one value from the target labels at
a time, updating exactly one node to store this value. If another node j within the same orbit as i
is being updated with this value, then the counter of i is incremented to track that a value from the
outputs has been claimed. Since the RNI value ni is set to 0, it ensures that each node will be given
exactly one target label after n rounds of message passing.

After appending the above n message-passing layers, append one final layer with only an update
function that extracts only the target labels, defined by

fupdate((0, ri, ci, ti)) := ti

The above construction of g satisfies the probability (�) and approximation (✏) requirements of the
property stated in the theorem, since f is an (✏, �)-approximation, a unique maximum RNI value
exists for each graph with probability 1, and all other required operations can be ✏-approximated
by neural networks. The exact bijection used to map between the output and target multisets will
depend on the RNI values of the nodes, since they determine the order in which target values are
assigned to node attributes in the construction. Whilst our provided construction requires at least n+1
message-passing layers, more efficient constructions exist using more complex readout functions than
simple maximisation. The final update layer can also be merged with the previous layer. However, we
presented the above construction due to its simplicity and how easy it is to understand the mechanism.

23

B.4 Theorem 4

Theorem. Let n � 1 and let f : Gn ! Rn be equivariant. Then for all ✏ > 0, there is a GNN with
unique node IDs that ✏-approximates f .

Proof. For this proof, we assume the reader to be familiar with the theorems and proofs of Dasoulas
et al. [10], particularly their Theorem 4. First, we need to prove that GNNs with unique node IDs are
equivalent to 1-CLIP, which is k-CLIP with k = 1.

CLIP is defined as a 3-step process, the first of which is assigning colours to nodes. In CLIP, the
essential part of each colouring chosen is that all nodes with the same attributes will be assigned
different colours. By representing colours with unique node IDs (using a one-hot encoding) we
ensure that the above property holds, since all nodes will be assigned different colours. Since we
are considering 1-CLIP, we set k = 1 and only sample one colouring, which is the particular set of
unique IDs we assign.

Step 2 of CLIP is just standard GNN message-passing on our created coloured graph. Step 3 of CLIP
maximizes over all possible colourings, of which we have only one, so the maximization can be
dropped. This yields a standard GNN global readout layer. Thus, GNNs with unique node IDs are
equivalent to 1-CLIP. Theorem 4 of Dasoulas et al. [10] states the universality of 1-CLIP for invariant
functions, which we provide here as a Lemma:

Lemma. The 1-CLIP algorithm with one local iteration is a random representation whose expectation
is a universal representation of the space Graphm of graphs with node attributes.

They further state that for any colouring, 1-CLIP returns an ✏-approximation of the target function and
that, given sufficient training, the variance can be reduced to an arbitrary precision. The above only
applies to invariant functions because it is a representation of the space Graphm, which is defined
using invariance by permutation of the labels. Note that when defining Graphm in this paper, we use
nmax := n, instead of just considering some arbitrary large nmax.

To apply this theorem to equivariant functions, we need to consider the space Nodem, which we
define to be the set of all nodes from graphs in Graphm. Nodem is Hausdorff as a trivial consequence
of Graphm being Hausdorff, using the same quotient space of orbits. If we can separate this space in
a continuous and concatenable way, then we can utilize Corollary 1 of Dasoulas et al. [10] to show
that it is universal. To do this, consider a GNN f which separates the space Graphm, which we know
exists due to Theorem 4 of Dasoulas et al. [10]. We define a new GNN g using f as a starting point.
Substitute the final global readout layer M of f for a new layer with the same readout function, but
have the output of the readout be assigned to every node. Formally, define

f
✓M
update(v

M
i , f

✓0
M

aggr({vMj | j 2 N(i)}), f✓00
M

read({v
M
j | j 2 V (G)})) := f

✓00
M

read({v
M
j | j 2 V (G)}),

where f
✓00
M

read is the former global readout layer. Then, change the update functions of each layer of f
such that a portion of each node attribute is reserved for the unique ID of the node, and do not use or
change this ID in each layer of f . Then, after the final layer M , the attribute v

M+1
i of each node i

will be

v
M+1
i = (ui, ri) := (ui, f

✓00
M

read({v
M
j | j 2 V (G)})),

where ui is the unique ID given to node i. Since f separates Graphm, ri uniquely identifies the
graph provided in the input. Furthermore, ui uniquely identifies each node in the input graph. Thus,
v
M+1
i = (ui, ri) uniquely identifies every node in the space Nodem, meaning that g yields a separable

representation of Nodem. Furthermore, g is continuous and concatenable by its construction, so we
can apply Corollary 1 of Dasoulas et al. [10] to state that g is universal.

24

B.5 Theorem 5

Theorem. Let n � 1 and consider a set T , where each (G,A) 2 T is a graph-labels pair, such that
G 2 Gn and there is a multiset of target labels Ak 2 A for each orbit rk 2 R(G), with |Ak| = |rk|.
Then for all ✏ > 0 there is a GNN with unique node IDs g which satisfies:

8(G,A) 2 T 8rk 2 R(G), {g(G)i | i 2 rk} ⇠=✏ Ak

Proof. Recall that two multisets A,B without random variables are ✏-equal, denoted A ⇠=✏ B, if
there exists a bijection ⌧ : A ! B such that 8a 2 A, |a� ⌧(a)|  ✏.

The proof for this theorem is by construction, where the construction is nearly identical to the one
used in the proof of Theorem 3. A GNN f exists due to Theorem 4 instead of Theorem 2. Unique ID
values are used instead of RNI values. One-hot encodings can be maximised over in a similar way,
by treating them as binary numbers. A unique maximum unique ID will always exist by definition.

The construction otherwise proceeds analogously, except that it presents an ✏-approximation of each
target multiset instead of an (✏, �)-approximation, since no randomness is used.

25

Table 8: Architecture of the Baselines
Name Communication Graph MARL Paradigm GNN Usage

CommNet [51] Complete (or environment-based) Recurrent A2C Implicit
IC3Net [49] Complete + Gating Recurrent A2C Implicit
TarMAC [9] Complete + Learned Soft Edges Recurrent A2C Implicit GAT
T-IC3Net [49, 9] Gating + Learned Soft Edges Recurrent A2C Implicit GAT
MAGIC [37] Learned Recurrent A2C Explicit GAT
DGN [24] Environment-based Q-network Explicit GCN

C Experiments

In this appendix, we provide full details about our experiments for reproducibility.

C.1 Baseline Communication Methods

For evaluation, we adopt a diverse selection of MARL communication methods which fall under the
GDN paradigm. These are shown in Table 8, along with the respective paradigm (whether the method
simply falls within GDNs or whether GNNs are explicitly used for communication), the MARL
paradigm, and communication graph structure. We use the code provided by Niu et al. [37], Jiang
et al. [24] as starting points. The code of Jiang et al. [24] uses an MIT license and the code of Niu
et al. [37] does not have one. All of the implementations are extended to be able to support multiple
rounds of message-passing and the baselines are augmented with the ability for their communication
to be masked by the environment (e.g. based on distance or obstacles in the environment).

Sukhbaatar et al. [51] define CommNet, which has a single, basic, learnable communication channel.
They define it in such a way that agents can enter and leave the communication range of other
agents. It maps directly onto a GDN approach where mean is used for aggregation. Singh et al. [49]
define IC3Net, which operates in a similar manner to CommNet, except the communication graph is
complete and communication is controlled by gating, meaning each agent can decide whether or not
to broadcast to another agent. Das et al. [9] define TarMAC, where a soft attention mechanism is
used to decide how much of a message an agent should process. This implicitly yields a complete
communication graph, which a graph attention network (GAT) is able to model. TarMAC is also
extended to use IC3Net’s reward and communication structure, which we refer to as T-IC3Net.

Jiang et al. [24] define DGN, which operates on graphs that arise deterministically from the environ-
ment (e.g. based on agent proximity). The model consists of an encoding layer from the observations,
two convolutional layers that use multi-head dot-product attention as the convolutional kernel, and
a shared Q-network between all agents. There are skip connections between the convolutional
layers. Note that among our chosen methods, DGN is the only value-based one. Niu et al. [37]
define MAGIC, which learns to construct a communication graph and then uses GNNs to operate on
the graph. The Scheduler learns which agents should communicate with each other and outputs a
communication graph. The Message Processor then uses GATs for multiple rounds of communication
on the graph.

C.2 Environments

Predator-Prey [49, 9, 29, 27, 37] and Traffic Junction [51, 49, 9, 29, 27, 37] are common MARL
communication benchmarks. We perform evaluations on them to test how well our universally
expressive GDN models perform when there is not necessarily a benefit to having communication
expressivity beyond 1-WL. We also introduce two new environments, Drone Scatter and Box Pushing,
to respectively test symmetry-breaking and communication expressivity beyond 1-WL.

Predator-Prey, introduced by Singh et al. [49], consists of predators (agents) with limited vision
trying to find stationary prey. They can communicate with each other within a range of 5 and at
each time step move one grid cell in any cardinal direction. An episode is deemed a success if all
agents have found and are sitting on top of the prey. We utilize the “cooperative” reward setting of
the environment, meaning that reward is given at each time step proportional to the number of agents
on the prey. The environment is demonstrated in Figure 7.

26

Predator
moving down

Fixed prey

Vision

Figure 7: PredatorPrey Environment

New car arrivals

Car exiting

Visual range

Figure 8: Medium TrafficJunction Environment

Traffic Junction, introduced by Sukhbaatar et al. [51], consists of intersecting roads with cars
(agents) driving along them. The agents have limited vision and need to communicate to avoid
collisions; an episode is deemed a success if it had no collisions. Each car can communicate with any
other car within a range of 3. At each time step, cars enter the environment with a given probability,
provided the number of cars in the environment does not exceed the allowed maximum. At each
step, a car can either “gas” or “break”, leading to it either moving forward one cell on its route
or remaining stationary. We utilize both the “Easy” and “Medium” versions of the environment,
which respectively consist of two intersecting 1-way roads and two intersecting 2-way roads. The
environment is demonstrated in Figure 8.

The Drone Scatter environment is a grid environment, which we design to test the ability of com-
munication models to perform symmetry-breaking. It consists of 4 drones in a 20x20 homogeneous
field. The outer lines of the field are marked by fences. The drones can move any of the 4 cardinal
directions at each time step. Their goal is to move around and find a target hidden in the field, which
they can only notice when they get close to. The drones do not have GPS and can only see directly
beneath them using their cameras. They also know which action they took in the last time step. The
best way for them to locate the target is to split up and search in different portions of the field. Thus,
in the “easy” version of the environment, they are encouraged to do this by being given a reward
based on how far away they are from the rest of the drones. They are also always given a reward for
finding the target. The environment is demonstrated in Figure 9.

27

Vision Directly Below Drone

Drone Actions

Target

Drone Spawn Area

Fence Around Field

Figure 9: DroneScatter Environment

Free Robots

Attached RobotsSuccessful Move

Failed Move

Clearing Area Clearing Area

All need to power
move in same direction

Blue = Communication Channels Green = MovementRobots

Figure 10: BoxPushing Environment

The Box Pushing environment is also a grid environment, which we design to test communication
expressivity beyond 1-WL. It has 10 robots in a 12x12 construction site. The out-most 3 grid cells on
every side represent the “clearing area”, into which robots need to clear the boxes from the central area
of the site. Robots can see the cells next to them. Robots attach themselves to boxes before they can
move them. When they are attached, robots cannot see around them any more. Free-roaming robots
can communicate with any other free-roaming robots, but attached robots can only communicate with
the robots directly adjacent to them. The environment either spawns with one large box or two small
boxes. 4 attached robots are needed to move a small box. 8 attached robots are needed to move a
large box. The agents have 9 possible actions: stay, move in 1 of the 4 cardinal directions, or power
move in 1 of the 4 cardinal directions. A small box only moves if all attached agents move in the
same direction. A large box only moves if all attached agents power move in the same direction.
Robots are penalised for exerting themselves without moving the box, and are rewarded for moving
the box closer to the clearing area or clearing the box. Once a box has been cleared, it is removed
from the site and the agents are free to continue moving around the environment.

To solve the environment, the robots need to be able to communicate with each other to figure out
which type of box they are on and all push correctly, at the same time, and in the same direction.
Since the communication graphs corresponding to the scenarios with small and large boxes are 1-WL
indistinguishable, communication beyond 1-WL is needed to properly solve the environment. In
the “easy” version, robots spawn already attached to the boxes. The environment is demonstrated in
Figure 10.

28

C.3 Hybrid Imitation Learning

We use hybrid imitation learning for all Box Pushing experiments to solve the issue of the excep-
tionally sparse rewards. Since agents are only given a reward when they all take the same action and
thus move the box, random policies will struggle to ever obtain a meaningful reward signal during
exploration. When agents are attached to a large box, the probability of this happening at a single
time step is 4/9 ⇥ (1/9)7 = 9.29e�8, meaning ⇡ 108 time steps of experience are needed before any
reward can be expected.

Hester et al. [20] propose using expert demonstrations for training and Subramanian et al. [50]
propose using some expert demonstrations to help exploration. Inspired by this, during training, we
interleave 100 expert experiences for every 500 experiences collected by the agents in the environment.
While this is stable for the value-based method DGN, doing so for the A2C methods leads to very
unstable performance during training. Wang et al. [58] propose several ways to improve such training
of A2C methods, but we choose not to implement them as it is not the focus of this paper.

C.4 Model and Environment Hyperparameters

C.4.1 Fixed Model Hyperparameters

Model hyperparameters that are fixed across all experiments are shown in Table 9, along with which
group they belong to, their fixed values, and their descriptions.

C.4.2 TrafficJunction-Easy

Model hyperparameters for the Easy Traffic Junction experiments are shown in Table 10, along with
which group they belong to, their values (sometimes a set of values), and their descriptions.

C.4.3 PredatorPrey

Model hyperparameters for the Predator-Prey experiments are shown in Table 11, along with which
group they belong to, their values (sometimes a set of values), and their descriptions.

C.4.4 TrafficJunction-Medium

Model hyperparameters for the Medium Traffic Junction experiments are shown in Table 12, along
with which group they belong to, their values (sometimes a set of values), and their descriptions.

C.4.5 BoxPushing

Model hyperparameters for the Box Pushing experiments are shown in Table 13, along with which
group they belong to, their values (sometimes a set of values), and their descriptions.

C.4.6 DroneScatter-Stochastic

Model hyperparameters for the Drone Scatter experiments with stochastic evaluation are shown in
Table 14, along with which group they belong to, their values (sometimes a set of values), and their
descriptions.

C.4.7 DroneScatter-Greedy

Model hyperparameters for the Drone Scatter experiments with greedy evaluation are shown in
Table 15, along with which group they belong to, their values (sometimes a set of values), and their
descriptions.

29

Table 9: Fixed model parameters for all experiments
Group Parameter Value Description
Training epoch_size 10 Number of update iterations in an epoch

batch_size 500 Number of steps before each update (per thread)
nprocesses 1 How many processes to run

DGN Training update_interval 5 How many episodes between model update steps
train_steps 5 How many times to train the model in a training step
dgn_batch_size 128 Batch size
epsilon_start 1 Epsilon starting value
epsilon_min 0.1 Minimum epsilon value
buffer_capacity 40000 Capacity of the replay buffer

Model hid_size 128 Hidden layer size
qk_hid_size 16 Key and query size for soft attention
value_hid_size 32 Value size for soft attention
recurrent True Make the A2C model recurrent in time
num_evals 10 Number of evaluation runs for each training iteration
env_graph True Whether the environment masks communication
comm_passes 4 Number of comm passes per step over the model

Optimization gamma 1 Discount factor
normalize_rewards False Normalize rewards in each batch
lrate 0.001 Learning rate
entr 0 Entropy regularization coefficient
value_coeff 0.01 Coefficient for value loss term

A2C Models comm_mode avg Mode for communication tensor calculation
comm_mask_zero False Mask all communication
mean_ratio 1 How much cooperation? 1 means fully cooperative
rnn_type MLP Type of RNN to use [LSTM | MLP]
detach_gap 10 Detach hidden and cell states for RNNs at this interval
comm_init uniform How to initialise comm weights [uniform | zeros]
hard_attn False Whether to use hard attention: action - talk | silent
comm_action_one False Whether to always talk
advantages_per_action False Whether to multiply action log prob with advantages
share_weights True Share model parameters between agents

MAGIC directed True Whether the communication graph is directed
self_loop_type 1 Self loop type in the GAT layers (1: with self loop)
gat_num_heads 4 Number of heads in GAT layers except the last one
gat_num_heads_out 1 Number of heads in output GAT layer
gat_hid_size 32 Hidden size of one head in GAT
message_decoder True Whether use the message decoder
gat_normalize False Whether to normalize the GAT coefficients
ge_num_heads 4 Number of heads in the GAT encoder
gat_encoder_normalize False Normalize the coefficients in the GAT encoder
use_gat_encoder False Whether use the GAT encoder
gat_encoder_out_size 64 Hidden size of output of the GAT encoder
graph_complete False Whether the communication graph is complete
learn_different_graphs False Learn a new communication graph each round
message_encoder False Whether to use the message encoder

30

Table 10: Hyperparameters for Easy Traffic Junction experiments
Group Parameter Value(s) Description
Environment difficulty easy Difficulty level [easy | medium | hard]

dim 6 Dimension of box (i.e length of road)
env_name traffic_junction Environment name
max_steps 20 Force to end the game after this many steps
nagents 5 Number of agents
vision 1 Vision of car
add_rate_min 0.3 Min probability to add car (till curr. start)
add_rate_max 0.3 Max rate at which to add car
curr_start 0 Start making harder after this epoch
curr_end 0 When to make the game hardest
vocab_type bool Type of location vector to use [bool | scalar]
comm_range 3 Agent communication range

Model epsilon_step 2e�5 Amount to subtract from epsilon each episode
model [commnet, tarmac, ic3net,

tarmac_ic3net, dgn, magic]
Which baseline model to use

num_epochs 2000 Number of training epochs
rni [0.75, 0.25, 0, 1] RNI ratio. 0 for none. 1 for unique IDs
seed [1, 2, 3, 4, 5] Random seed

Table 11: Hyperparameters for Predator-Prey experiments
Group Parameter Value(s) Description
Environment dim 10 Dimension of box (i.e side length)

env_name predator_prey Environment name
max_steps 40 Force to end the game after this many steps
mode cooperative Reward mode
nagents 5 Number of agents
vision 1 Vision of predator
nenemies 1 Total number of preys in play
moving_prey False Whether prey is fixed or moving
no_stay False Whether predators have an action to stay
comm_range 5 Agent communication range

Model epsilon_step 2e�5 Amount to subtract from epsilon each episode
model [commnet, tarmac, ic3net,

tarmac_ic3net, dgn, magic]
Which baseline model to use

num_epochs 2000 Number of training epochs
rni [0.75, 0.25, 0, 1] RNI ratio. 0 for none. 1 for unique IDs
seed [1, 2, 3, 4, 5] Random seed

31

Table 12: Hyperparameters for Medium Traffic Junction experiments
Group Parameter Value(s) Description
Environment difficulty medium Difficulty level [easy | medium | hard]

dim 14 Dimension of box (i.e length of road)
env_name traffic_junction Environment name
max_steps 40 Force to end the game after this many steps
nagents 10 Number of agents
vision 1 Vision of car
add_rate_min 0.3 Min probability to add car (till curr. start)
add_rate_max 0.3 Max rate at which to add car
curr_start 0 Start making harder after this epoch
curr_end 0 When to make the game hardest
vocab_type bool Type of location vector to use [bool | scalar]
comm_range 3 Agent communication range

Model epsilon_step 2e�5 Amount to subtract from epsilon each episode
model [commnet, tarmac, ic3net,

tarmac_ic3net, dgn, magic]
Which baseline model to use

num_epochs 2000 Number of training epochs
rni [0.75, 0.25, 0, 1] RNI ratio. 0 for none. 1 for unique IDs
seed [1, 2, 3, 4, 5] Random seed

Table 13: Hyperparameters for Box Pushing experiments
Group Parameter Value(s) Description
Environment difficulty easy Difficulty level. Easy: robots already attached

dim 12 Dimension of area (i.e. side length)
env_name box_pushing Environment name
max_steps 20 Force to end the game after this many steps
nagents 10 Number of agents
vision 1 Vision of robot

Model epsilon_step 2e�5 Amount to subtract from epsilon each episode
imitation True Whether to use hybrid imitation learning
model [commnet, tarmac, ic3net,

tarmac_ic3net, dgn, magic]
Which baseline model to use

num_epochs 2000 Number of training epochs
num_
imitation_
experiences

100 Number of experiences coming from imitation

num_
normal_
experiences

500 Number of normal policy experiences

rni [0.75, 0.25, 0, 1] RNI ratio. 0 for none. 1 for unique IDs
seed [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] Random seed

32

Table 14: Hyperparameters for Drone Scatter experiments with stochastic evaluation
Group Parameter Value(s) Description
Environment difficulty easy Difficulty level. Easy: rewarded for splitting

dim 20 Dimension of field area (i.e. side length)
env_name drone_scatter Environment name
max_steps 20 Force to end the game after this many steps
nagents 4 Number of agents
comm_range 10 Agent communication range
find_range 3 Agent distance to target to count as find
min_target_
distance

3 Min distance target can be from spawn area

Model epsilon_step 2e�5 Amount to subtract from epsilon each episode
model [commnet, tarmac, ic3net,

tarmac_ic3net, magic]
Which baseline model to use

num_epochs 2000 Number of training epochs
rni [0.75, 0, 1] RNI ratio. 0 for none. 1 for unique IDs
seed [1, 2, 3, 4, 5] Random seed

Table 15: Hyperparameters for Drone Scatter experiments with greedy evaluation
Group Parameter Value(s) Description
Environment difficulty easy Difficulty level. Easy: rewarded for splitting

dim 20 Dimension of field area (i.e. side length)
env_name drone_scatter Environment name
max_steps 20 Force to end the game after this many steps
nagents 4 Number of agents
comm_range 10 Agent communication range
find_range 3 Agent distance to target to count as find
min_target_
distance

3 Min distance target can be from spawn area

Model epsilon_step 2e�5 Amount to subtract from epsilon each episode
greedy_a2c_
eval

True Whether to evaluate A2C methods greedily

model [commnet, tarmac, ic3net,
tarmac_ic3net, dgn, magic]

Which baseline model to use

num_epochs 2000 Number of training epochs
rni [0.75, 0, 1] RNI ratio. 0 for none. 1 for unique IDs
seed [1, 2, 3, 4, 5] Random seed

33

Table 16: Mean and 95% confidence interval for Easy TrafficJunction across all baselines
Baseline Metric Baseline Unique IDs 0.75 RNI 0.25 RNI

CommNet Success 1± 01± 01± 0 1± 01± 01± 0 1± 01± 01± 0 1± 01± 01± 0
Reward �1.7± 0.01 �1.69± 0�1.69± 0�1.69± 0 �1.78± 0.02 �1.7± 0.01

DGN Success 0.987± 0 0.99± 0 0.848± 0.15 0.996± 00.996± 00.996± 0
Reward �4.48± 0.79 �4± 0.17 �9.35± 5.57 �3.99± 0.15�3.99± 0.15�3.99± 0.15

IC3Net Success 1± 01± 01± 0 1± 01± 01± 0 1± 01± 01± 0 0.986± 0.02
Reward �1.71± 0 �1.7± 0.01�1.7± 0.01�1.7± 0.01 �1.74± 0.01 �2.02± 0.51

MAGIC Success 0.634± 0.11 0.764± 0.13 0.684± 0.11 0.787± 0.090.787± 0.090.787± 0.09
Reward �16± 1.67 �15.8± 1.69 �15± 2.05 �14.7± 2.08�14.7± 2.08�14.7± 2.08

TarMAC Success 0.994± 0.01 1± 01± 01± 0 0.933± 0.04 1± 01± 01± 0
Reward �2.07± 0.44 �1.72± 0.02�1.72± 0.02�1.72± 0.02 �3.59± 1.28 �1.76± 0.04

T-IC3Net Success 1± 01± 01± 0 0.998± 0 0.94± 0.04 0.974± 0.04
Reward �1.74± 0.01�1.74± 0.01�1.74± 0.01 �1.79± 0.11 �3.16± 1.03 �2.25± 0.91

Table 17: Mean and 95% confidence interval for PredatorPrey across all baselines
Baseline Metric Baseline Unique IDs 0.75 RNI 0.25 RNI

CommNet Success 0.88± 0.03 0.908± 0.020.908± 0.020.908± 0.02 0.194± 0.02 0.476± 0.05
Reward 23.15± 0.92 23.71± 1.1823.71± 1.1823.71± 1.18 1.828± 0.51 10.53± 1.92

DGN Success 0.014± 0 0.016± 0 0.026± 0.03 0.032± 0.010.032± 0.010.032± 0.01
Reward �6.8± 0.71 �7.84± 0.26 �7.69± 0.91 �4.37± 2.63�4.37± 2.63�4.37± 2.63

IC3Net Success 0.952± 00.952± 00.952± 0 0.93± 0.02 0.454± 0.08 0.933± 0.02
Reward 22.54± 1.19 22.99± 0.52 10.19± 1.47 24.38± 1.6324.38± 1.6324.38± 1.63

MAGIC Success 0.892± 0.020.892± 0.020.892± 0.02 0.888± 0.05 0.112± 0.03 0.451± 0.09
Reward 21.62± 1.3121.62± 1.3121.62± 1.31 21.36± 1.65 �0.85± 1.63 9.487± 3.07

TarMAC Success 0.169± 0.09 0.24± 0.110.24± 0.110.24± 0.11 0.068± 0.01 0.086± 0.02
Reward 0.323± 3.65 3.131± 3.963.131± 3.963.131± 3.96 �5.22± 0.54 �3.14± 1.27

T-IC3Net Success 0.938± 0.020.938± 0.020.938± 0.02 0.938± 0.010.938± 0.010.938± 0.01 0.27± 0.02 0.913± 0.02
Reward 23.77± 1.0323.77± 1.0323.77± 1.03 23.24± 0.43 4.725± 0.97 22.79± 0.46

D Full Results

In this appendix, full results from all experiments are shown. Our experiments were done in parallel
on an internal cluster, using only CPUs. With regards to compute time, 127 days were used for Easy
Traffic Junction, 149 for Predator-Prey, 186 for Medium Traffic Junction, 502 for Box Pushing, 76
for stochastic Drone Scatter, and 89 for greedy Drone Scatter. This comes to a total of 1129 days.

D.1 Result Tables

In this section, scores for all metrics across all experiments are shown in Table 16 (Easy Traffic
Junction), Table 17 (Predator-Prey), Table 18 (Medium Traffic Junction), Table 19 (Box Pushing),
Table 20 (Drone Scatter with stochastic evaluation), and Table 21 (Drone Scatter with greedy
evaluation).

34

Table 18: Mean and 95% confidence interval for Medium TrafficJunction across all baselines
Baseline Metric Baseline Unique IDs 0.75 RNI 0.25 RNI

CommNet Success 0.761± 0.31 0.793± 0.330.793± 0.330.793± 0.33 0.046± 0 0.614± 0.11
Reward �50.4± 36 �68.9± 73.8 �168± 7.13 �48.5± 7.87�48.5± 7.87�48.5± 7.87

DGN Success 1± 01± 01± 0 1± 01± 01± 0 0.062± 0 0.619± 0.4
Reward �62.7± 0.09�62.7± 0.09�62.7± 0.09 �62.7± 0.1�62.7± 0.1�62.7± 0.1 �245± 2.61 �138± 80.7

IC3Net Success 0.971± 0.040.971± 0.040.971± 0.04 0.804± 0.1 0.588± 0.03 0.855± 0.13
Reward �22.6± 1.31�22.6± 1.31�22.6± 1.31 �28.1± 3.3 �42.2± 2.54 �27.1± 4.96

MAGIC Success 0.551± 0.28 0.526± 0.33 0.734± 0.210.734± 0.210.734± 0.21 0.4± 0.35
Reward �132± 61.1 �112± 59.7�112± 59.7�112± 59.7 �173± 55.1 �198± 60.1

TarMAC Success 0.064± 00.064± 00.064± 0 0.052± 0 0.05± 0 0.054± 0.01
Reward �187± 24.4 �182± 28.7�182± 28.7�182± 28.7 �245± 2.79 �211± 20.7

T-IC3Net Success 0.89± 0.17 0.909± 0.08 0.362± 0.18 0.962± 0.020.962± 0.020.962± 0.02
Reward �26.4± 7.2 �24.9± 2.48 �94.2± 65.8 �23.7± 1.1�23.7± 1.1�23.7± 1.1

Table 19: Mean and 95% confidence interval for BoxPushing across all baselines
Baseline Metric Baseline Unique IDs 0.75 RNI 0.25 RNI

CommNet Ratio Cleared 0.786± 0.08 0.829± 0.080.829± 0.080.829± 0.08 0.768± 0.08 0.795± 0.09
Reward 3777± 728 4439± 6874439± 6874439± 687 4313± 514 4196± 615

DGN Ratio Cleared 0.603± 0 0.756± 0.06 0.958± 00.958± 00.958± 0 0.957± 0.01
Reward 3811± 51.5 4127± 278 5536± 575536± 575536± 57 5469± 90.2

IC3Net Ratio Cleared 0.49± 0.15 0.617± 0.14 0.34± 0.18 0.676± 0.060.676± 0.060.676± 0.06
Reward 2528± 950 2990± 864 1341± 711 3306± 5563306± 5563306± 556

MAGIC Ratio Cleared 0.958± 0.04 0.985± 0.01 0.975± 0.04 0.998± 00.998± 00.998± 0
Reward 5199± 221 5322± 214 5444± 332 5464± 1185464± 1185464± 118

TarMAC Ratio Cleared 0.629± 0.14 0.578± 0.11 0.662± 0.06 0.679± 0.060.679± 0.060.679± 0.06
Reward 3425± 820 2961± 729 3343± 555 3610± 4753610± 4753610± 475

T-IC3Net Ratio Cleared 0.558± 0.13 0.596± 0.11 0.458± 0.18 0.643± 0.150.643± 0.150.643± 0.15
Reward 2979± 753 3062± 7853062± 7853062± 785 1917± 763 2908± 847

Table 20: Mean and 95% confidence interval for DroneScatter across all baselines except DGN,
including a purely random agent. Stochastic evaluation

Baseline Metric Baseline Unique IDs 0.75 RNI
CommNet Pairwise Distance 11.34± 0.9 12.08± 1.1212.08± 1.1212.08± 1.12 8.687± 1.4

Steps Taken 11.5± 0.26 9.767± 0.329.767± 0.329.767± 0.32 11.74± 1.39
Reward 269± 18.6 314.2± 22314.2± 22314.2± 22 236± 45.3

IC3Net Pairwise Distance 9.108± 1.45 13.3± 0.7113.3± 0.7113.3± 0.71 10.99± 0.38
Steps Taken 11.94± 0.84 10.13± 0.2510.13± 0.2510.13± 0.25 11.66± 0.22

Reward 239.2± 33.7 316.7± 11.3316.7± 11.3316.7± 11.3 260.9± 8.62
MAGIC Pairwise Distance 7.693± 1.47 12.59± 112.59± 112.59± 1 7.216± 0.76

Steps Taken 13.05± 0.58 11.12± 1.0511.12± 1.0511.12± 1.05 13.54± 0.21
Reward 205.6± 21.4 273.9± 36.7273.9± 36.7273.9± 36.7 180± 17.3

TarMAC Pairwise Distance 7.448± 0.89 10.26± 0.6910.26± 0.6910.26± 0.69 8.486± 0.36
Steps Taken 13.49± 0.1 10.7± 0.3510.7± 0.3510.7± 0.35 12.85± 0.57

Reward 171.4± 13.8 270.4± 7.81270.4± 7.81270.4± 7.81 200.2± 14.8
T-IC3Net Pairwise Distance 8.891± 0.27 12.9± 0.7812.9± 0.7812.9± 0.78 9.552± 0.57

Steps Taken 12.28± 0.6 10.33± 0.4610.33± 0.4610.33± 0.46 12.22± 0.82
Reward 219± 37.2 309± 12309± 12309± 12 224.9± 22.5

Random Pairwise Distance 5.8± 0.02 – –
Steps Taken 17.39± 0.04 – –

Reward 44.59± 1.73 – –

35

Table 21: Mean and 95% confidence interval for DroneScatter across all baselines. Greedy evaluation
Baseline Metric Baseline Unique IDs 0.75 RNI

CommNet Pairwise Distance 8.849± 0.63 13.28± 1.2713.28± 1.2713.28± 1.27 8.589± 1.35
Steps Taken 13.79± 0.12 9.554± 0.339.554± 0.339.554± 0.33 12.62± 1.19

Reward 170.6± 6.72 319.7± 24.7319.7± 24.7319.7± 24.7 204.8± 40.5
DGN Pairwise Distance 3.221± 0.18 4.427± 0.674.427± 0.674.427± 0.67 3.706± 0.83

Steps Taken 13.36± 0.15 13.27± 0.2113.27± 0.2113.27± 0.21 13.46± 0.14
Reward 147.9± 6.16 154.4± 6.63154.4± 6.63154.4± 6.63 149.3± 5.38

IC3Net Pairwise Distance 7.69± 1.03 14.09± 0.5414.09± 0.5414.09± 0.54 11± 0.86
Steps Taken 13.25± 0.4 10.14± 0.210.14± 0.210.14± 0.2 11.42± 0.48

Reward 186.6± 8.87 310.1± 11310.1± 11310.1± 11 264.3± 21.9
MAGIC Pairwise Distance 6.61± 1.28 12.58± 0.612.58± 0.612.58± 0.6 7.107± 1.59

Steps Taken 13.27± 0.18 11.84± 0.6811.84± 0.6811.84± 0.68 13.61± 0.25
Reward 193.3± 15.2 222.7± 26.6222.7± 26.6222.7± 26.6 161.3± 23.9

TarMAC Pairwise Distance 8.666± 0.28 12.09± 0.7312.09± 0.7312.09± 0.73 8.999± 0.94
Steps Taken 13.73± 0.21 11.01± 0.8611.01± 0.8611.01± 0.86 12.19± 0.82

Reward 139.1± 4.43 255.5± 31.4255.5± 31.4255.5± 31.4 202.9± 32.6
T-IC3Net Pairwise Distance 7.28± 0.69 13.51± 0.9813.51± 0.9813.51± 0.98 10.87± 1.17

Steps Taken 13.96± 0.26 10.63± 0.6610.63± 0.6610.63± 0.66 11.73± 0.54
Reward 156.9± 21.9 278.6± 32.1278.6± 32.1278.6± 32.1 240.3± 25.6

36

D.2 Result Plots

In this section, we provide the full result plots for all of our experiments. For all but the BoxPushing
experiments, results are shown aggregated across 5 seeds, with a 95% confidence interval. For the
BoxPushing experiments, the hybrid imitation learning paradigm yielded unstable training for all
A2C methods. Thus, to better visualize the results, for each seed, we first denote the performance at
each epoch to be the maximum performance achieved so far. Then, we aggregate these runs across
10 seeds, showing the mean and a 95% confidence interval.

D.3 TrafficJunction-Easy

37

38

D.4 PredatorPrey

39

D.5 TrafficJunction-Medium

40

41

D.6 BoxPushing

42

43

D.7 DroneScatter with Greedy Evaluation

44

D.8 DroneScatter with Stochastic Evaluation

45

