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Abstract

Similarity learning can be significantly advanced by informative relationships
among different samples and features. The current methods try to excavate the
multiple correlations in different aspects, but cannot integrate them into a unified
framework. In this paper, we provide to consider the multiple correlations from
a unified perspective and propose a new method called MetricFormer, which
can effectively capture and model the multiple correlations with an elaborate
metric transformer. In MetricFormer, the feature decoupling block is adopted to
learn an ensemble of distinct and diverse features with different discriminative
characteristics. After that, we apply the batch-wise correlation block into the batch
dimension of each mini-batch to implicitly explore sample relationships. Finally,
the feature-wise correlation block is performed to discover the intrinsic structural
pattern of the ensemble of features and obtain the aggregated feature embedding
for similarity measuring. With three kinds of transformer blocks, we can learn
more representative features through the proposed MetricFormer. Moreover, our
proposed method can be flexibly integrated with any metric learning framework.
Extensive experiments on three widely-used datasets demonstrate the superiority
of our proposed method over state-of-the-art methods.

1 Introduction

Exploring how to effectively learn semantic similarities among examples is an important problem in
the field of machine learning and computer vision. Metric learning aims to transform the original data
into an embedding space and learn a distance metric in this space to promote intra-class compactness
and inter-class separability. In recent years, benefiting from the emerging advance of deep learning
technique [20, 17], deep metric learning (DML) can capture more representative embeddings, and has
been widely applied to various downstream tasks, including image retrieval [29, 28], face recognition
[19, 36], and person re-identification [57].

The core idea of DML is to excavate the intrinsic structural relations of data, and utilize them to
learn discriminative embeddings. As shown in Figure 1, such relations can be divided into two
main categories: sample relationship and feature relationship. The former, i.e. sample relationship,
includes pairwise correlation and batch-wise correlation. Most of existing supervised DML methods
utilize pairwise correlations (i.e., positive and negative pairs) to construct and utilize valid tuples
of pairs through well-designed pair-based losses, e.g. triplet loss [36] and multi-similarity loss [46].
Due to training with random sampling, such methods suffer from heavily low convergence and model
degradation. To discover the implicit global structure of the dataset, recent studies started to explore
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Figure 1: An illustration of multiple intrinsic correlations among different samples and features. (a)
According to the labels, we can naturally derive a series of positive and negative pairs, which is widely
used in DML. (b) The relationships between different samples are more informative, and not limited
to the samples from the same class. Samples in the same class have some invariant features, while
similar classes share similar parts. (c) The ensemble of features also has inner structural relations
between different sub-features, which helps the feature ensemble comprehensively represent samples.

the batch-wise correlation shown in Figure 1 (b) in the embedding space [18, 12, 1, 49, 37]. For
example, IBC [12] adopt the message passing strategy to capture the overall structure of data in each
mini-batch.

Considering that using only a single vector for similarity measurement cannot fully capture the
semantics of inputs and exacerbates the unexplainability caused by the black-box nature of deep
neural networks, recent studies [22, 29, 56] learn an ensemble of embeddings to jointly represent
the input instance. Such ensemble-based method generally outperforms those that use a single
feature vector since the ensemble encourages the learned embeddings to capture more comprehensive
characteristics. However, simply concatenating the ensemble of sub-features ignores the structural
relations among them, i.e. feature-wise correlation shown in Figure 1 (c), which is crucial to ensure
each sub-feature modeling different and discriminative characteristics. For better performance and
generalization ability, the feature-level correlation should also be considered during training.

In this paper, we provide a unified perspective to learn the multiple correlations and propose a metric
transformer framework, named MetricFormer, which enables the information propagation along
features of different samples within each mini-batch. Specifically, we introduce a correlation-aware
transformer into the internal structure of deep metric networks, which contains a feature decoupling
block, a feature-wise correlation block, and a batch-wise correlation block. We adopt the feature
decoupling block with several trainable query vectors to learn a series of sub-features with different
discriminative characteristics. Meanwhile, the feature-wise correlation block is performed to excavate
the intrinsic relations among sub-features, which can ensure the learned ensemble of features is
representative and sufficient for similarity measurement. Furthermore, to implicitly capture and
model the sample relationships, we apply the batch-wise correlation block into the batch dimension
of each mini-batch with the learned ensemble of features. Moreover, a local embedding module is
proposed to focus on more informative neighborhood relationships without redundancy. Guided
by the sparse graph, we can encode the local neighborhood relationships of each sample into the
transformer feature.

Our work delivers the following contributions:

• We propose to simultaneously explore the multiple correlations among data from a unified
learning perspective.

• We provide a simple yet effective method termed as MetricFormer to implicitly capture
three levels of correlations in an end-to-end model.
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• We achieve significant performance gains against the state-of-the-art methods on three
widely-used benchmark datasets.

2 Preliminaries

2.1 Problem Formulation of DML

Given the training dataset D = {(xi, yi)}Ni=1 where yi is the corresponding label of the sample
xi, DML methods aims to learn a feature mapping f : X 7→ Z ∈ RD with deep neural networks,
which maps input samples to a D-dimensional embedding space Z . With the learned projection
f : zi = f(xi), we can effectively measure the similarity between any two samples xi and xj using
Euclidean distance

di,j = ∥zi − zj∥2, (1)

or cosine similarity

si,j =
z⊤j zj

∥zi∥22∥zj∥22
. (2)

To improve the ability of similarity measurement, a majority of DML studies develop various metric
loss functions LM , which can impose a discriminative constraint on the feature embeddings.

2.2 Revisiting Transformer Encoder

Transformer architecture has achieved great success in the field of natural language processing and
computer vision and brings novel paradigms for several fundamental tasks (e.g. translation and
segmentation). The overall transformer model usually consists of a stack of multiple transformer
encoder blocks. The transformer encoder contains a multi-head self-attention layer (MHSA) and
a feed-forward network (FFN), which are followed by a LayerNorm (LN), respectively. Given a
sequence of input features X ∈ RM×D with the length of the sequence M and the dimension of the
input features D, we can derive the output of the transformer encoder as follows,

Ȳl = LN (MHSA(Zl−1) +Yl−1) ,

Yl = LN
(
FFN(Z̄l) + Z̄l

)
,

(3)

where l ≥ 1 is the index of layers in the transformer encoder, and Z0 = X.

The self-attention mechanism is widely-used to capture and model the relationships from the channel
and spatial dimensions. With Q,K,V ∈ RM×D as the query, key, and value learned from the same
input, we can calculate the output Z for the self-attention module:

Y = softmax
(
QK⊤
√
D

)
V. (4)

And then, the representations from different heads are concatenated.

3 The Proposed Method

In this section, we first introduce the overall motivation and framework of the proposed Metric
Transformer, and then describe the three transformer blocks, respectively.

3.1 Metric Transformer

Since the relationships among samples and features are both various and complex, how to effectively
discover the intrinsic structure of data and excavate more representative information from the training
data is an essential problem in DML. Most of existing methods can only utilize the pair-based
similarity, which neglects the batch-wise correlation and feature-wise correlation. Recently, some
studies are proposed to mine such rich relations. However, they can only learn the batch-wise or
feature-wise correlations individually, and the multiple correlations cannot be automatically learned
in a unified end-to-end DML model.
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Figure 2: An illustration of the proposed MetricFormer framework. Our MetricFormer contains one
feature decoupling block, one feature-wise correlation block, and T batch-wise correlation blocks.
After obtaining the feature maps generated by a backbone network, we can derive the ensemble of
sub-features to represent the input samples from different aspects in the feature decoupling block. And
then, the batch-wise correlation block and feature-wise correlation block with the same architecture
employ the cross-attention mechanism from different dimensions to explore the relationships among
samples and features. To tackle the inconsistency issue, we utilize the consistency preserving strategy
during training.

We introduce a metric transformer (MetricFormer) to enable DML model itself with the ability to
learn the sample relationships in each mini-batch and the structural relationships among the ensemble
of sub-features. As shown in Figure 2, our MetricFormer consists of one feature decoupling block,
one feature-wise correlation block, and T batch-wise correlation block. Specifically, we adopt a
backbone network to extract the feature maps from input samples. After that, a feature decoupling
block is performed to split the feature maps into several sub-features with different discriminative
characteristics. And then, the batch-wise correlation block is employed to model the relationships
among different samples by utilizing the cross-attention mechanism in the transformer. Finally, we
use the feature-wise correlation block to discover the structural pattern in the feature ensembles and
obtain the aggregated features guided by the learned feature-wise relations.

Consistency Preserving Strategy Considering the inconsistency of input data structure between
training and testing as the mini-batch of data is not available in testing, we apply a consistency
preserving strategy, which forces the out features learned with the batch-wise block to be consistent
with the ones learned without the batch-wise block. By doing this, we can remove the batch-wise
correlation block during the test, while still benefiting from the sample relationship learning.

3.2 Feature Decoupling

Compared with learning the single embedding vector, employing an ensemble of embeddings
with sufficient diversity can provide different characteristics of the input samples and improve the
performance of DML. To achieve this, we exploit the self-attention mechanism with several trainable
queries to automatically split the feature map into an ensemble of several distinct and diverse sub-
features. The learned ensemble of features can comprehensively characterize the input sample from
different aspects.

Specifically, we apply a backbone network to extract original feature maps J ∈ RH×W×C , where
H,W,C denotes the height, width, and the number of channels, respectively. After that, we use two
different linear layers g1(·) and g2(·) to process the feature map tensor J and derive the corresponding
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key and value matrices in the feature decoupling block as follows:

K = g1(J ) ∈ RHW×CK , (5)

V = g2(J ) ∈ RHW×d, (6)
where CK denotes the numbers of feature maps in the key matrix, and d is the embedding dimension
of the learned sub-features. Here, we set d = [D/k] according to the number of sub-features k and
the final embedding dimension D.

To automatically learn the representative ensemble of features with the self-attention mechanism, we
introduce a set of trainable query vectors Q1 = [q1;q2; · · · ;qk] ∈ Rk×CK , where k is the number
of sub-features. These query vectors are randomly initialized and adaptively updated along with the
other parameters in our model. To do so, we can calculate the attention score matrix as

AS = softmax
(
QK⊤
√
CK

)
∈ Rk×HW , (7)

which measures the importance of spatial positions to guide the learned sub-features to identify
different spatial positions. To this end, we can obtain the ensemble of features

Y = ASV ∈ Rk×d. (8)
Different rows of Y represent the learned sub-features with different characteristics. Moreover, we
employ a diversity loss to encourage the diversity between every two sub-features as follows:

Ldiv = log (1 + exp(α(si,j −m)β0)) , (9)

where si,j is the cosine similarity between two sub-features Z0
i and Z0

j of the same sample. And the
metric loss is applied to each sub-feature of training samples separately to ensure that the learned
ensemble of features can effectively represent the inputs from different aspects.

3.3 Multiple Correlations Exploration

d

k

B

d

k

B
(a) Batch-wise (b) Feature-wise

Figure 3: An illustration of the attention mechanisms on
batch and feature dimensions. The batch-wise correlation
block treats a mini-batch of samples as a sequence, while
the feature-wise correlation block regards an ensemble of
sub-features as a sequence.

The feature decoupling block enables
the spatial information propagation and
learns the ensemble of sub-features with
discriminative characteristics from differ-
ent aspects. With the learned ensembles
of features, we can further explore the
information propagation among different
samples within each training mini-batch
and different sub-features within each en-
semble. Both of them can significantly
improve the performance of DML.

To effectively capture the multiple corre-
lations, we design two transformer en-
coder blocks with the same architec-
ture, i.e. batch-wise correlation block
and feature-wise correlation block. As
shown in Figure 3, if we treat each
sample in the mini-batch as a node of
a sequence, the batch-wise correlation
block can implicitly mine the relation-
ships among samples in the mini-batch.
While if we regard each sub-feature of the sample as a node of a sequence, the structural relations
among the sub-features through the feature-wise block can be explored. Considering a set of features
F ∈ RB×k×d in a mini-batch, we can calculate the corresponding query, key, and value tensors
Q,K,V ∈ RB×k×d. After that, we apply the attention mechanism from different dimensions.

Batch-wise Correlation Block To explore the sample relationships in each mini-batch, we general-
ize the attention mechanism into the batch dimension as follows:

AB = softmax

(
Q:i:K⊤

:i:√
d

)
∈ RB×B , (10)

5



where Q:i:,K:i:,V :i: ∈ RB×d. The attention score matrix AB can measure the sample relationship
in this mini-batch. To further enhance the local manifold embedding, we introduce a local embedding
graph G defined as

Gi,j =

{
si,j if xi ∈ N (xi, n) and si,j ≥ ϵ,
0 otherwise, (11)

where N (xi, n) denotes the set of top-n samples of xi according to the rank list {si,j}Bi=1, and ϵ is
the threshold. And then, the attention score matrix can be updated as follows:

ĀB = G⊙AB , (12)

where ⊙ denotes the element-wise product operation. To this end, we can derive the output embed-
dings:

Y :i: = ĀBV :i:,
Y = concat(Y :1:,Y :2:, · · · ,Y :k:).

(13)

Feature-wise Correlation Block To excavate the structural relations among different sub-features,
we apply the attention mechanism from the feature dimension. For each sample xi (i = 1, 2, · · · , B),
we treat its ensemble of sub-features as a sequence, i.e., we have B sequences with the length of
k. Specifically, the output embeddings are learned according to the query, key and value matrices
Qi::,Ki::,Vi:: ∈ Rk×d in the position of the i-th sample:

Yi:: = softmax

(
Qi::K⊤

i::√
d

)
Vi:: ∈ Rk×d. (14)

4 Related Work

Deep Metric Learning Recently, deep metric learning has been well studied and achieved great
advances [6, 36, 27, 47, 3, 4, 54, 53]. The majority of works focus on designing discriminative metric
loss functions [14, 28, 46, 39, 21, 31, 38] and hard mining strategies [11, 10, 15, 48, 52, 50, 9] for
training more effectively. Recently, some methods consider to learn an ensemble of embeddings to
capture more characteristics of inputs from different aspects [22, 52, 35, 26, 56]. Nevertheless, the
rich relationships among samples and embeddings are usually ignored in the existing methods.

Transformer In recent years, based on multi-head self-attention mechanism [42], transformers,
represented by BERT [7] and ViT [8], develop rapidly and have been widely used in the field of
natural language processing and computer vision. Visual transformer [8, 25] has gradually become a
new backbone for computer vision tasks, including classification [8, 25], detection [2], segmentation
[55] and representation learning [5, 16].

5 Experiments

In this section, we evaluate the effectiveness of our method on three widely-used datasets on image
clustering and retrieval tasks.

5.1 Experimental Settings

Table 1: Statistics of three datasets.

Datasets Training Testing

# classes # Samples # classes # Samples

CUB 100 58,64 100 5,924
Cars196 98 8,054 98 8,131

SOP 11,318 59,551 11,316 60,502

Datasets To evaluate the
performance of the proposed
MetricFormer, we conduct the
experiments on three widely-
used benchmarks CUB-200-2011
(CUB) [43], Cars196 [24] and
Stanford Online Products (SOP)
[28]. Following the standard
protocol [38, 28], we split the training and testing sets without intersection. As shown in Table 1,
CUB-200-2011 contains 200 bird species of 11, 788 images. The first 100 categories of 5,864 images
are used as the training set and the remaining 5,924 images from the other 100 categories are used for
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testing. Cars196 includes 16,185 images from 196 car categories. The first 98 classes (8,054 images)
are used for training and the rest 98 classes (8,131 images) for testing. Standard Online Products
contains 120,035 images from 22,634 products. We use 59,551 images of the first 11,318 products
for training and 60,502 images of the remaining 11,316 categories for testing.

Evaluate Metrics Following the existing works [38, 28, 44], we conduct experiments on both
image retrieval and clustering tasks. For the retrieval task, we calculate Recall@K to evaluate the
retrieval performance. Recall@K measures the percentage of well-separated samples acknowledged
if we can find at least one corrected retrieved sample in the n nearest neighbors. For the clustering
task, we adopt the Normalized Mutual Information (NMI) based on the K-means algorithm as the
evaluation metric.

Baselines We apply the proposed MetricFormer to the margin loss [48] and the ProxyAnchor loss
[21] for comparison. We also compare our method with other state-of-the-art methods including
pair-based methods, N-Pair [38], HTL [13], Angular [44], MS [46], Circle [39], proxy-based meth-
ods SoftTriple [31], ProxyGML [58], and ensemble methods HDC [52], A-BIER [29], ABE [22],
DiVA [26], DRML [56].

Implementation Details We implement all the following experiments using PyTorch [30] on an
NVIDIA RTX 1080ti GPU, and the ADAM optimizer [23] with a learning rate of 0.0001 is adopted
to train the model. We use ResNet-50 [17] as backbone model pre-trained on ImageNet dataset [34]
for fair comparisons. For data augmentation, we use random cropping and horizontal mirroring. We
set the number of sub-features k to 3, and the embedding size of each sub-feature is fixed to 170. For
each iteration, we fix the batch size to 112. For the margin loss [48], we set the margin factors α
and β to 1.2 and 0.2, respectively. For the ProxyAnchor loss [21], we set the temperature α = 16,
positive margin γpos = 1.8, and negative margin γneg = 2.2.

5.2 Experimental Results

Quantitative Results We evaluate the performance of our method on three benchmarks CUB-200-
2011 [43], Cars196 [24] and Stanford Online Products (SOP) [28]. The experimental results are
shown in Table 2. Note that MetricFormer-PA and MetricFormer-M represent our method combined
with ProxyAnchor and Margin loss, respectively. The best results are marked in bold red. We
highlight our superior results over the associated methods without MetricFormer in bold black.

We can easily observe that our MetricFormer can improve the performance of the original DML
methods by a significant margin. Compared with the original methods, our method can mine more
informative relations from different aspects, which is useful for similarity learning. Moreover, our
method outperforms the state-of-the-art methods on all three datasets. These empirical results support
our proposal that our MetricFormer can discover the relationships among samples and features, which
are ignored by most of the existing DML methods. Within the multiple relations, we can capture the
characteristics of samples more comprehensively.

Figure 4: The t-SNE visualization
results of the learned feature ensem-
ble on the CUB-200-2011 dataset.

Qualitative Results To further demonstrate the performance
of our method, we give the visualization results of our Met-
ricFormer on the CUB-200-2011 dataset. As shown in Fig-
ure 5, the decoupled sub-features focus on the body, neck,
and head of birds respectively, which demonstrates that the
learned ensemble of features can capture and model different
characteristics. The trainable queries in the feature decoupling
block can be regarded as pattern detectors and large weights
are generated once a particular pattern is detected.

Moreover, we visualize the sub-features for all the samples on
the CUB-200-2011 dataset using t-SNE [41] in Figure 5. We
use different colors to represent the different sub-features in a
2-dimensional space. We observe that the learned sub-features
are very diverse in the feature space. These visualization
results support our proposal that our MetricFormer can learn
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the ensemble of distinct and diverse features with different
discriminative characteristics.

Table 2: Experimental results (%) of MetricFormer in comparison with the state-of-the-art methods
on the testing sets of CUB-200-2011, Cars196 and Stanford Online Products. n-G/BN/R indicates
the model setting where n is the embedding size, and G,BN,R denote GoogleNet [40], Inception with
Batch Normalization [20], and ResNet-50 [17], respectively.

Datasets 7→ CUB Cars196 SOP

Methods ↓ Setting ↓ R@1 R@2 NMI R@1 R@2 NMI R@1 R@10 NMI

N-Pair [38] 512G 50.1 63.3 60.4 71.1 79.7 64.0 67.7 83.8 88.1
Angular [44] 512G 53.1 65.0 61.0 71.3 80.7 62.4 67.9 83.2 87.8
RLL-H [45] 512BN 57.4 69.7 63.6 74.0 83.6 65.4 76.1 89.1 89.7
HTL [13] 512BN 57.1 68.8 - 81.4 88.0 - 74.8 88.3 -
ProxyGML [58] 512BN 66.6 77.6 69.8 85.5 91.8 72.4 78.0 90.6 90.2
SoftTriple [31] 512BN 65.4 76.4 69.3 84.5 90.7 70.1 78.3 90.3 92.0
MS [46] 512BN 65.7 77.0 - 84.1 90.4 - 78.2 90.5 -
GroupLoss[12] 512BN 65.5 77.0 69.0 85.6 91.2 72.7 75.1 87.5 90.8
A-BIER [29] 512R 57.5 68.7 - 82.0 89.0 - 74.2 86.9 -
ABE [22] 512R 60.6 71.5 - 85.2 90.5 - 76.3 88.4 -
MIC[32] 128R 66.1 76.8 69.7 82.6 89.1 68.4 77.2 89.4 90.0
TML [51] 512R 62.5 73.9 - 86.3 92.3 - 78.0 91.2 -
DiVA [26] 512R 69.2 79.3 71.4 87.6 92.9 72.2 79.6 91.2 90.6
PADS [33] 128R 67.3 78.0 69.9 83.5 89.7 68.8 76.5 89.0 89.9
CircleLoss [39] 512R 66.7 77.4 - 83.4 89.8 - 78.3 90.5 -
IBC [37] 512R 70.3 80.3 74.0 88.1 93.3 74.8 81.4 91.4 92.6
DIML [54] 512R 68.2 - 87.0 - 79.3 -
DRML [56] 512R 68.7 78.6 69.3 86.9 92.1 72.1 79.9 90.7 90.1
AVSL [53] 512R 71.9 81.7 - 91.5 95.0 - 79.6 91.4 -

Margin[48] 512R 63.1 74.4 66.7 79.9 87.5 64.1 78.3 82.7 90.2
MetricFormer-M 512R 69.2 79.6 71.0 89.5 93.8 73.1 79.8 83.6 92.0

ProxyAnchor [21] 512R 69.7 80.0 72.3 87.7 93.0 75.7 78.4 90.5 91.0
MetricFormer-PA 512R 74.4 83.7 75.4 91.8 95.4 76.2 82.2 92.6 92.7

5.3 Ablation Study

Table 3: Ablation study with different model settings.
Method R@1 R@2 NMI

Margin 63.1 74.4 66.7
Margin + FDB 66.8 76.5 67.7
Margin + FDB + BCB 68.7 79.3 70.8
Margin + FDB + FCB 68.4 79.1 70.6

Margin + MetricFormer 69.2 79.6 71.0

Ablation Study of Different Compo-
nents We conduct experiments with
the margin loss to analyze the effec-
tiveness of different blocks in our Met-
ricFormer. Margin denotes the base-
line method of using the margin loss.
+FDB, +BCB, +FCB are short for ‘fea-
ture decoupling block’, ‘batch-wise cor-
relation block’, and ‘feature-wise correla-
tion block’, respectively. Table 3 shows
the experimental results on the CUB-200-
2011 dataset. It is clear that our Metric-
Former achieves better performance than all the compared counterparts and all of the proposed blocks
contribute to the overall improvement, which demonstrates that exploring and capturing informative
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Sub-feature 1 Sub-feature 2 Sub-feature 3

Figure 5: Attention map visualization results on the CUB-200-2011 dataset. The highlighted regions
indicate the spatial locations that different sub-features are detecting. The three sub-features learned
by our MetricFormer capture different characteristics of the bird images regardless of the spatial
locations of these characteristics. The first sub-feature focuses on the body of birds, the second
sub-feature focuses on the neck of birds, and the third sub-feature focuses on the head of birds.

relations is crucial for similarity learning. The relationships between samples and sub-features are
both useful for similarity measurement.

Influence of Different Number of Sub-features We employ k individual features to describe each
input sample from different aspects. We conduct experiments with the margin loss (i.e. MetricFormer-
M) to analyze the influence of the number of individual features. Table 4 shows the experimental
results on the CUB-200-2011 dataset. The value of k ranges from 2, 3 to 4, rendering the size of each
sub-feature to 256, 170, and 128, respectively. We can observe that our method achieves the best
performance when k = 3, and using a larger k slightly harms the performance since each sub-feature
captures less information with a larger k.

Influence of Different Number of Batch-wise Correlation Blocks T We conduct experiments
with the margin loss on the CUB-200-2011 dataset to analyze the effect of the number of batch-wise
correlation blocks. According to the experimental results shown in Table 4, we can see that exploiting
more batch-wise blocks can improve the model performance. Considering the amount of model
parameters, we apply three batch-wise block in our MetricFormer, i.e. T = 3.

Table 4: Experimental results (%) of our MetricFormer with different number of the sub-features k
and different number of the batch-wise blocks T .

T = 3 k = 3

k = 2 k = 3 k = 4 T = 1 T = 2 T = 3

R@1 R@2 NMI R@1 R@2 NMI R@1 R@2 NMI R@1 R@10 NMI R@1 R@2 NMI R@1 R@2 NMI

65.8 76.2 68.9 69.2 79.6 71.0 68.5 78.9 70.9 67.7 78.1 70.2 68.4 79.0 70.8 69.2 79.6 71.0

6 Conclusion

In this paper, we propose a metric transformer (MetricFormer) framework to explore multiple
correlations in a unified perspective. In our MetricFormer, we take the pairwise relationship, the
sample relationship among each mini-batch, and the structural relationship among the ensemble of
features into consideration through the feature decoupling block, the batch-wise correlation block,
and the feature-wise correlation block respectively. To this end, we can the ensemble of distinct and
diverse features with different and discriminative characteristics. Moreover, our proposed method can
be flexibly integrated with any metric learning method. We have conducted extensive experiments on
three commonly used datasets which have demonstrated that our method can effectively boost the
performance of the existing DML methods.
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Broader Impact

Limitation Due to the usage of transformer, the parameters of the model are increased, which leads
to more computation cost and training times.

Negative Impact The proposed method predicts content based on learned statistics of the training
dataset and as such will reflect biases in those data, including ones with negative societal impacts.
This issue warrants further research and consideration.
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