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Figure 1: More Qualitative Results with Embedding Visualizations

Table 1: The mean and standard deviation of multiple training.

DIFE Pixel Error

Human+Dog Human+Cat Dog+Cat

Mean 11.73 11.00 6.51
Standard Deviation 0.21 0.55 0.55

A Metric for Keypoint Transfer

In the keypoint transfer experiment, we calculate the pixel error between the transferred keypoint
ût and the ground truth target keypoint ut to evaluate facial embedding quantitatively. First, source
embedding Es and target embedding Et are extracted from the source image and target image. Then,
the ground truth source keypoint us is transferred to the target via cosine distance matching of pixel
embedding formulated as

σ(Es,Et, ui, uj) =
Esui
·Etuj∥∥Esui

∥∥∥∥∥Etuj

∥∥∥ , (1)

ût = arg min
u∈Ω

σ(Es,Et, us, u), (2)

with 2D cartesian coordinate system Ω = {0, 1, ...,H ′ − 1} × {0, 1, ...,W ′ − 1}.
After the keypoint transfer, pixel error ep is calculated by the euclidean distance between the
transferred keypoint and the label of target formulated as following:

ep = ‖ut − ût‖ . (3)
With lower pixel error, we can assure the learned embedding works well as visual descriptors as
matching reliably different face geometry of various species [10].

B The reproducibility of our work

For reproducibility of our work, we provide the code blocks in the zipped supplementary file. The
codes related to dataset, model, loss, training pipeline and experiment are enclosed. To make sure
the training stability of our pipeline, we execute multiple training and interspecies keypoint transfer
experiment with respect to the random seed. All values for Section 4 are computed in three randomly
seeded training and the statistics for some experiments are shown in Table 1.
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Table 2: The human landmark detection results.
Category Method Unsup. Cross-Domain MAFL AFLWM AFLWR 300W

Supervised
learning

TCDCN [13] X X 7.95 7.65 - 5.54
MTCNN [12] X X 5.39 6.90 - -
Wing Loss [3] X X - - - 4.04

Generative
modeling

based

Deforming AE [9] O X 5.45 - - -
ImGen. [4] O X 2.54 - 6.31 -

ImGEN.++ [5] O X - - - 5.12

Equivariance
based

Dense 3D [9] O X 4.02 10.99 10.14 8.23
DVE [10] O X 2.86 7.53 6.54 4.65

On Equvariant [1] O X 2.44 6.99 6.27 5.22

DIFE O O 3.40 10.11 8.68 7.57

GT

DIFE

Pred

MAFL 300WAFLW

Figure 2: The qualitative results of the human keypoint regression.

C The human landmark detection

We carry out the keypoint regression experiment setup following DVE [10] and On Equivariant
And Invariant [1] to evaluate the robustness and the accuracy of DIFE on intra-species landmark
detection. In the experiment, we train a single FC layer with a frozen pre-trained embedder to predict
keypoint. The NME values of previous methods are also brought from On Equivariant And Invariant.
Even though our embedder is trained on synthesized datasets, not the target dataset, DIFE shows
compatible performance with the early study results of each category meaning DIFE is the apposite
baseline for cross-domain face understanding. The qualitative results are also provided in Fig. 2.

D Detailed Explanation for Method

Algorithm 1 shows our detailed training pipeline as pseudo-code. From line 6 to line 18, the pseudo-
code for multi-teacher knowledge distillation is provided. At the start of training, latent code z is
sampled with normal distribution. The synthesized image xd1, xd2 and the feature of StyleGAN2 Fd1,
Fd2 is generated with the StyleGAN2 Gd1, Gd2. Here d1 and d2 means the the domain of instance.
The continuous surface embedding Cd1, Cd2 is extracted with the CSE E . Therfore, DIFE Ed1, Ed2

and domain-specific embedding Dd1 )d1, Dd2 )d2 are extracted with the encoder Φ and the domain
converter Ψd1, Ψd2. We utilize superscript d ) d′ to express the instance of domain d′ is originated
from the image of d which is useful to describe pseudo-paired data synthesis later. Finally, CSE
knowledge distillation loss LK1 and StyleGAN2 knowledge distillation loss LK2 are calculated with
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Algorithm 1 The Pipeline of Training For Two Domains

1: (0) Prepare DIFE training
2: Set the learning rate η
3: Load pre-trained weights For parameters of CSE E , StyleGAN2 Gd1, Gd2

4: Initialize network parameters θΦ, θΨd1 , θΨd2

5: for the number of iterations do
6: (1-1) Synthesize data and labels with teacher models
7: Sample latent code z ∼ N (0, 1)

8: xd1,Fd1 ← Gd1(z)

9: xd2,Fd2 ← Gd2(z)

10: Cd1,Cd2 ← E(xd1, xd2)
11: (1-2) Extract embedding
12: Ed1,Ed2 ← Φ(xd1, xd2)

13: Dd1 )d1 ← Ψd1(Ed1)

14: Dd2 )d2 ← Ψd2(Ed2)
15: (1-3) Calculate losses For multi-teacher knowledge distillation
16: LK1 = LK(Ed1,Cd1) + LK(Ed2,Cd2)

17: Ld1
K2 = LK(Dd1 )d1,Fd1)

18: Ld2
K2 = LK(Dd2 )d2,Fd2)

19: if not initialization period then
20: (2-1) Intra pseudo-paired data synthesis
21: xd1 )d1 ← Gd1(Dd1 )d1) with latent space exploration
22: xd2 )d2 ← Gd2(Dd2 )d2) with latent space exploration
23: (2-2) Inter pseudo-paired data synthesis
24: Dd2 )d1 ← Ψd1(Ed2)

25: Dd1 )d2 ← Ψd2(Ed1)

26: xd2 )d1 ← Gd1(Dd2 )d1) with latent space exploration
27: xd1 )d2 ← Gd2(Dd1 )d2) with latent space exploration
28: (2-3) Extract embedding
29: Ed1 )d1,Ed1 )d2,Ed2 )d1,Ed2 )d2 ← Φ(xd1 )d1, xd1 )d2, xd2 )d1, xd2 )d2)
30: (2-3) Calculate losses For semantic matching
31: LM1 = LM (Ed1,Ed1 )d1) + LM (Ed2,Ed2 )d2)

32: LM2 = LM (Ed1,Ed1 )d2) + LM (Ed2,Ed2 )d1)
33: else
34: LM1 = 0
35: LM2 = 0
36: end if
37: (3) Update network parameters
38: θΦ = θΦ + η∇θΦ(LK1 + LK2 + LM1 + LM2)
39: θΨd1 = θΨd1 + η∇Ψd1(Ld1

K2)
40: θΨd2 = θΨd2 + η∇Ψd2(Ld2

K2)
41: end for

knowledge distillation loss LK formulated as following:

LK(A,B) = ‖A−B‖2 . (4)

The following codes from line 20 to line 32 presents the procedure of the pseudo-paired data synthesis
and the semantic matching. The if statement on line 18 means pseudo-paired data is not synthesized in
initialization period because the data synthesis requires proper face geometry of the domain-specific
embedding. After the initialization period, the intra pseudo-paired data xd1 )d1, xd2 )d2 and inter
pseudo-paired data xd1 )d2, xd2 )d1 are generated with latent space exploration described at Section
3.2. With encoder Φ, each DIFE for pseudo-paired data is extracted. At last semantic matching loss
LM are utilized to get intra semantic matching loss LM1 and inter semantic matching loss LM2.
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Figure 3: More Examples of Pseudo Paired Data

Here the equation for semantic matching loss with cosine similarity σ defined at Appendix B:

LM (A,B) =
∑
ui∈Ω

∥∥∥∥∥∥ui −
∑
uj∈Ω

σ(A,B, ui, uj)uj

∥∥∥∥∥∥
2

. (5)

At the end of iteration, the parameters of the encoder θΦ is updated with all losses and the parameters
of the domain converter θΨd1 , θΨd2 are updated with StyleGAN2 knowledge distillation loss.

E More Examples of Pseudo-Paired Data

We provide more examples of pseudo-paired data on various combinations of original and pair
domains in Fig. 3. Each three group of rows shows examples of pseudo-paired data for human+dog,
human+cat, and dog+cat. With various pseudo-paired data, we observe the generated image has the
same face geometry with the original image. In inter pseudo-paired data, there is a little difference
like the location of the ear or the shape of the eye, but the posture of the face is always aligned. By
matching them, ambiguous connections between the interspecies faces can be learned in unsupervised
manner.
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Figure 4: The qualitative results of the interspecies keypoint transfer on WFLW and AnimalWeb. The
blue landmarks are predicted and the green landmarks are the ground truth.

F Intellectual property rights of assets

The detailed licenses of utilized codes and datasets are as followings:

- Detectron2, DensePose-CSE [8]: The license of code is Aphache 2.0 License which is an
open source license.

- StyleGAN, FFHQ [6]: The individual images were published in Flickr by their respective
authors under either Creative Commons BY 2.0, Creative Commons BY-NC 2.0, Public
Domain Mark 1.0, Public Domain CC0 1.0, or U.S. Government Works license. All of these
licenses allow free use, redistribution, and adaptation for non-commercial purposes.

- AFHQ [2]: The dataset is available under Creative Commons BY-NC 4.0 license by NAVER
Corporation. There is no problem to use, copy, tranform and build upon the material for
non-commercial purposes as long as giving appropriate credit by citing our paper, and
indicating if changes were made.

- AP-10K [11]: The dataset is available under Creative Commons BY-NC 4.0 license which
is same with AFHQ.

- CelebA [7], MAFL [14]: The name of license is unknown but datasets are available for
non-commercial research purposes.
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