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Abstract
In this paper, we study the statistical limits in terms of Sobolev norms of gradient
descent for solving inverse problems from randomly sampled noisy observations
using a general class of objective functions. Our class of objective functions
includes Sobolev training for kernel regression, Deep Ritz Methods (DRM), and
Physics Informed Neural Networks (PINN) for solving elliptic partial differential
equations (PDEs) as special cases. We consider a potentially infinite-dimensional
parameterization of our model using a suitable Reproducing Kernel Hilbert Space
and a continuous parameterization of problem hardness through the definition
of kernel integral operators. We prove that gradient descent over this objective
function can also achieve statistical optimality and the optimal number of passes
over the data increases with sample size. Based on our theory, we explain an
implicit acceleration of using a Sobolev norm as the objective function for training,
inferring that the optimal number of epochs of DRM becomes larger than the
number of PINN when both the data size and the hardness of tasks increase,
although both DRM and PINN can achieve statistical optimality.

1 Introduction
Several learning based methods for solving inverse problems have been proposed recently with
state-of-the-art performance across a wide range of tasks, including medical image reconstruction
[1], inverse scattering [2] and 3D reconstruction [3]. In this paper, we study the statistical limit of
machine learning methods for solving inverse problems. To be specific, we consider the problem of
reconstructing a function from random sampled observations with statistical noise in measurements.
We apply gradient descent to a general class of objective functions for the reconstruction. When
the observations are the direct observations of the function, the problem is non-parametric function
estimation [4, 5]. The observations may also come from certain physical laws described by a
partial differential equation (PDE)[6, 7]. Formally, we aim to reconstruct a function f⇤ based on
independently sampled data set D = {(xi, yi)}ni=1 from an unknown distribution P on X ⇥Y , where
yi is the noisy measurement of u⇤ though a measurement procedure A. For simplicity, we assume A
is self-adjoint in this paper. The conditional mean function f⇤(x) = EP (Y |X = x) is the ground
truth function for observation of u⇤ through the measurement procedure A, i.e. f⇤ = Au⇤. To solve
this problem, we consider gradient descending over the following general class of objective function

û = argmin
u2H

EPn(x,y)
1

2
hu(x),A1u(x)i � hy,A2u(x)i ,

where Pn = 1
n

P
n

i=1 �(xi, yi) is the empirical distribution, H is a reproducing kernel Hilbert space
(RKHS) and Ai, i = 1, 2 are two self-adjoint operators that satisfy A1 = AA2. In Section 2, we
show that several algorithms, including kernel regression [4, 8] via Sobolev training [9, 10, 11] and
solving PDEs via machine learning based algorithm, [12, 13, 2, 14] can be considered as special
cases of this formulation.
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Recent works [15, 16] have considered the statistical limit of learning of elliptic inverse problem,
i.e. how many observation of the right hand side function of an elliptic PDE are needed to reach
a prescribed performance level. However, none of these papers consider computationally feasible
methods for constructing such optimal estimators. In this paper, we consider the statistical optimality
of gradient descent [17, 18, 19, 20], a successful and widely used algorithm in machine learning.
We show that proper early stopped gradient descent can achieve information theoretical optimal
convergence rate according to a continuous scale of suitable Hilbert norm (i.e. Sobolev norms[21, 22],
detailed definition see Section 2).

We first prove that a properly early stopped gradient descent algorithm over the class of objective
functions can achieve statistical optimality. At the same time, although any suitably early stopped
gradient flow of the class of loss function can achieve statistical optimality according to our theory,
we discover an acceleration effect of using a Sobolev norm as the loss function for kernel based
machine learning algorithms. The implicit acceleration of the Sobolev loss function arises because
a differential operator can enlarge the small eigenvalue of the kernel integral operator for high
frequency functions, leading to better condition numbers and faster convergence in these eigenspaces
while maintaining the statistical optimality. We justify our theoretical finding with several numerical
experiments.

1.1 Related Works
Machine Learning Based PDE Solver. Partial differential equations (PDEs) are widely used in
many disciplines of science and engineering and play a prominent role in modeling and forecasting
the dynamics of multiphysics and multiscale systems. The recent breakthroughs in deep learning
and the rapid development of sensors, computational power, and data storage in the past decade have
drawn attention to numerically solving PDEs via machine learning methods [23, 24, 12, 25, 13, 2],
especially in high dimensions where conventional methods become impractical. Based on the natural
idea of representing solutions of PDEs by (deep) neural networks, different loss functions for solving
PDEs are proposed. [25, 26] utilize the Feynman-Kac formulation which turns solving a PDE into a
stochastic control problem. The work of [27] solves the weak formulations of PDEs via an adversarial
network. In this paper, we focus on the convergence rate of the Deep Ritz Method (DRM) [14, 2] and
the Physics-Informed neural network (PINN) [12, 13]. DRM [14, 2] utilizes the variational structure
of the PDE, which is similar to the Ritz-Galerkin method in classical numerical analysis of PDEs, and
trains a neural network to minimize the variational objective. PINN [12, 13] trains a neural network
directly to minimize the residual of the PDE, i.e., using the strong form of the PDE. Theoretical
convergence results for deep learning based PDE solvers has also received considerable attention
recently. Specifically, [28, 29, 30, 31, 32, 33, 34] investigated the regularity of PDEs approximated
by a neural network and [28, 35, 36, 37, 38] further provided generalization analyses. [15, 16, 39, 40]
provided information theoretical optimal lower and upper bounds for solving PDEs from random
samples. However, all these papers assume accessibility of the global solution of empirical loss
minimization. In contrast, here we consider the gradient descent algorithm for learning the estimator.
The most relevant work in connection to is [41], which considers a polynomial-time Langevin-
type algorithms to sample from the posterior measure of the Bayesian inverse methods. Instead of
considering the Bayesian setting, here we optimize on the un-regularized objective. However, the
estimator is regularized via early stopping [42, 43, 44], i.e. we consider the statistical optimality
of the implicit regularization effect of optimization algorithm. A concurrent paper [45] considered
similar stochastic gradient descent approach for statistical inverse problem.

Learning with kernel. Supervised least square regression in RKHS has a long history and its
generalization ability and mini-max optimality has been thoroughly studied [8, 46, 4, 47, 48]. Sta-
tistical optimality of early stopped (stochastic) gradient descent has been widely discussed in
[42, 49, 50, 18, 17, 51, 52]. The convergence of least square regression in Sobolev norm has
been discussed recently in [21, 22]. Recently, training neural networks with stochastic gradient
descent in certain regimes has been found to be equivalent to kernel regression [53, 54, 55]. Gradient
descent training of neural network in the kernel regime has been found optimal for a wide class of
non-parametric functions with both early stopping regularization and ridge regression [56, 57].

1.2 Contribution
• We provide information theoretical lower bounds (Theorem 3.1) for a wide class of inverse

problems, including the Sobolev learning rate [21] for the solution of elliptic inverse

2



problems. We also show that the previous lower bound [15, 16] for machine learning solving
elliptic equations can be considered as a special case of our lower bound.

• We provide a proof of statistical optimality of the gradient descent algorithm of a general
class of objective functions (Theorem 3.2), including PINN [12, 13] and Deep Ritz Methods
[14, 2] for solving PDEs as well as Sobolev training [11, 9, 58] of kernel methods. We
provide [16] a computational feasible estimator and generalize the previous statistical
optimality results of gradient descent [42, 18, 19] to general Sobolev norm.

• We also characterize the acceleration effect of Sobolev loss function for learning with kernel.
The acceleration happens because differential operator can enlarge the small eigenvalues
for high frequency functions, leading to better condition number and faster convergence in
these eigenspaces while keeping the statistical optimality. Thus when the target function
have more high frequency component, the lead of PINN will become larger (Figure 3). We
justify our theoretical finding with several numerical experiments (Figure 2 and Figure 4).

2 Problem Formulation
In this section, we formulate the problem of learning inverse problem using the kernelized gradient
descent. As described previously, we aim to reconstruct a function f⇤ 2 RX from random observa-
tions of u⇤ = Af⇤, where A is an observation process which is modeled by an operator maps from
RX to RX . To solve this problem, we write the operator A in terms of two operators Ai (i = 1, 2)
with A1 = AA2 and build our objective function as

EP


1

2
hu(x),A1u(x)i � hy,A2u(x)i

�
, (1)

where P is the joint distribution of x and y with x sampled from the uniform distribution on X for
simplicity and y as the noisy observation of f(x) = (Au)(x). In other words, E(y|x) = f(x). The
minimizer of objective function (1) is the ground truth function u⇤ = A�1f that we are interested in.

Learning with Kernel Consider the case that u is parameterized by a Reproducing Kernel Hilbert
Space u✓(x) = h✓,Kxi (we provide standard notations of RKHS in Appendix A). At the same
time, the kernel function has the following representation K(s, t) =

P1
i=1 �iei(s)ej(t), where ei

are orthogonal basis of L2(⇢X ) with ⇢X being the uniform distribution over X , where L2 denotes
the space of all the square integrable functions. Then ei is also the eigenvector of the covariance
operator ⌃ = Ex⇠PKx ⌦ Kx with eigenvalue �i > 0, i.e. ⌃ei = �iei. Here g ⌦ h = gh> is
an operator from H to H defined as g ⌦ h : f ! hf, hiH g. The covariance matrix ⌃ is the core
of the integral operator technique [46, 8] for kernel regression. For any f 2 H, the reproducing
property gives (⌃f)(z) = hKz,⌃fiH = E[f(X)k(X, z)] = E[f(X)Kx(X)]. If we consider
the mapping S : H ! L2(dx) defined as a parameterization of a vast class of functions in RX

via H through the mapping (Sg)(x) = hg,Kxi (�(x) = Kx = K(·, x)). Its adjoint operator
S⇤ : L2 ! H then can be defined as g !

R
X g(x)Kx⇢X(dx). ⌃ is the same as the self-adjoint

operator S⇤S and the self-adjoint operator L = SS⇤ : L2(dx) ! L2(dx) can be defined as
(Lf)(x) =

R
X K(x, z)f(z)⇢X (dz). Based on this notation, we present all our assumptions on the

underlying kernel.

Assumption 2.1 (Assumptions on Kernel). We assume the standard capacity condition on kernel
covariance operator with a source condition about the regularity of the target function following [8].
We further assume a regularity condition for our kernel k(·, ·) via a `1 embedding property follows
[59, 60, 18, 21]. These conditions are stated explicitly below.

• (a) Standard assumptions. The kernel feature are bounded almost surely, i.e. |k(x, y)|  R
and the observation y is also bounded by M almost surely.

• (b) Capacity condition. Consider the spectral representation of the kernel covariance
operator � =

P
�iei ⌦ ei, we assume polynomial decay of eigenvalues of the covariance

matrix �i / i�↵ for some ↵ > 1. As a result Q = tr(⌃1/↵) < 1.
• (c) Source condition. We also impose an assumption on the smoothness of the true function.

There exists � 2 (0, 1] such that u⇤ = L�/2� for some � 2 L2. If u⇤(x) = h✓⇤,KxiH, the
source condition can also be written as

k⌃
1��
2 ✓⇤kH < 1.

3



• (d) Capacity conditions on Ai. For theoretical simplicity, we assume that the self-adjoint
operators Ai are diagonalizable in the same orthonormal basis ei. Thus we can assume

A1 =
1X

i=1

piei ⌦ ei,A2 =
1X

i=1

qiei ⌦ ei

for positive constants pi, qi > 0. We further assume pi / i�p and qi / i�q. This
commuting assumptions also made in [61, 62]. due to the Bochner’s theorem. We further
assume p < 0, q < 0,↵+ p > 0. We refer the detailed discussion to Remark 1.

• (e) Regularity results on RKHS. For µ 2 [0, 1], there exists µ � 0 such that �(x) ⌦
�(x)  k2

µ
R2µ⌃1�µ holds almost surely. The regularity assumption here is equivalent

to kgk2
L1

 2
µ
R2µk⌃1/2�µ/2gk2H and implies kgkL1  µRµkgkµHkgk1�µ

L2
for every

g 2 H. As a consequence, we know that k⌃µ/2�1/2�(x)kH  µRµ holds almost surely.
[59, 21, 18]

Remark 1. To simplify the technical exposition, we assume that operator Ai(i = 1, 2) commute
with the kernel covariance operator ⌃. This assumption is also made in [62, 61]. Here we provide
several examples that satisfy this assumption. The simplest case is A1 = A2 = id , which gives
rise to the function regression setting. [63] assumes the operator Ai to be bounded operator in
operator norm, which can be consider as a special case of ours. At the same time, for numerically
solving a PDE/elliptic inverse problem, we take Ai to become the power of the Laplace operator
�, which contradicts with [63]’s assumption. If the domain is a sphere, the eigen-functions are
spherical harmonics which are also the eigen-functions of a wide class of kernels, examples includes
the dot product kernels [64] and the Neural Tangent Kernel [65, 66], when the data distribution
is uniform distribution. When the domain is the torus, the eigen-functions are Fourier modes. If
we consider a shift invariant kernel K(x, y) =  (x � y), from Bochner’s Theorem K(x, y) =P

n

i=1  ̃(w)e
iwse�iwt we know that the eigen-functions are also Fourier modes. There are also

works that use Green function as the kernel [67, 68], where the three operators will automatically
commute with each other.

In this paper, we consider the convergence of the estimator in Sobolev norm class. We define
the different Sobolev spaces via the power space approaches used in [69, 21].
Definition 2.2 (Sobolev Norm). For � > 0, the �-power space is

H� :=

8
<

:
X

i�1

ai�
�/2
i

ei :
X

i�1

a2
i
 1

9
=

; ⇢ L2(v),

equipped with the �-power norm via k
P

i�1 ai�
�/2
i

eik� :=
⇣P

i�1 a
2
i

⌘1/2
.

It is obvious that kL�/2fk� = kfkL2 and kfk�  k⌃ 1��
2 fkH [21]. The source condition

can also be understood as the target function u⇤ lies in the �-power Sobolev space. The regularity
condition of the kernel function implies a continuously embedding from H� ! L1. Throughout
this paper, we consider the convergence rate of û� u⇤ in �-power Sobolev norm (� > 0).

2.1 Examples
Sobolev Training [70, 9, 11] introduce the idea of training using Sobolev spaces via matching not
only the function value but also the derivative of the classifier. Using different Sobolev norms as loss
function has also been used widely in image processing, inverse problems, and graphics applications
[71, 72, 10, 73, 74, 75]. The work of [71] discovered that different Sobolev loss functions would lead
to different implicit bias and that the proper Sobolev preconditioned gradient descent can accelerate
the optimization of geometry objectives [73, 74, 75]. In this paper, we discover that stochastic
gradient descent over Sobolev norm loss class functions can achieve statistical optimal but proper
selection of the Sobolev norm loss function can accelerate training. We call this phenomenon Sobolev
Implicit Acceleration and discuss it in Section 4.

Machine Learning Based PDE Solver. To simplify the exposition, we focus on a prototype
elliptic PDE: Poisson’s equation on a torus, i.e. ⌦ = Td = [0, 1]dper. Our focus is on the analysis of
deep-learning-based numerical methods for the elliptic equations

��u+ u = f in ⌦. (2)
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We mainly focus on analyzing Deep Ritz Method (DRM) [14] and Physics Informed Neural Network
(PINN) [12, 13]. DRM solves the equation (2) via minimizing the following variational form

u⇤ = argmin
u2F

EDRM(u) :=
1

2

Z

⌦
|ru|2 + u2 dx�

Z

⌦
fudx, (3)

while PINNs solves the equation (4) via minimizing the following strong formula, i.e the residual of
the PDE,

u⇤ = argmin
u2F

EPINN(u) :=
1

2

Z

⌦
(�u� u+ f)2 dx, (4)

where u is minimized over a parameterized function class F (for example neural network). Here
we consider the function class to be the RKHS space [76, 77]. [16] showed that empirical risk
minimization of both objectives can achieve information theoretical optimal bounds. The objective
function in 3 and 4 can be considered as special case of objective function (1). For DRM, A1u = �u
and A2u = u for all function u 2 RX . For PINN, A1u = �2u and A2u = �u for all function
u 2 RX .

We discover that PINN convergences faster than DRM consistently due to the implicit Sobolev
acceleration, matching the observation made in [78]. [61] considered semi-supervised learning using
Laplacian regularization with kernel parameterization. However, this paper does not consider training
with stochastic gradient descent and also does not introduce the source condition assumption that
leads to different convergence rate for a hierarchical parameterization of task difficulty.

3 Main Theorem
We present our main results in this section, including an information theoretical lower bound and a
matching upper bound with proper selected early stopping time.

3.1 Lower Bounds
This subsection investigates the statistical optimality of the Sobolev convergence rate of solving
elliptic problem using stochastic gradient descent. We provide the information theoretical lower
bound of learning the elliptic problems. Different from [15, 16], we formulate the problem in an
RKHS. This leads to a different construction of hypothesis and show that [15, 16] is a special case of
our lower bound using specific kernel and operator Ai(i = 1, 2) in Section 3.3.
Theorem 3.1 (Lower Bound). Let (X,B) be a measurable space, H be a separable RKHS on X
with respect to a bounded and measurable kernel k and operator A = (A�1

2 A1) satisfies Assumption
2.1. We have n i.i.d. random observations {(xi, yi) 2 X ⇥ Y}n

i=1 of f⇤ = Au, u 2 H� \ L1,
i.e. yi = f⇤(xi) + ⌘i where ⌘i is a mean zero random noise satisfies the momentum assumption
E|⌘|m  1

2m!�2Lm�2 for some constants �, L > 0. Then for all estimators H : (X ⇥ Y)⌦n ! H�

satisfies
inf
H

sup
u⇤

EkH({(xi, yi)}ni=1)� u⇤k2
�
& n� (max{�,µ}��)↵

max{�,µ}↵+2(q�p)+1 .

3.2 Upper Bounds
This subsection, we consider the (multiple pass) gradient descent over the empirical data of ob-
jective function (1). We aim to construct our estimator via optimizing the empirical loss func-
tion

P
n

i=1
1
2u(xi)A1u(xi) � yiA2u(xi), where xi is sampled randomly and yi is the associated

noisy observation introduced in Section 1. We consider a parameterization u(x) = hu,Kxi and
Aiu(x) = hAi✓,KxiH = h✓,AiKxiH and express our empirical objective function as

EPn(x,y)
1

2
hu(x),A1u(x)i � hy,A2u(x)i = EPn(x,y)

1

2
hu,Kxi hA1u,Kxi � y hA2u,Kxi

= EPn(x,y)
1

2
hu,Kx ⌦A1Kxui � y hu,A2Kxi

(5)

Then the gradient descent algorithm can be written as the following procedure:
• Initialization: ✓0 = ✓̄0 = 0, � is a constant to be determined later which is used as the

learning rate in the algorithm.
• Iteration: For the t�th iteration, we perform the following gradient descent step

✓t = ✓t�1 + �
1

n

nX

i=1

(yiA2Kxi � h✓t�1,A1KxiiH Kxi)

with an averaging step ✓̄t = (1� 1
t
)✓̄t�1 +

1
t
✓t.
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Remark. Note that the optimizing dynamics considered here is not the exact gradi-
ent descent dynamics over the empirical objective. The gradient of the quadratic term
1
n

P
n

i=1 u(xi)A1u(xi) should be 1
n

P
n

i=1 (h✓t�1,A1KxiiH Kxi + h✓t�1,KxiiH A1Kxi) but we
take instead 1

n

P
n

i=1 h✓t�1,A1KxiiH Kxi in our dynamics. In the population expectation, the two
dynamics are the same due to the commuting assumption between the kernel integral operator and
operator A1. Without our modification, the statistical rate will become sub-optimal in some cases
due to the fact that the variance in the empirical covariance matrix dominates the statistical rate. This
observation matches the reason behind the sub-optimality of the Deep Ritz Method discovered in
[16].

The following theorem is the main result for upper bounds with the proof details given in the
appendix.
Theorem 3.2. Under Assumption 2.1, we have the following three regimes shown in Figure 1.

• For � > ↵+2q�p�1
↵

, if we take t = n and � = n
↵+p

�↵+2(p�q)+1�1 , we obtain the following
rate

E[k✓̄t � u⇤k2
�
] = O(n� (���)↵

↵�+2(p�q)+1 ).

• For ↵+2q�p�1
↵

 �  µ↵+2q�p+1
↵

, if we take t = n
↵+p

�↵+2(p�q)+1 and � a small enough
constant, we obtain the following rate

E[k✓̄t � u⇤k2
�
] = O(n� (���)↵

↵�+2(p�q)+1 ).

• For � > µ↵+2q�p+1
↵

, if we take t = n
↵+p
µ↵+p and � a small enough constant, we obtain the

following rate
E[k✓̄t � u⇤k2

�
] = O(n� (���)↵

µ↵+p ),

which is not an optimal converging rate.

Sketch of the Proof. We first rewrite the averaged gradient descent in a more compact for-
mula as ⌘0 = 0, ⌘u = ⌘u�1 + �(A>

2 Ŝ
⇤
n
ŷ � ⌃̂Id,A1⌘t�1) where Ŝn : H ! Rn is defined as

Ŝng = 1p
n
(g(x1), · · · , g(xn)), ⌃̂O1,O2 = 1

n

P
n

i=1 O1Kx ⌦ O2Kx and Id is the identity opera-
tor. For the error of GD, we consider early stopping of gradient descent algorithm as a spectral
filtering [79, 18, 63, 19]. Our proof is based on standard bias-variance decomposition. For t it-
eration, GD will behave similarly to ridge regression with �t regularization strength [42, 18] and
this result in bias of ( 1

�t
)

(���)↵
↵+p . For the variance, we provide a bound which is related to the

effective dimension given by tr((⌃Id,A1 + ( 1
�t
)I)�1⌃A>

2 A2
) and obtain a final variance of the form

1
n
(�t)�

�↵+p
↵+p ( 1

�t
)�

1
↵+p ( 1

�t
)�

p�2q
↵+p + 1

n
( 1
�t
)�

�↵+p
↵+p ( 1

�t
)�

µ↵�p
↵+p ( 1

�t
)

�↵�2q
↵+p . If we only have the first

term of variance, we shall achieve information theoretical optimal bound when t = n
↵+p

�↵+2(p�q)+1 .
For the section term in the variance is from the convergence of empirical covariance matrix ⌃̂Id,A1

to the population one ⌃Id,A1 . This term can be reduced using semi-supervised learning techniques as
in [80, 16].

3.3 Discussion and Implications of Our Theory

Relationship with [15, 16]. [15, 16] provided a lower bound of the form n� 2↵�2s
2↵�4t+d for a 2t�th

order linear PDE �tu = f with solution in H↵, evaluated in Hs norm. We shall discuss the relation-
ship between their bound with our n� (���)↵

�↵+2(p-q)+1 lower bound based on the kernel representation of
Sobolev spaces. The numerator (���) matches the ↵�s term in [15, 16]’s lower bound and the q�p
term is the order of the linear PDE which matches the t term in the denominator in [15, 16]’s lower
bound. The spectral decay speed of kernel ↵ is always relative to the dimension d. To understand this
problem, we consider the following two examples.

For the first example, the kernel is defined on the torus Td = [0, 1]dper. We consider the
space of square integrable functions on Td with mean 0 and the Matérn kernel K�,l,v(x, y) =

�2 21�v

�(v)

⇣
|x�y|

l

⌘v

Bv(
|x�y|

l
), where Bv is the modified Bessel function of section kind. The covari-

ance operator is C✓ = �2(��+ ⌧2I)�s with orthonormal eigenfunctions �m(x) = e2⇡ihm,xi and
corresponding eigenvalues �m = �2(4⇡2|m|2 + ⌧2)�s for every m 2 Zd\{0} [81].
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↵

�

� = ↵+2q�p�1
↵

� = µ↵+2q�p+1
↵

Constant LR

Sub-Optimal

Small LR, n Iteration

Figure 1: Phase diagram of different regimes for solving inverse problem using stochastic gradient
descent. Except for the gray area, GD can achieve the information theoretic rate.

//
For the second example, we consider the Mercer’s decomposition of a translation invariant

kernel via Fourier series K(s � t) = 1
2⇡

P
w
K̃(w)eiw(s)eiw(�t)dw. The eigenfunctions of the

translation invariant kernel is the Fourier modes and the eigenvalues are the Fourier coefficients. As
an example, for Neural Tangent Kernel, [82, 66, 65, 56] proved that the corresponding ↵ = d

d�1 and
the eigenfunctions are spherical harmonics that diagonalize the differential equation.

For the upper bound, [16] established the convergence rate based on the empirical process
technique [48, 59], while our paper switches to the integral operator/inverse problem technique
[4, 46, 8]. An advantage of the integral operator/inverse problem technique is that it can provide
convergence results with respect to a continuous scale of Sobolev norms while the empirical process
technique can only be used for the Sobolev norm equivalent to the objective function.

Relationship with [70] [70] also considered learning from data involving function value and
gradients under the framework of least-square regularized regression in reproducing kernel Hilbert
spaces. In this paper, we only have access to the noisy observation of the function values but still aim
to know about the convergence rate with respect to the Sobolev norm. At the same time, we further
consider an inverse problem setting with an early stopping regularization, which is not discussed in
[70]. However, we introduce a commuting assumption over the differential operator with the kernel
integral operator that facilitates our analysis.

Sobolev Implicit Acceleration Below we discuss the implication of the choice of early stopping
time t = n

↵+p
�↵+2(p�q)+1 . First of all, the best early stopping time here does not depend on �, which

means the best model in different Sobolev is the same over the stochastic gradient descent path
asymptotically. Secondly, all the components in an iteration step depend on the problem itself except
the numerator ↵ + p. For differential operators, the p is actually negative (differential operators
have large eigenvalues over high-frequency basis). Thus we can accelerate the training via letting
p more negative, i.e. using a higher order Sobolev norm as loss can lead to earlier stopping. As an
implication, the PINN achieves the statistical optimal solution faster than DRM.

Relationship with implicit bias of frequency Recent work credit the success of deep learning
to the fast training in low frequency components [83, 84, 85]. However, in our work, with Sobolev
preconditioning, the training speed of high frequency part increases, yet achieving statistical optimality
in the class of Sobolev norm. This suggests that the implicit bias of frequency is not necessary for
good generalization results. We also would like refer to [86, 87] Theorem 8 for the extreme case,
where the authors directly invert the population covariance matrix which leads to the same training
speed in every eigen-spaces while still maintaining the statistical optimality in `2 norm. However the
preconditioning matrix in [86] is the population Fisher information matrix, which requires further
sampling of unlabeled data that is not accessible in our setting.

Discussion of the Sub-Optimal Regime In the sub-optimal regime, the concentration error between
the empirical covariance matrix ⌃̂Id,A1 and the population one ⌃Id,A1 dominates. With the observa-
tion that these concentrations have no relationship with the supervision signal, [16, 80] proposed to
utilize the semi-supervised learning to reduce the error in this regime. In [16], Deep Ritz method
requires semi-supervised learning while PINN does not for the exact empirical risk minimization
solution. In our formulation, if |p| is larger, the sub-optimal regime will become smaller, which
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contradict with the observation in [16]. However [16] only considers the statistical generalization
bound but doesn’t take optimization into consideration. We leave designing algorithm with smaller
sub-optimal regime as future work.

4 Sobolev implicit acceleration

Figure 2: Sobolev Implicit Acceleration of Esti-
mating function using kernel method and Neural
Network. We observed that using Sobolev Norm
as loss function can accelerate training.

The Sobolev norm has already been proposed
as loss function for training neural network [9]
and solving PDEs [11, 58]. However, all these
papers need a further gradient information of
the supervision signal. This does not fit the the-
oretical framework considered here and hence
it is also not fair to compare their algorithms
with methods without gradient supervision sig-
nal. Thus in this section, we proposed an alterna-
tive objective that can perform Sobolev training
without gradient supervision loss function. The
basic idea is to using an integration by parts

Z
|ru�rf |2dx =

Z
kruk22 + 2�u · f + krfk22dx, (6)

which leads to an objective function without the gradient of the target function. In this section, we
shall show how this idea is applied to different machine learning examples.

4.1 Predicting a Toy Function on Torus
In this section, we conduct experiments to illustrate the Sobolev implicit acceleration for function
regression. Different from the Sobolev training [9], the objective that we are interested in does not
involve the gradient of the target function. As a result, we do not need to train a teacher network to
provide the gradient supervision information as done in [9]. In the toy example, for simplicity we
ignore the boundary terms introduced by the integral by part. Here consider estimating a function on
the torus, i.e. a periodic function. We consider using

R
�ku� fk2 + kruk22 + 2�u · f + krfk22dx

as our objective function. The goal is to fit function y =
P

d

i=1 sin(2⇡xi) using Gaussian Kernel
and a simple three layer feed-forward network with tanh activation function. We randomly sampled
1000 data in 10 dimension as our dataset and run a gradient descent algorithm. Figure 2 presents our
convergence result of the validation error, where the Sobolev norm have shown an acceleration effect
for training.

4.2 Solving Partial Differential Equations

(a) Smooth Problem (b) Harder Problem

Figure 3: We show the convergence result
of PINN and Deep Ritz Method for smooth
problem

P
d

i=1 sin(2⇡x) and harder problemP
d

i=1 sin(4⇡x). PINN convergence faster than
DRM for online stream input which also matches
our theory and the empirical observation in [78].
The Sobolev Implicit Acceleration will becomes
more significant for harder problem as our theory
shows.

In this section, we conduct experiments to illus-
trate the Sobolev implicit acceleration for solv-
ing partial differential equation using PINNs
[12, 58] in 3 dimensions. The example is a sim-
ple Poisson equation (static schrödinger equa-
tion) on the torus

�u+ u = f in T d = [0, 1]dper. (7)

We first compare the Physics Informed
Neural Network [12] and Deep Ritz Method
[14, 2] with online random inputs. To enforce
the periodic boundary conditions, we add a
penalty term Lb =

R
(x,y)2[0,1]2(u(x, y, 0) �

u(x, y, 1))2 + (u(0, x, y) � u(1, x, y))2 +
(u(x, 0, y)�u(x, 1, y))2dxdy to match the peri-
odic condition of the function value and another
term Lb,grad =

R
(x,y)2[0,1]2(ru(x, y, 0) �

ru(x, y, 1))2+(ru(0, x, y)�ru(1, x, y))2+
(ru(x, 0, y)�ru(x, 1, y))2dxdy to match the periodic condition of the function value. We tested
PINN and Deep Ritz on both u(x) =

P
d

i=1 sin(2xi) and u(x) =
P

d

i=1 sin(4xi). We use the same
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experiment setting as [78] and keep the learning rate constantly to 1e� 3 to match our theory. 50000
data points are randomly sampled in every batch. The results are shown in Figure 3. PINN converges
faster than DRM consistently in terms of iteration number and the lead seems to become significant
for more oscillatory problems.

To solve equation (7), we consider minimizing the following Sobolev norm objective function

L(u) := �k�u+ u� fk2
L2(⌦) + kr�u+ru�rfk2

L2(⌦).

[11, 58] also considered using Sobolev norms as the loss function. [11] showed that the Sobolev
norms exhibit an acceleration effect. However, in our setting, we cannot have random samples of rf .
To avoid information of rf appearing in the objective function, we perform an integration by parts
that leads to the following objective function

Lgrad =

Z
kr�u(x) +ru(x)�rf(x)k22dx

=

Z
kr�u(x)k22 + kru(x)k22 + krf(x)k22 + 2r�u(x)ru(x)� 2ru(x)rf(x)� 2r�u(x) ·rf(x)dx

=

Z
kr�u(x)k22 + kru(x)k22 + krf(x)k22 + 2r�u(x)ru(x) + 2�u(x)f(x) + 2��u(x) · f(x)dx.

We conduct the Sobolev training with the objective function Lpinn+�Lgrad+�1Lb+�Lb,grad

and compare it with PINN and DRM. Following mostly the experiment setting in [78], we fix 3000
random samples as the dataset and run stochastic gradient descent with batchsize 50. The result
presented in Figure 4 show the Sobolev implicit acceleration, i.e., the gradient dynamic of higher
order Sobolev norm convergence faster. We do not scale the Sobolev training to online setting as
under large batch size the Sobolev training consume too much memory at this point.

(a) Solution by Sobolev Training. (b) Convergence Speed.

Figure 4: Solving equation (7) in 3 dimension with 3000 fixed samples using Deep Ritz Method [14],
Physics-Informed Neural Network [12] and Sobolev Training.

5 Conclusion and Discussion
In this paper, we consider the statistical optimality of gradient descent for solving elliptic inverse
problem using a general class of objective functions. Although we can achieve statistical optimality of
gradient descent using all the objective functions with proper early stopping time, the early stopping
iteration strategy for the optimal solution behaves differently as a function of the sample size. For
instance, we observed that PINN convergences faster than the DRM method. Generally speaking,
by using a higher order Sobolev norm as loss function, one can accelerate training. The reason is
that the differential operator can counteract the kernel integral operator, leading to better condition
number for optimization. We call this phenomena Sobolev implicit acceleration.

Although we have shown the Sobolev implicit acceleration on several simple examples, the �su
term is hard to compute in high dimensions, scalable Sobolev training without gradient supervision
in higher dimension remains as future work. However, we believe that this direction is promising.
For example, we can use MIM method [88, 89] to accelerate the training. It is also interesting to
generalize our results beyond GD, for example to mirror descent [90] and accelerated gradient descent
[91]. In this paper, we did not consider operators with continuous spectrum and it will be interesting
to extend our results using the techniques in [92]. Due to technical issue, we have not considered the
batch stochastic gradient descent. It will be interesting to characterize the condition under which the
stochastic noise in gradient does not degrade the optimal bounds that we obtain. At the same time,
we also want to investigate more complex nonlinear inverse problems as [93, 94] considered. It is
also interesting to consider inverse problem arising from integral equation where p > 0.
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