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Abstract

In the era of deep learning, word embeddings are essential when dealing with text
tasks. However, storing and accessing these embeddings requires a large amount of
space. This is not conducive to the deployment of these models on resource-limited
devices. Combining the powerful compression capability of tensor products, we
propose a word embedding compression method with morphological augmenta-
tion, Morphologically-enhanced Tensorized Embeddings (MorphTE). A word
consists of one or more morphemes, the smallest units that bear meaning or have
a grammatical function. MorphTE represents a word embedding as an entangled
form of its morpheme vectors via the tensor product, which injects prior semantic
and grammatical knowledge into the learning of embeddings. Furthermore, the
dimensionality of the morpheme vector and the number of morphemes are much
smaller than those of words, which greatly reduces the parameters of the word
embeddings. We conduct experiments on tasks such as machine translation and
question answering. Experimental results on four translation datasets of different
languages show that MorphTE can compress word embedding parameters by about
20 times without performance loss and significantly outperforms related embedding
compression methods.

1 Introduction

The word embedding layer is a key component of the neural network models in natural language
processing (NLP). It uses an embedding matrix to map each word into a dense real-valued vector.
However, when the vocabulary size and word embedding size (dimensionality) are large, the word
embedding matrix requires a large number of parameters. For example, the One Billion Word task of
language modeling [8] has a vocabulary size (|V |) of around 800K. Besides, the embedding size
(d) can range from 300 to 1024 [32, 11, 23]. Storing and accessing the |V | × d embedding matrix
requires a large amount of disk and memory space. This limits the deployment of these models on
such devices having limited resources. To resolve this issue, there are many studies compressing
embedding layers [34, 15, 29]. They can be roughly divided into two lines: product quantization-
based and decomposition-based methods. The product quantization-based methods [34, 20, 38]
mainly utilize the compositional coding for constructing the word embeddings with fewer parameters,
and it needs to introduce an additional task to learn the compact code for each word.

The decomposition-based word embedding compression methods are mostly based on low-rank matrix
factorization [18, 9] and tensor decomposition [15, 29]. Utilizing low-rank matrix factorization,
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Figure 1: Morphemes of "unkindly" and "unkind-
ness".

Table 1: Phenomena in word formation.

Phenomenon Example

Inflection cook+s, cook+ed, cook+ing
cold+er, cold+est

Derivation un+like, un+like+ly
im+poss+ible, im+poss+ibly

Compounding police+man, post+man
cuttle+fish, gold+fish

ALBERT [18] replaces the embedding matrix with the product of two small matrices. The tensor
decomposition is widely used for parameter compression [15, 22, 25, 29, 41]. Inspired by quantum
entanglement, Word2ket and Word2ketXS embeddings are proposed [29]. Specifically, Word2ket
represents a word embedding as an entangled tensor of multiple small vectors (tensors) via the tensor
product. The entangled form is essentially consistent with Canonical Polyadic decomposition [16].
Decomposition-based methods approximate the original large word embedding matrix with multiple
small matrices and tensors. However, these small matrices or tensors have no specific meaning and
lack interpretation, and the approximate substitution with them often hurts the model performance in
complicated NLP tasks such as machine translation [15, 29].

In this study, we focus on high-quality compressed word embeddings. To this end, we propose
the Morphologically-enhanced Tensorized Embeddings (MorphTE), which injects morphological
knowledge in tensorized embeddings. Specifically, MorphTE models the embedding for a word as
the entangled form of their morpheme vectors via tensor products. Notably, the quality of word
embeddings can be improved by fine-grained morphemes, which has been verified in literature [4, 5].

The benefits of introducing the morphology of morphemes in MorphTE can be summed up in two
points. (1) A word consists of morphemes which are considered to be the smallest meaning-bearing or
grammatical units of a language [26]. As shown in Figure 1, the root ‘kind’ determines the underlying
meanings of ‘unkindly’ and ‘unkindness’. The affixes ‘un’, ‘ly’, and ‘ness’ grammatically refer
to negations, adverbs, and nouns, respectively. In MorphTE, using these meaningful morphemes
to generate word embeddings explicitly injects prior semantic and grammatical knowledge into the
learning of word embeddings. (2) As shown in Table 1, linguistic phenomena such as inflection and
derivation in word formation make morphologically similar words often semantically related. In
MorphTE, these similar words can be connected by sharing the same morpheme vector.

MorphTE only needs to train and store morpheme vectors, which are smaller in embedding size and
vocabulary size than original word embeddings, leading to fewer parameters. For example, a word
embedding of size 512 can be generated using three morpheme vectors of size 8 via tensor products.
In addition, since morphemes are the basic units of words, the size of the morpheme vocabulary
is smaller than the size of the word vocabulary. To sum up, MorphTE can learn high-quality and
space-efficient word embeddings, combining the prior knowledge of morphology and the compression
ability of tensor products.

We conducted comparative experiments on machine translation, retrieval-based question answering,
and natural language inference tasks. Our proposed MorphTE achieves better model performance on
these tasks compared to related word embedding compression methods. Compared with Word2ket,
MorphTE achieves improvements of 0.7, 0.6, and 0.6 BLEU scores on De-En, En-It, and En-Ru
datasets respectively. In addition, on 4 translation datasets in different languages, our method can
maintain the original performance when compressing the number of parameters of word embeddings
by more than 20 times and reducing the proportion of word embeddings to the total parameters
approximately from 30% to 2%, while other compression methods hurt the performance.

The main contributions of our work can be summarized as follows:

• We propose MorphTE, a novel compression method for word embeddings using the form of
entangled tensors with morphology. The combination of morpheme and tensor product can
compress word embeddings in terms of both vocabulary and embedding size.
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• MorphTE introduces prior semantic knowledge in the learning of word embeddings from a
fine-grained morpheme perspective, and explicitly models the connections between words by
sharing morpheme vectors. These enabled it to learn high-quality compressed embeddings.

• Experiments on multiple languages and tasks show that MorphTE can compress word
embedding parameters over 20 times without hurting the original performance.

2 Related Work

Morphologically-augmented Embeddings. Related works [24, 4, 5, 31, 2, 10] propose to improve
the quality of word embeddings by integrating morphological information. Representing word
embeddings as the sum of morpheme and surface form vectors has been employed in several
studies [5, 31, 2]. Morphological RNNs [5] learns word representations using morphemes as units of
recursive neural networks [35]. Our proposed MorphTE also utilizes the information of morphemes
and is a decomposition-based word embedding compression method, similar to Word2ket [29].

Decomposition-based Compression Embeddings. Decomposition-based methods are either based
on low-rank matrix factorization [18, 9, 1, 21, 19] or tensor decomposition [15, 44, 29, 36]. Based
on low-rank matrix factorization, ALBERT [18] simply approximates the embedding matrix by the
product of two small matrices. GroupReduce [9] and DiscBlock [19] perform a fine-grained matrix
factorization. They first block the word embedding matrix according to the word frequency and then
approximate each block. Notably, the method based on matrix factorization has a low-rank bottleneck,
and its expressive ability is limited under the condition of a high compression ratio [37].

As for the tensor decomposition, TT embeddings [15] uses the Tensor Train decomposition [27] to
approximate the embedding matrix with several 2-order and 3-order tensors. TT-Rec [44] improves
TT embeddings in terms of implementation and initialization to fit the recommended scenario.
Word2ket [29] represents a word embedding as an entangled tensor via multiple small vectors. It
essentially exploits Canonical Polyadic decomposition [16, 17]. Word2ketXs [29] is similar to
Word2ket, but it compresses embeddings from the perspective of all words rather than individual
words. In addition, KroneckerBERT [36] uses Kronecker decomposition to compress the word
embeddings, and the form of Kronecker Embeddings is consistent with Word2ket [29] with an order
of 2. Unlike these compression methods, our MorphTE utilizes meaningful morphemes as basic units
for generating word embeddings, rather than vectors or tensors with no specific meaning.

3 Preliminary

3.1 Tensor Product Space and Entangled Tensors

A tensor product space of two separable Hilbert spaces V and W is also a separable Hilbert space
H, which is denoted as H = V ⊗W . Suppose {ψ1, . . . , ψg} and {ϕ1, . . . , ϕh} are the orthonormal
basis in V and W , respectively. The tensor product of the vector c =

∑g
j=1 cjψj ∈ V and e =∑h

k=1 ekϕk ∈ W is defined as follow:

c⊗ e =

{
g∑

j=1

cjψj

}
⊗

{
h∑

k=1

ekϕk

}
=

g∑
j=1

h∑
k=1

cjekψj ⊗ ϕk (1)

The set {ψj ⊗ ϕk}jk forms the orthonormal basis in H, and the dimensionality of H is the product
(gh) of dimensionalities of V and W . This tensor product operation can be simplified as the product
of the corresponding coefficients as follow:

c⊗ e = [c1, c2, . . . , cg]⊗ [e1, e2, . . . , eh]

= [c1e1, c1e2, . . . , c1eh, . . . , cge1, cge2, . . . , cgeh]
(2)

The cumulative tensor product space of the following form is said to have a tensor order of n, and
the dimensionality of cumulative tensor product space is the cumulative product of its subspace
dimensionalities. See Appendix B for concrete examples of the cumulative tensor product of multiple
vectors.

n⊗
j=1

H = H1 ⊗H2 . . .⊗Hn (3)
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Considering the n-order tensor product space
⊗n

j=1 Hj , vectors of the form v = ⊗n
j=1vj , where

vj ∈ Hj , are called simple tensors. In addition, vectors need to be represented as the sum of multiple
simple tensors are called entangled tensors. Tensor rank of a vector v is the smallest number of
simple tensors that sum up to v.

3.2 Tensorized Embeddings with Tensor Product

⊗

+

v11 v21 v31 v12 v22 v32

v

Word Embedding

⊗

Figure 2: Word2ket embedding with a rank
of r = 2 and an order of n = 3.

Tensor products have been introduced to learn parameter-
efficient word embeddings in KroneckerBERT [36] and
Word2ket[29]. As shown in Figure 2, Word2ket[29] rep-
resents the embedding v ∈ Rd of a word as an entangled
tensor of rank r and order n as follow:

v =

r∑
k=1

n⊗
j=1

vjk (4)

where vjk ∈ Rq and v ∈ Rqn . Word2ket only needs
to store and use these small vectors vjk to generate a
large word embedding. If qn > d, the excess part of the
generated embedding will be cut off. Therefore, setting qn = d can avoid the waste of parameters
caused by clipping, and the number of embedding parameters for a word is reduced from d to rn n

√
d.

For example, when d = 512, q = 8, n = 3, and r = 2, the number of parameters of a word
embedding can be reduced from 512 to 48.

4 Methodology: Morphologically-enhanced Tensorized Embeddings

In this section, we first discuss the rationale for introducing morphology in the embedding com-
pression. Then, we propose MorphTE, a morphologically-enhanced word embedding compression
method based on the tensor product. Finally, we show the detailed workflow of MorphTE.

4.1 Motivation to Introduce Morphology

To achieve compression, existing decomposition-based word embedding compression methods [18,
15] use a series of small vectors or tensors to generate large word embeddings, as shown in Figure 2.
These methods are not only uninterpretable as their small tensors do not have specific meaning [15, 29],
but also lack lexical knowledge. We argue that, in resource-limited scenarios like compression,
knowledge injection is much more critical than in common scenarios. Since with a significant amount
of parameters in common scenarios it could to an easier extent learn implicitly such knowledge in a
data-driven way, which is also one of the objectives for neural networks. However, in compression,
it is more beneficial to inject explicit knowledge to compensate for inferiority in parameter scales,
therefore underscoring the importance of knowledge injection in compression.

From a reductionism point of view, words might not be the smallest unit for some languages; for
example unfeelingly could be separated into four meaningful parts [un, feel, ing, ly], a.k.a.,
morphemes 2. By using a limited number of morphemes, one could possibly exponentially extend
a given core vocabulary by composing morphemes as new words according to the rules of word
formation in Table 1. The adoption of morphemes largely reduces the memory burden and therefore
facilitates the learning of words for humans. We hypothesize that morphology also helps for word
representation in neural networks, especially in resource-limited scenarios like compression.

4.2 Definition of MorphTE

Considering the above analysis, we propose to inject morphological knowledge to achieve high-
quality and space-efficient word embeddings. Suppose a word is segmented as l morphemes
[m1,m2, . . . ,ml] in the natural order. For example, a four-morpheme word unfeelingly is

2This also holds for logogram, written symbols of which represent words instead of sounds. For example,
Chinese language has character components, a.k.a, radicals.
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Figure 3: The workflow of MorphTE. n is the order (number of morphemes for a word). q is the size
of morpheme vectors. |V| and |M| denote the size of word vocabulary and morpheme vocabulary.

segmented as [un, feel, ing, ly]. We refer f1(·), f2(·), · · · fr(·) : N → Rq as r different repre-
sentation functions of morphemes 3, selected from a parametric family F = {f : N → Rq}. The
Morphologically-enhanced Tensorized Embedding (MorphTE in short) of a word is defined as a sum
of cumulative tensor products of morpheme vectors from different representation functions, namely,

v =

r∑
i=1

l⊗
j=1

fi(mj) (5)

Each representation function of morphemes fi could sometimes be considered as a subspace of
morphemes. The number of subspaces (i.e., r) is called the rank, and the number of morphemes
(i.e., n) of a word is called the order, similar to Word2ket. The sum of the outputs from different
subspaces in MorphTE is similar to the multi-head mechanism in Transformer [39].

Reasons to use tensor product. MorphTE utilizes tensor products to aggregate several small vectors
Interestingly, we find that there are some commonalities between tensor product and morpheme
composition. (1) Both tensor product and morpheme composition are non-commutative (e.g., c⊗ e ̸=
e⊗ c and likewise "houseboat" ̸= "boathouse"). (2) Small vectors are the smallest units in Word2ket
and morphemes are also the smallest meaning-bearing units of words. Naturally, these small vectors
in Word2ket can be assigned morpheme identities and shared among different words.

4.3 Workflow of MorphTE

We describe the workflow of MorphTE in Figure 3.

�

un kind
kind ness

un feel ingly

 � 

ly

Figure 4: Segmentation

Morpheme segmentation Suppose there are |V | individual words. We
first segment each word as a sequence of morphemes (a l-morpheme word
could be segmented as a sequence as [m1, . . . ,ml]) using polyglot 4 To
facilitate processing in neural networks, we truncate morpheme sequences
in a fixed length n (e.g., n = 3 or n = 4). (1) For those words that have
less than n morphemes, we pad them with some extra tokens; for example,
we pad a single-morpheme word with n− 1 padding morphemes. (2) For
those words that have more than n morphemes, we concatenate the rest of

3For example, such a function could be morpheme embeddings, each vector of which is a q-sized vector,
which are similar to word embeddings.

4polyglot could be found in https://github.com/aboSamoor/polyglot. Based on morfessor [40],
polyglot provides trained morpheme segmentation models for a variety of languages. Numerous studies [3, 31,
12] also utilize morfessor for morpheme segmentation.
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morphemes as the last one. The processing could be explained as follows:{
[m1,m2, . . . ,ml, padl+1, . . . padn], l < n

[m1,m2, . . . , concat(mn, . . . ,ml)], l > n
(6)

where concat(·) is the operation to concatenate multiple morphemes into one morpheme. For example,
a four-morpheme word unfeelingly, segmented as [un, feel, ing, ly], could be then truncated into
[un, feel, ingly] when n = 3.

After morpheme segmentation, we could get a n-length morpheme sequence for each word; this
results in a matrix I ∈ R|V |×n, each row of which (denoted as Ij ∈ Rn ) is the morpheme sequence
for a word (i.e., wj), see I in Figure 4.

Rank-one MorphTE Assume that there are |M | individual morphemes. We first define a q-
sized trainable morpheme embeddings f ∈ R|M |×q. For a word wj with a morpheme sequence
[Ij,1, Ij,2, · · · , Ij,n], its rank-one MorphTE embedding is a tensor product between these q-sized
embeddings of these morphemes, resulting in a qn-sized vector. Namely, the formula for a rank-one
version of MorphTE is as follows:

Embed(wj) = f(Ij,1)⊗ f(Ij,2)⊗ . . .⊗ f(Ij,n) (7)

If qn is greater than the given dimensionality of word embeddings (i.e., d), the excess part of the
generated word embedding will be discarded.

General MorphTE Here, we propose a general version of MorphTE; the rank-one MorphTE is a
special case of MorphTE when its rank r = 1. We define r copies of morpheme embeddings, namely,
f1, . . . , fr ∈ R|M |×q with Xavier [13]. The general MorphTE could be considered as a sum of r
rank-one MorphTE embeddings, r is called a ‘rank’ of MorphTE. Technically, it is formalized as:

Embed(wj) =

r∑
i=1

fi(Ij,1)⊗ . . .⊗ fi(Ij,n) (8)

4.4 Difference between MorphTE and Word2ket
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Figure 5: The graphical representation and parameters of Word2ket (A), and MorphTE (B). We show
the procedure of how Word2ket and MorphTE generate word embeddings. |V| and |M| denote the size
of word vocabulary and morpheme vocabulary. d indicates the word embedding size and q indicates
the size of the small vector in Word2ket and MorphTE. r is the rank and n is the order.

Although Eq. 5 of MorphTE and Eq. 4 of Word2ket have a similar form, these two methods are
fundamentally different. Compared with Word2ket, the innovations of MorphTE are as follows:

MorphTE is morphologically-enhanced. MorphTE uses morpheme vectors with meaning or gram-
matical functions to generate word embeddings. Compared with vectors without specific meanings in
Word2ket, this way introduces prior morphological knowledge and has better interpretability.

MorphTE captures commonness among words. MorphTE can explicitly add connections of
morphologically similar words by sharing morpheme vectors. As shown in Figure 5, in MorphTE,
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"unkindly" and "unkindness" share the vectors of "un" and "kind", and they are both semantically
related to "unkind". However, Word2ket considers these two words to be completely unrelated.

MorphTE is more parameter-efficient. Suppose MorphTE and Word2ket have the same rank
(r ≥ 1), order (n ≥ 2), and dimensionality (q) of the subspace. (1) As shown in Figure 5, the number
of trainable parameters required by MorphTE and Word2ket are |M |qr and |V |qnr, respectively.
(2) The number of parameters of Word2ket divided by that of MorphTE equals n|V |/|M |. (3) As
smaller units, the number of morphemes (|M |) is usually smaller than the number of words (|V |).
Referring to Table 5, |V |/|M | > 2.5. (4) Hence, MorphTE can save more than 5 times the parameters
compared to Word2ket (n|V |/|M | > 2.5n ≥ 5).

5 Experiments

5.1 Experimental Setup

Baselines. (1) For word embedding compression, we chose Matrix Factor. (low–rank matrix
factorization [18]), Tensor Train [15], Word2ket, and Word2ketXs embeddings [29] for comparison.
(2) For morphological word embeddings, we reproduced the method (called as MorphSum) of
representing a word embedding as the sum of its morpheme and surface form vectors [5, 31, 2]. In
addition, we reproduced the method (called as MorphLSTM) of using the output of the word’s last
morpheme in the LSTM network [14] as the embedding of the word, referring to Morphological
RNNs [5]. Our MorphTE utilizes the same morpheme segmentation as MorphSum and MorphLSTM.
Besides, we call the original word embeddings as Original. Except for the embedding layer, all
models have the same structure.

Tasks, Datasets, and Metrics. We conducted experiments on machine translation, question an-
swering, and natural language inference (NLI) tasks. (1) For machine translation tasks, we chose
IWSLT’14 German-to-English (De-En) dataset [7], English-to-Italian (En-It), English-to-Spanish
(En-Es), and English-to-Russian (En-Ru) datasets of OPUS-100 [45]. The De-En dataset contains
160K sentence pairs and is processed by the BPE [33] of 10K tokens. The En-It, En-Es, and En-Ru
datasets contain 1M sentence pairs and use joint source-target vocabulary processed by the BPE of
40K tokens. The performance is measured by case-sensitive tokenized BLEU[30] for all translation
tasks. (2) For question answering tasks, we chose WikiQA [43], a retrieval-based question answering
dataset. It contains 20.4K training pairs, and mean average precision (MAP), mean reciprocal rank
(MRR) are used for evaluation. (3) For NLI tasks, we chose SNLI [6] which consists of 570k annotated
sentence pairs from an image captioning corpus. Accuracy is used as the evaluation metric.

Implementations. (1) For machine translation tasks, we chose Transformer [39] with the imple-
mentation of Fairseq [28]. For De-En dataset, the Transformer consists of 6-layer encoder and 6-layer
decoder with 512 embedding size, 1024 feed-forward network (FFN) size. It is trained with a batch
size of 4096 tokens on a NVIDIA Tesla V100 GPU. For En-It, En-Es, and En-Ru tasks, the FFN
size is increased to 2048. They are trained with a batch size of 32768 tokens on 2 NVIDIA Tesla
V100 GPUs. (2) For question answering and NLI tasks, we followed the implementation and setup of
RE2 [42]. The word embedding size is set to 512, and we trained them for 30 epochs with the early
stopping. (3) Notices: Unless otherwise specified, the hyperparameter order of MorphTE is 3 in our
experiments. For MorphTE and word embedding compression baselines, they are compared under a
roughly equal number of parameters (compression ratio) by adjusting their hyperparameters of the
rank. For more details on hyperparameters and training settings, refer to Appendix D.

5.2 Main Results

MorphTE outperforms compression baselines. As shown in Table 2, we compared MorphTE and
compression baselines at about 20× and 40× compression ratios on four translation datasets. (1) At
the ratio of 20×, MorphTE can maintain the performance of the original embeddings on all datasets.
Specifically, MorphTE achieves 0.4 and 0.3 BLEU score improvements on the De-En and En-Ru
datasets, respectively. For other datasets, it achieves the same BLEU scores. However, none of the
other compression methods can maintain the performance of the original model on these datasets.
(2) At the ratio of 40×, although almost all compression methods cannot maintain the original
performance, MorphTE still achieves the best results compared to other compression baselines.
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Table 2: Experimental results of different embedding compression methods on translation tasks.
BLEU scores and compression ratios of the embedding layers are reported, with the form of B(C×).
- indicates that the method can not achieve approximately the same compression ratio as other methods.
Refer to Appendix C for the analysis of the parameters of the methods.

Method De-En En-It En-Es En-Ru

Original 34.5 (1.0×) - 32.9 (1.0×) - 39.1 (1.0×) - 31.6 (1.0×) -

Matrix Factor. 32.7 (19×) 22.8 (40×) 31.0 (20×) 23.2 (42×) 38.0 (20×) 29.7 (42×) 28.9 (20×) 17.9 (40×)
Tensor Train 34.3 (20×) 33.4 (43×) 32.4 (21×) 32.1 (43×) 38.7 (21×) 38.5 (43×) 31.2 (21×) 30.9 (41×)
Word2ketXs 34.3 (21×) 33.7 (42×) 32.6 (21×) 31.5 (43×) 38.4 (21×) 38.0 (43×) 31.5 (21×) 31.0 (41×)
Word2ket 34.2 (21×) - 32.3 (21×) - 39.1 (21×) - 31.3 (21×) -
MorphTE 34.9 (21×) 34.1 (43×) 32.9 (21×) 32.1 (45×) 39.1 (21×) 38.7 (43×) 31.9 (21×) 31.5 (41×)

Notably, the performance of the Matrix Factor. degrades significantly when a higher compression is
conducted, and Word2ket cannot achieve more than 40× compression on these datasets.

Table 3: Experimental results on WikiQA of
question answering tasks and SNLI of natural
language inference tasks. The ratio means the
compression ratio of embedding layers.

Method WikiQA SNLI

ratio MAP MRR ratio Accuracy

Original 1× 0.6798 0.6970 1× 0.8492

Matrix Factor. 82× 0.5957 0.6121 38× 0.4166
Tensor Train 80× 0.6251 0.6440 37× 0.8473
Word2ketXs 80× 0.6686 0.6871 38× 0.8450
Word2ket 21× 0.6842 0.7025 21× 0.8487
MorphTE 81× 0.6834 0.7051 38× 0.8497

MorphTE can handle different languages and
tasks well. (1) We validated MorphTE on transla-
tion datasets of De-En, En-It, En-Es, and En-Ru.
MorphTE has been shown to handle different lan-
guages effectively. (2) For translation tasks, the
De-En dataset uses separate source and target dic-
tionaries, while other datasets use a shared source-
target dictionary. MorphTE is shown to work in
both ways. (3) Besides translation tasks, we also
validated MorphTE on question answering (Wik-
iQA) and natural language inference (SNLI) tasks.
The experimental results in Table 3 show that Mor-
phTE still maintains the performance of the original
model and outperforms other compression base-
lines on these different tasks.

Table 4: Experimental results for analyzing the effect of morphology. BLEU scores and compression
ratios of the embedding layers are reported, with the form of B(C×). Morph. indicates whether the
method introduces morphological knowledge. Compr. indicates whether the method supports high
compression. Word2ket+Rshare means the method of random sharing of small vectors in Word2ket.

Method Morph. Compr. De-En En-It En-Es En-Ru
Original ✗ ✗ 34.5 (1.0×) 32.9 (1.0×) 39.1 (1.0×) 31.6 (1.0×)
MorphSum ✓ ✗ 34.9 (0.7×) 33.0 (0.8×) 39.1(0.8×) 31.7 (0.8×)
MorphLSTM ✓ ✗ 34.9 (1.6×) 32.9 (2.8×) 39.7 (2.7×) 32.4 (2.5×)

Word2ket ✗ ✓ 34.2 (21×) 32.3 (21×) 39.1 (21×) 31.3 (21×)
Word2ket+Rshare ✗ ✓ 34.0 (21×) 32.0 (21×) 38.3 (21×) 30.6 (21×)
MorphTE ✓ ✓ 34.9 (21×) 32.9 (21×) 39.1 (21×) 31.9 (21×)

Morpheme-based morphology can enhance word embeddings. To study the impact of morphemes
on MorphTE, we conducted following explorations. (1) As introduced in Section 5.1, MorphSum
and MorphLSTM both introduce morphological knowledge based on morphemes. As shown in
Table 4, although they cannot achieve high compression on word embeddings, they (especially
MorphLSTM) achieve significant improvements compared with original embeddings. This shows
that morphological knowledge based on morphemes is beneficial for word embeddings. (2) MorphTE
assigns the identities of morphemes to the small vectors of Word2ket, and shares these small vectors
based on morphemes. We consider the method (called Word2ket+Rshare) of random sharing of small
vectors in Word2ket rather than morpheme-based sharing. This method can be implemented in such
a way that for each word, randomly assign several row vectors of the trainable matrix of the same
shape as the morpheme embedding matrix. As shown in Table 4, Word2ket+Rshare has lower BLEU
scores than Word2ket on different translation datasets, and it is significantly inferior to MorphTE.
This also verifies that it makes sense to introduce morphemes in MorphTE.
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Table 5: Statistics of translation tasks. |V | and |M | are the size of the word vocabulary and morpheme
vocabulary, respectively. #Struc and #Emb are the number of parameters of the model structure and
that of the embedding layer, respectively. ratio is the compression ratio of the word embedding layer.
P is the proportion of the embedding layer to the total parameters.

Dataset |V | |M | #Stuc Original MorphTE
#Emb P ratio #Emb P ∆ BLEU ratio #Emb P ∆ BLEU

De-En 15480 5757 31.54M 7.93M 20.1% 21× 0.37M 1.2% + 0.4 43× 0.18M 0.6% − 0.4
En-It 41280 10818 44.14M 21.14M 32.4% 21× 0.99M 2.2% + 0.0 45× 0.45M 1.0% − 0.8
En-Es 41336 11377 44.14M 21.16M 32.4% 21× 1.03M 2.3% + 0.0 43× 0.49M 1.1% − 0.4
En-Ru 42000 12423 44.14M 21.50M 32.8% 21× 1.02M 2.3% + 0.3 41× 0.52M 1.2% − 0.1

Table 6: Experimental results for the ablation on the
order of MorphTE on De-En. d / q means the size of
the word embedding or morpheme vector. |V| / |M|
means the size of the word or morpheme vocabulary.
#Emb and ratio are the parameter number and com-
pression ratio of the embedding layer, respectively.

Method order rank d / q |V| / |M| #Emb ratio BLEU

Orginal - - 512 15480 7.93M 1x 34.5

2 2 23 7654 0.38M 20x 34.4

MorphTE 3 7 8 5757 0.37M 21x 34.9

4 11 6 5257 0.41M 19x 34.4
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Figure 6: Accuracy on SNLI and parameter num-
bers of embeddings changes w.r.t. the rank.

Marginal utility of higher compression ratios (e.g., > 40). We report the statistics of translation
tasks in Table 5. The experimental results of this table are consistent with those in Table 2. (1) At
about 20× compression, MorphTE can maintain the performance of the original word embeddings.
The number of embedding parameters is approximately reduced from 20M to 1M, and its proportion
of total parameters is reduced from 20.1%-31.8% to 1.2%-2.3%. (2) At about 40× compression,
although MorphTE outperforms other compression methods referring to Table 2, MorphTE’s BLEU
scores are significantly lower than the original model. Although the compression ratio is increased
from 20× to 40×, the parameters of embeddings are only approximately reduced from 1M to 0.5M,
and the proportion of embedding parameters to the total parameters is only reduced from 1.2%-2.3%
to 0.6%-1.2%. Considering the loss of model performance, the slight reduction in the number of
parameters resulting from higher compression ratios does not make much sense.

5.3 Ablation Study

Sensitivity on the order. (1) In previous experiments, we set the order of MorphTE to 3. In this
section, we perform the statistical analysis and ablation experiments on the De-En dataset. Morpheme
statistics show that more than 90% of the words have no more than three morphemes, referring to
Appendix E. (2) We set the order of MorphTE to 2, 3, and 4, that is, limiting the maximum number
of morphemes to 2, 3, and 4, respectively. The word embedding size was set to 512. We adjusted
the rank of MorphTE so that the models corresponding to these three cases have a similar number
of parameters. From Table 6, setting the order of MorphTE to 3 achieves the best results when
compressing the word embedding parameters by about 20 times.

Sensitivity on the rank. We show the effect of rank on the number of parameters and performance
of MorphTE in Figure 6. The rank of MorphTE is set from 1 to 32. As can be seen, as the rank
increases, the number of embedding parameters increases linearly, and the Accuracy first increases
and then gradually stabilizes. This means that with the increase of embedding parameters, the model
performance will gradually improve, but after the parameter amount exceeds a certain threshold,
it will not drive the performance improvement. Therefore, the degree of compression and model
performance can be balanced by adjusting the rank of MorphTE.

Sensitivity on the Embedding Size. To verify that MorphTE can stably achieve compression under
different word embedding dimensionalities, We conducted experiments with the dimensionalities
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Table 7: Experimental results for the ablation on the embedding size on IWSLT’14 De-En. d/q
means the size of the word embedding or morpheme vector. |V |/|M | means the size of the word or
morpheme vocabulary. n and r are the order and rank of MorphTE. #Emb and #Stuc are the parameter
numbers of the embedding layer and the model structure, respectively. ratio is the compression ratio
of word embedding layers.

Method d/q n r |V |/|M | #Emb ratio #Stuc BLEU
Original 216 3 - 15480 3.34M 1× 8.71M 34.1
MorphTE 6 3 8 5757 0.32M 10× 8.71M 34.2
Original 512 3 - 15480 7.93M 1× 31.54M 34.5
MorphTE 8 3 8 5757 0.41M 19× 31.54M 34.9
Original 1000 3 - 15480 15.48M 1× 96.72M 32.8
MorphTE 10 3 8 5757 0.51M 30× 96.72M 33.4

of 216, 512, and 1000. As can be seen in Table 7, when order n = 3 and the word embedding size
/ hidden size (d) is set to 216, 512, and 1000, the dimensionality of the morpheme vector (q) is set
to 6, 8, and 10, respectively. In addition, the rank is set to 8 for these three cases. It can be seen
that as the dimensionality of a word embedding increases significantly, the dimensionality of the
morpheme vector does not increase significantly. This means that the larger the word embedding
size, the more the compression potential of our method can be released. Specifically, when the word
embedding dimensionality is 216, our method can compress the word embedding parameters by a
factor of 10 with comparable model performance. When the word embedding dimensionality is set to
512, our method is able to compress the word embedding parameters by a factor of 19, with a 0.4
BLEU score higher than the uncompressed model. When the word embedding dimensionality is set
to 1000, our method outperforms the original model by a 0.6 BLEU score when compressing the
word embedding parameters by a factor of 30. In conclusion, our method has stable compression
ability and can maintain or slightly improve the model performance under different word embedding
sizes.

Similar to other compression methods, our method introduces some computational overhead when
generating word embeddings. However, this limitation is light according to the experimental analysis
in Appendix G.

6 Conclusion

We propose MorphTE which combines the prior knowledge of morphology and the compression
ability of tensor products to learn high-quality and space-efficient word embeddings. We validated
our method on tasks such as machine translation, text summarization, and retrieval-based question
answering. Experimental results show that MorphTE can handle different languages and tasks
well. It outperforms related decomposition-based word embedding compression methods such as
Word2ket [29] and TT embeddings [15], and can achieve dozens of times compression of word
embedding parameters without hurting the performance of the original model.
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