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Abstract

We consider a structured multi-label prediction problem where the labels are orga-
nized under implication and mutual exclusion constraints. A major concern is to
produce predictions that are logically consistent with these constraints. To do so, we
formulate this problem as an embedding inference problem where the constraints
are imposed onto the embeddings of labels by geometric construction. Particu-
larly, we consider a hyperbolic Poincaré ball model in which we encode labels as
Poincaré hyperplanes that work as linear decision boundaries. The hyperplanes are
interpreted as convex regions such that the logical relationships (implication and
exclusion) are geometrically encoded using insideness and disjointedness of these
regions, respectively. We show theoretical groundings of the method for preserving
logical relationships in the embedding space. Extensive experiments on 12 datasets
show 1) significant improvements in mean average precision; 2) lower number of
constraint violations; 3) an order of magnitude fewer dimensions than baselines.

1 Introduction

Structured multi-label prediction is a task aiming to associate every object with multiple labels that are
semantically constrained in a structured manner (e.g., by implication and exclusion constraints). This
task is of growing importance in many applications such as image annotation [1, 2], text categorization
[3, 4] and functional genomics [5, 6]. One of the central concerns of the task is to produce predictions
that are logically consistent with the constraints of the labels. For example, a protein must be labeled
to have the function nucleic acid binding if it is already labeled to have the function RNA binding

(i.e., implication) and must not have the function drug binding (i.e., mutual exclusion).

Various works have been proposed to improve the prediction consistency [7, 8, 9, 10, 11]. One line
of work called label embedding aims to represent labels as low-dimensional vectors [12, 13]. A key
disadvantage of the vector-based representations is that they only capture weak forms of correlation
or “similarity’ between labels, but do not strongly enforce the logical relationships. Another line
of work [7, 9, 14, 8] imposes these logical constraints directly to the losses of neural networks.
However, they do not explicitly learn the representations of labels and typically require a complete
label taxonomy, which is not always available in and scalable to real-world settings [11].
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Figure 1: (a) A HEX graph describing the logical relationships (implication and exclusion) between different
labels; (b) The learned label embeddings (linear decision boundaries) in the Poincaré ball, where all constraints
in the HEX graph are respected; (c) The prediction scores of a given instance of mother respect all constraints in
the HEX graph, where each score is calculated as the confidence of the instance embedding being a member of
the convex region of the corresponding label embedding.

Embedding-based inference [15], which imposes logical constraints directly to the label embeddings,
is able to inductively infer the underlying label relationships from incomplete labelings [16]. Once all
embeddings are adhering to the constraints, each label can be predicted independently without access-
ing the label relationships, which significantly reduces the computation cost during inference [15].
The key idea, which is inspired by the Venn diagram [16, 17] or set-theoretic semantics [18], is to
represent each label as a convex region [15]. A prominent example is the multi-label box model
(MBM) [11] that models label implications as box containments. However, MBM learns box-like
decision boundaries, which are typically not compatible with standard classifiers (i.e., hyperplane
margin-based models such as logistic regression [19]). Besides, box models suffer from a theoretical
limitation, i.e., lower-way intersections enforce higher-way interactions [20]. Finally, current methods
ignore the importance of constraining mutual exclusion, which is essential as otherwise, a model
could trivially obtain zero implication violation by assigning the same score to all labels.

In this paper, we consider a structured multi-label prediction problem with implication and mutual

exclusion constraints that are jointly described by a hierarchy and exclusion (HEX) graph (see
Figure 1(a) for an example). The key idea of our method is to transform the logical constraints into
soft geometric constraints in the embedding space. In particular, we consider a hyperbolic Poincaré
ball model that has demonstrated advantages in representing hierarchical data [21, 22] and assign
each label a Poincaré hyperplane that has several favorable theoretical properties in classification.
Each Poincaré hyperplane can be interpreted as a convex region such that the implication and mutual

exclusion are modeled by geometric insideness and disjointness between the corresponding regions,
respectively. In this way, a multi-label classifier can be defined by measuring the confidence of an
instance having a label as geometric membership. Unlike other hyperbolic region-based models such
as hyperbolic cones [23] and hyperbolic disks [24], Poincaré hyperplane works as a linear decision
boundary and can be seamlessly integrated into existing margin-based classifiers such as hyperbolic
logistic regression [19]. Figure 1(b) shows an example of the learned label representations that respect
all the constraints given in Figure 1(a). We show theoretical groundings of the proposed method on
modeling implication and mutual exclusion. Extensive experiments on 12 multi-label classification
tasks show the model’s capability to improve the mean average precision significantly while keeping
the number of constraint violations low and requiring an order of magnitude fewer dimensions.

2 Preliminaries

Poincaré ball model The Poincaré ball
�
Dn

, g
D� is one of the models of hyperbolic geometry

that is very suitable for representing hierarchies due to its exponentially growing volume [25]. The
Poincaré ball is defined as an open n-ball Dn

= {x 2 Rn
: kxk < 1} equipped with a Riemannian

metric gDx = �
2
xg

E , where �x =
2

1�kxk2 , gE = In is the Euclidean metric tensor, �x is the conformal

factor, and k ·k2 denotes the L2 norm in Euclidean space. The distance between two points x,y 2 Dn

can be defined by dD(x,y) = cosh
�1
⇣
1 + 2

kx�yk2

(1�kxk2)(1�kyk2)

⌘
.
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Structured multi-label prediction Let X ✓ Rn denote an n-dimensional instance space and L =

{l1, l2, . . . }, |L| � 2 denote the finite set of possible labels. Given a set of N training examples D =

{(xi, Li) | 1  i  N, xi 2 X , Li ⇢ L}, multi-label prediction aims to learn a labeling function
f : X ! 2

L mapping from the instance space to the powerset of the label space, f(x) ⇢ L.

Structured multi-label prediction additionally imposes a set of prior-known logical constraints over
the labels, namely, the predictions must be logically consistent with these constraints. Analogous
to Mirzazadeh et al. [15], we consider two forms of logical constraints between labels: implication
and mutual exclusion. Specifically, an implication of the form la ) lb imposes the constraint that
whenever an instance is labeled as la then it must also be labeled as lb, i.e., la ) lb is a shorthand
notation for 8x 2 X , la 2 f(x) ) lb 2 f(x). Mutual exclusions are constraints of the form
¬la _ ¬lb, implying that an instance cannot be simultaneously labeled as la and lb, i.e., ¬la _ ¬lb
is a shorthand notation for 8x 2 X , la /2 f(x) _ lb /2 f(x). We can concisely represent a set of
implication and exclusion constraints with a hierarchy and exclusion (HEX) graph [2].
Definition 1 (HEX graph [2]2). A HEX graph G = (V,Eh, Ee) is a graph consisting of a set of

nodes V = {v1, . . . , vn}, directed (hierarchy) edges Eh ✓ V ⇥ V , and undirected (exclusion) edges

Ee ✓ V ⇥ V , such that the subgraph Gh = (V,Eh) is a DAG and the subgraph Ge = (V,Ee) has

no self loop. Each node vi 2 V represents the label li. A directed edge (vi, vj) 2 Eh represents the

implication li ) lj , and an undirected edge (vi, vj) 2 Ee represents the exclusion ¬li _ ¬lj .

Note that an arbitrary HEX graph may contain redundant edges. A hierarchy edge (vi, vj) is redundant
when there is a path in Gh from vi to vj which does not contain the edge (vi, vj). Similarly, an
exclusion edge (vi, vj) is redundant when there is another exclusion edge connecting their ancestors
(or connecting one node’s ancestor to the other node). We can transform a HEX graph into an
equivalent HEX graph by adding or removing redundant edges. In this paper, we only consider HEX
graphs that have a minimal number of edges, we call such HEX graph a minimal sparse HEX graph
(see Fig. 1(a) for an example). Given a minimal sparse HEX graph, we define the HEX-property as
Definition 2 (HEX-property). A labeling function f has the HEX property with respect to a HEX

graph G if for all x 2 X , f(x) respects all constraints represented by G.

We also call such function f logically consistent w.r.t G. Given the HEX graph and the HEX-property,
structured multi-label prediction is formally defined as a constrained optimization problem.
Definition 3 (Structured multi-label prediction). The structured multi-label prediction task with

respect to a training set D = {(xi, Li) | 1  i  N, xi 2 X , Li ⇢ L}, minimal HEX graph G =

(V,Eh, Ee), and multi-label prediction function f , is the task of learning f such that the function f

minimizes
P

(xi,Li)2D loss(f(xi), Li), with loss a predefined function, while attempting to maintain

the HEX-property with respect to G.

Note that this definition allows for a soft interpretation of the constraints, meaning that the goal is
to adhere to all of them, but we do allow for loosening some if necessary. For example, a mutual
exclusion constraint is allowed to loosen when an instance (e.g., image), though rarely happens, is
simultaneously labeled as two mutual exclusive labels (e.g., dog and cat).

3 Hyperbolic embedding inference

We consider learning a real-valued ranking function h : X ⇥ L 7! [0, 1], where the output is
interpreted as the confidence of an instance x 2 X having a label l 2 L. Afterward, a binary
multi-label classifier f : X ! 2

L can be simply obtained by thresholding the ranking function with a
threshold t, i.e., f(x) = {l | h (x, l) � t, 8l 2 L}. The objective of h is to assign higher scores to
positive instance-label pairs than that of negative instance-label pairs.

3.1 Geometric construction

Given an n-dimensional Poincaré ball Dn, we associate each instance xi 2 X with a point in the
Poincaré ball and associate each label li 2 L with a Poincaré hyperplane, such that its corresponding
positive and negative instances are correctly separated by the hyperplane.

2Deng et al. [2] use subsumption, which is the inverse relation of implication that we use here.
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Poincaré hyperplanes Let Bn denote the set of n-balls in Rn whose boundaries @Bn intersect the
Poincaré ball Dn perpendicularly. Poincaré hyperplanes are defined by @Bn \Dn (see Fig. 2(a)) plus
all linear subspaces going through the origin. For the former cases, a Poincaré hyperplane can be
uniquely defined by its center point that has a minimal distance to the origin.
Definition 4. Given a (center) point c 2 Dn

where c 6= 0, the Poincaré hyperplane is defined as

Hc =
�
p 2 Dn

: g
D
(logc (p) ,~c) = 0

 
(1)

where c is the center point and ~c 2 TcDn 3
is the normal vector passing through the origin 0.

Intuitively, this corresponds to the union of all geodesics passing through c while orthogonal to the
normal vector ~c 2 TcDn. In the case where c is the center of the hyperplane, ~c must simultaneously
pass through c and the origin. Hence, ~c can be simply taken as c without loss of generality. For
the special case where c = 0, the Poincaré hyperplanes are all linear subspaces (Euclidean planes)
passing through the origin. In this paper, we exclude these special cases by assuming c 6= 0.

Geometric intuition Essentially, the Poincaré hyperplane works as a linear decision boundary
that separates the embedding space into two regions,4 where the smaller region (i.e., convex hull) is
interpreted as the space of positive samples while the other one is interpreted as the space of negative
samples. Two reasons motivate us to model labels as Poincaré hyperplanes: 1) Modeling labels as
hyperplanes has several desired theoretical advantages in margin-based classifiers. Our model shares
the same philosophy as existing learning frameworks such as hyperbolic logistic regression [19] and
hyperbolic SVM [26]; 2) More importantly, unlike Euclidean space that is flat, hyperbolic Poincaré
ball is a curved space in which there are infinitely many non-parallel hyperplanes which do not
intersect, implying that linear decision boundaries in hyperbolic space can capture more complicated
set-theoretic interactions, such as implication and mutual exclusion.

Enclosing balls Given a Poincaré hyperplane Hc, we call the corresponding n-ball Bn
c that en-

closes Hc its enclosing n-ball. Formally, an enclosing n-ball Bn
(o, r) is defined by Bn

(o, r) =
{p : kp� ok  r}, where o 2 Rn and r are the center point and the radius, respectively. Given Hc,
we have the following closed-form representation of Bn

c .
Proposition 1. Given a Poincaré hyperplane Hc where c 6= 0, there exists an n-ball Bn

c (oc, rc)

such that Hc ⇢ Bn
c (oc, rc), i.e., Hc is a subset of Bn

c (oc, rc). Bn
c is uniquely given by

Bn
c = Bn

 �
1 + kck2

�

2kck c,
1� kck2

2kck

!
(2)

Proof sketch. The key idea is to solve a quadratic equation given by the fact that the radius of Bn
c , the

radius of Dn, and the distance from the center of Dn to the center of Bn
c must satisfy the Pythagorean

theorem [27]. Full proof is in the supplementary material.

3.2 Geometric interpretation

Our main idea is to transform the logical relationships between labels into geometric relationships
between their corresponding enclosing n-balls. In particular, the implication is modeled by the
geometric insideness while the mutual exclusion is modeled by the geometric disjointness.

Implication The logical implication between two labels is interpreted as geometric relations
between n-balls, i.e., n-ball insideness illustrated in Fig. 2(b). In particular, an n-ball Bw (ow, rw)

contains Bu (ou, ru) if and only if kou � owk+ ru < rw, and thus we can create an insideness loss
defined by

Linside(Bu,Bw) = max{0, kou � owk+ ru � rw}. (3)
Clearly, the insideness loss term satisfies the properties of correctness and transitivity
Lemma 1 (Correctness). Bu is inside of Bw if and only if Linside(Bu,Bw) = 0.

Lemma 2 (Transitivity). If Linside(Bu,Bw) = 0 and Linside(Bw,Bv) = 0, we have Linside(Bu,Bv) 
Linside(Bu,Bw) + Linside(Bw,Bv)  Linside(Bw,Bv) = 0.

3In this paper, we distinguish normal vectors from regular points by adding an arrow on top of its letters.
4Note that by using the metric in the Poincaré ball, each region has infinite (exponentially growing) volume.
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Figure 2: (a) A Poincaré hyperplane is defined as the intersection between the Poincaré ball D and the boundary
of an n-ball Bc. The Poincaré hyperplane is uniquely parameterized by a center point c, and the corresponding
n-ball (its radius and center) can be uniquely determined by Proposition 1. (b) Label implication is interpreted
as n-ball insideness. (c) Mutual exclusion is interpreted as n-ball disjointedness.

Mutual exclusion Similarly, we interpret mutual exclusion as geometric disconnectedness between
n-balls illustrated in Fig. 2(c). Bu disconnecting from Bw can be measured by subtracting the
distance between their center points from the sum of their radii. Inversely, the corresponding loss is

Ldisjoint(Bu,Bw) = max{0, rw + ru � kou � owk} (4)

Again, the disjointedness loss term satisfies the correctness property
Lemma 3 (Correctness). Bu disconnects from Bw if and only if Ldisjoint(Bu,Bw) = 0.

3.3 Classification and learning

Given the embeddings of instances and labels, an instance can be classified by measuring the
geometric membership, i.e., the confidence of a point p 2 Dn being inside the enclosing ball B.

Membership and non-membership Formally, given an instance embedding p 2 Dn and a label
embedding associated with an enclosing n-ball Bc. The confidence of an instance p being inside the
enclosing n-ball Bc can be measured by subtracting the distance between the center point of Bc and
p from the radius of Bc. The corresponding loss is defined as the inverse of the measure, given by

Lmembership (p,Bc (oc, rc)) = max{0, koc � pk � rc}. (5)

Symmetrically, for negative instance-label relations, the loss of non-membership can be defined as

Lnon-membership (p,Bc (oc, rc)) = max{0, rc � koc � pk}. (6)

Clearly, we have the following properties that follow directly from the definitions.
Lemma 4. A point p is a member of Bc if and only if Lmembership (p,Bc) = 0.

Lemma 5. A point p is not a member of Bc if and only if Lnon-membership (p,Bc) = 0.

Lemma 1-2, Lemma 3, Lemma 4-5 immediately follow the definitions of geometric insideness,
disjointedness, and membership, respectively.

We aim to learn an encoder E✓ (i.e., a hyperbolic neural network whose designs depend on the
datasets), where ✓ is the trainable parameter, and a function C which maps labels to the center points
of the corresponding Poincaré hyperplanes in the Poincaré ball.

Now, we define h(x, l) = � (Lnon-membership (E✓(x), C(l))� Lmembership (E✓(x), C(l))), as our rank-
ing function, where � is the sigmoid function. The final classification function is then defined by
f(x) = {l | h (x, l) � 0.5}. We call our classifier hyperbolic multi-label embedding inference (HMI).
Given a HEX graph, HMI has the following guarantee.
Proposition 2 (HEX-property). The classification function f of HMI has the HEX property with

respect to G if for every constraint in G, the corresponding loss term is 0.

Learning with soft constraints Let D+
= {(xi, ln)|(xi, Li) 2 D, ln 2 Li} be the set of positive

instance-label pairs and D-
= {(xi, ln)|(xi, Li) 2 D, ln 2 L, ln /2 Li} be the set of negative

instance-label pairs. By combining the loss functions of membership, non-membership, insideness
and disjointedness, the learning objective can be formulated as
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min
✓,C

X

(xi,ln)2D+

Lmembership
�
E✓ (xi) ,BC(ln)

�
+

X

(xi,ln)2D�

Lnon-membership
�
E✓ (xi) ,BC(ln)

�

+ �

0

@
X

(vi,vj)2Eh

Linside

�
BC(li),BC(lj)

�
+

X

(vi,vj)2Ee

Ldisjoint

�
BC(li),BC(lj)

�
1

A (7)

The first two terms are losses for positive and negative samples while the last two terms are
implication and exclusion constraints, respectively, with � being the penalty weight of the constraints.

The following corollary shows that our model has a strong inductive bias for preserving consistency.
Corollary 1. Given a HEX graph G of labels, if the loss terms Linside and Ldisjoint are 0, then the

learned prediction function is logically consistent.

Classification via hyperbolic logistic regression A key advantage of our method is that the losses
of constraints are compatible with other (margin-based) hyperbolic classifiers such as hyperbolic
logistic regression (HLR) [19] and hyperbolic support vector machine (HSVM) [26]. In our experi-
ment we explore HLR, which formulates the logits as the distances from an instance to a Poincaré
hyperplane of a label. That is, h(x, l) = d (E✓ (x) , HC (l)). d(p, Hc) has the following closed form:

d(p, Hc) = sinh
�1

✓
2|h(�c)� p, ci|

(1� k(�c)� pk2) kck

◆
(8)

where � is the Möbius addition [19]. The classifier is defined by f(x) = {l|� (h (x, l)) � 0.5, 8l 2
L} where � is the sigmoid function. We dub such classifier combined with HMI as HMI+HLR.

4 Evaluation

4.1 Experiment setup

Datasets We consider 12 datasets that have been used for evaluating multi-label prediction meth-
ods [11, 8, 10]. These consist of 8 functional genomic datasets [28], 3 image annotation datasets
[29, 30], and 1 text classification dataset [31]. All input features are pre-processed in the same way as
described by Patel et al. [11]. For all datasets, the implication constraints (label taxonomy) are given.
Following Mirzazadeh et al. [15] we add exclusion constraints between sibling nodes whenever this
does not create a contradiction (i.e., they share no common descendant nodes). We also explore other
strategies for deriving exclusions, but no significant difference was observed (see the supplement
for an analysis). Similar to MBM [11] and its baselines, we sample 30% of the implications and
exclusions constraints for training the model.

Hyperbolic encoder We adopt a simple hyperbolic linear layer as the instance encoder for
all datasets. A single-layer hyperbolic fully-forward linear layer is defined by f✓={W,b}(x) =

tanh
⌦
(W ⌦ x� b), with ⌦ being Möbius matrix-vector multiplication defined by M ⌦ x =

tanh

⇣
kMxk
kxk tanh

�1
(kxk)

⌘
Mx

kMxk , where W 2 Rn⇥d is a trainable matrix and x is a point x 2

Dn
,Mx 6= 0. � denotes Möbius addition given by x� y =

(1+2hx,yi+kyk2
)x+(1�kxk2

)y

1+2hx,yi+kxk2kyk2 . tanh⌦

denotes an Möbius version of pointwise non-linearity given by tanh
⌦
(x) = exp0 (tanh (log0(x))),

with exp0 and log0 being the exponential and logarithmic maps, see [19] for more details.

Baselines We compare our approach with both classical vector-based and state-of-the-art region-
based embedding methods. In particular, we consider two vector-based models: 1) The multi-label
vector model (MVM) [32], which encodes both inputs and labels as Euclidean vectors; 2) the multi-
label hyperbolic model (MHM) used by Chen et al. [13], which represents inputs and labels as
hyperbolic points; and two box models: 3) the non-probabilistic box model (BoxE) [33] and 4) the
probabilistic multi-label box model (MBM) [11] that encodes both instances and labels as axis-parallel
hyper-rectangles. Besides, we compare with 5) hyperbolic logistic regression (HLR) [19] since it also
encodes labels as Poincaré hyperplanes (but does not use geometric constraints). Furthermore, we
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Table 1: Comparison of performance and consistency on 12 datasets, where underline indicates the best results
over embedding-based methods, and boldface indicates the best results over all methods. We implemented HMI,
HLR and HMI+HLR. Other results are taken from Patel et al. [11]. All metrics are averaged across 10 runs with
random seeds (standard deviations are relatively small (in range [2⇥ 10�4, 2.3⇥ 10�3]) and are hence omitted).

Dataset Metric Ours Embeddings Non-embedding
HMI HMI+HLR MVM MHM BoxE MBM HLR C-HMCNN

ExprFUN
mAP " 38.53 38.50 37.94 31.90 37.30 38.42 37.98 38.41

CmAP " 38.72 38.62 37.41 32.02 37.92 38.67 37.44 38.41
HCV # 0.92 1.07 1.97 1.92 4.79 1.87 2.17 0

CellcycleFUN
mAP " 34.82 34.84 31.61 28.74 31.96 34.61 34.05 34.35

CmAP " 34.90 35.00 31.33 28.89 32.70 34.78 34.11 34.35
HCV # 1.30 1.32 3.45 1.78 4.02 1.35 2.30 0

DerisiFUN
mAP " 36.71 36.71 24.16 24.40 26.66 28.71 26.65 28.19

CmAP " 36.94 36.89 24.35 24.52 26.96 28.88 26.83 28.19
HCV # 0.73 0.87 4.01 0.85 2.27 1.43 2.30 0

SpoFUN
mAP " 36.47 36.44 24.21 26.57 27.97 29.62 28.29 29.18

CmAP " 36.43 36.54 24.55 26.79 28.38 29.78 28.31 29.18
HCV # 0.92 1.05 4.73 1.69 2.75 1.53 1.98 0

ExprGO
mAP " 48.63 48.50 44.97 40.52 46.75 48.45 48.65 48.61

CmAP " 48.68 48.61 41.84 40.70 47.28 48.56 48.65 48.61
HCV # 1.37 1.45 7.05 5.19 5.74 1.91 1.35 0

CellcycleGO
mAP " 45.58 45.51 44.19 39.74 43.08 44.93 40.28 45.61

CmAP " 45.58 45.53 41.02 39.76 43.79 45.01 40.30 45.61

HCV # 1.19 1.12 3.03 2.49 5.06 2.16 3.26 0

DerisiGO
mAP " 42.31 42.12 41.13 40.10 40.44 42.02 40.33 42.24

CmAP " 42.38 42.28 38.21 40.20 40.73 42.12 40.35 42.24
HCV # 0.86 0.99 3.46 2.02 3.16 1.13 2.31 0

SpoGO
mAP " 42.70 42.74 42.20 39.70 40.88 41.74 39.22 42.77

CmAP " 42.76 42.77 39.04 39.77 41.27 41.54 39.26 42.77

HCV # 0.95 1.20 2.77 1.90 3.89 1.80 2.33 0

Enron
mAP " 80.43 80.43 73.68 75.62 80.44 80.06 78.87 80.04

CmAP " 80.50 80.47 66.87 75.68 80.46 80.05 78.94 80.04
HCV # 0 0 2.53 0.36 0.20 0.03 0.04 0

Diatoms
mAP " 79.19 79.10 72.65 56.86 43.71 79.14 77.90 76.23

CmAP " 79.40 79.36 72.18 56.07 45.16 79.23 78.07 76.23
HCV # 0.17 0.18 19.20 5.55 6.39 0.34 6.36 0

Imclef07a
mAP " 90.67 89.60 78.22 65.30 83.71 69.26 88.33 90.26

CmAP " 90.89 89.71 77.46 66.01 84.73 69.48 88.45 90.26
HCV # 0.20 0.19 22.86 4.75 12.73 2.40 1.77 0

Imclef07d
mAP " 89.19 89.20 88.59 75.69 87.95 89.56 88.91 89.22

CmAP " 90.00 90.02 86.87 76.95 88.93 90.07 87.38 89.22
HCV # 0.37 0.36 11.02 7.56 11.93 5.66 6.88 0

Avg. Rank #
mAP 1.75 2.42 6.33 7.58 5.75 3.5 5.25 3.08

CmAP 1.58 2.08 7.16 7.41 5.25 3.58 5.41 3.33
HCV 2.25 2.75 7.42 5.25 7.25 4.25 5.58 1.00

compare with 6) C-HMCNN, a state-of-the-art non-embedding based method that injects hierarchy
constraints directly into the loss function without embedding labels. A notable difference is that
C-HMCNN needs the full hierarchy constraints as its input. Finally, we also implement HMI+HLR,
a combination of our proposed constraints with HLR for an ablation study.

Implementation details We implement HMI, HLR and HMC-HLR using PyTorch [34] and train
the models on NVIDIA A100 with 40GB memory. We train HMI, HLR and HMI+HLR using
Riemannian Adam [35] optimizer implemented by the Geoopt library [36] with a batch size of 4.
We also explore some larger batch sizes but it does not yield better results, which is also observed
in Wehrmann et al.[14]. We set the dropout rate to 0.6 suggested by [14] to avoid the case that the
model overfits the small training sets. We employ an early-stopping strategy with patience 20 to save
training time. The results of other baselines are as reported by Patel et al.[11] that we closely follow.
The learning rate is searched from {1e� 4, 5e� 4, 1e� 3, 5e� 3, 1e� 2}. The penalty weight of the
violation is searched from {1e� 5, 5e� 4, 1e� 4, 5e� 3, 1e� 2} and we also show its impact in an
ablation. The best dimension per dataset is searched from {32, 64, 128, 256}, which is one order of
magnitude lower than that used by Patel et al. [11] ({250, 500, 1000, 1750}). All methods have been
run 10 times with random seeds and the average results are reported. We omit the standard deviations
since they are in a very small range ([2⇥ 10

�4
, 2.3⇥ 10

�3
]). Our code is open available at 5.

5https://github.com/xiongbo010/HMI
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(a) mAP (b) CmAP (c) HCV

Figure 3: Critical diagrams of the post-hoc Nemenyi test across all 12 datasets.

Evaluation protocols In line with Patel et al. [11], we consider Mean Average Precision (mAP),6
which summarizes the information of precisions and recalls with varied thresholds. We also report
two metrics that additionally take the constraints into account: 1) Constrained mAP (CmAP) is a
variant of mAP that replaces the score of each label with the maximum scores of its descendant labels
in the hierarchy [11]. 2) Hierarchy Constraint Violation (HCV) [11] measures the extent to which
the label scores violate the implication constraints regardless of true labels for the instances. HCV

is computed as HCV =
1

|D||Eh|
P|D|

k=1

P
(li,lj)2Eh

�
h
k
i � h

k
j > 0

�
, where hi means the prediction

score of label li. Clearly, a lower value of HCV implies higher consistency in the predictions.

4.2 Main results

As Table 1 shows, our method HMI either achieves the best (7-8/12 datasets) or competitive (4-5/12
datasets) performance (mAP and CmAP) over all compared methods. HMI outperforms all methods
w.r.t the average ranking of mAP/CmAP, showcasing the advantages of HMI. We observed that the
CmAP is close to mAP, indicating that the model is adhering to the label constraints [11]. In terms of
predictive consistency (HCV), HMI consistently achieves the best or the second-best results. Note
that C-HMCNN always gets zero HCV because it exploits the complete hierarchy. HMI achieves
competitive HCV, despite only using 30% of the hierarchy.

Table 2: Results of Wilcoxon test over HMI against baselines.

Method mAP CmAP CV
HMI vs C-HMCNN 5.8⇥ 10

�4
4.4⇥ 10

�4
5.0⇥ 10

�3

HMI vs MBM 3.3⇥ 10
�4

2.4⇥ 10
�4

4.9⇥ 10
�4

HMI vs HMI+HLR 2.3⇥ 10
�2

3.8⇥ 10
�2

9.7⇥ 10
�1

Statistical significance Follow-
ing Patel et al. [11] and Giunchiglia
and Lukasiewicz [8], we test the
statistical significance of the perfor-
mance across all datasets. First, we
perform the Friedman test [37] and
show that there exists a significant
difference w.r.t. all metrics with
p-values ⌧ 0.05. Next, we conduct the post-hoc Nemenyi test to verify the statistical differences
of the average ranking. The critical diagram w.r.t the average ranking of mAP/CmAP is shown
in Fig. 3, in which the methods that have no significant differences (significance level 0.05) are
connected by a horizontal line. As shown in the diagrams, it is clear to conclude that there is a
statistically significant difference w.r.t mAPs/CmAPs of HMI and HMI+HLR against MVM, BoxE,
MHM, and HLR but not the two strong baselines (MBM and C-HMCNN). We further perform the
Wilcoxon test that considers not only the differences in rankings but also the numerical differences in
the performance. The Wilcoxon test results show that there is a statistically significant difference
between the mAPs/CmAPs of HMI and the two strong baselines with p-value ⌧ 0.05. In terms
of HCV, our statistical significance test in Figure 3 and Table 2 shows that HMI and HMI+HLR
significantly outperform MVM, BoxE, MHM, HLR, and MBM but not C-HMCNN since it has zero
HCV. However, we observed that the predictive performance (mAP, CmAP) is not fully proportional
to the HCV, e.g., HMI outperforms C-HMCNN w.r.t. mAP/CmAP on many of the datasets even
though C-HMCNN has zero CV.

6https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html

8

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html


Classification via hyperbolic logistic regression To validate whether our proposed geometric
constraints are able to improve hyperbolic logistic regression (HLR) [19], we implement HMI+HLR,
a combination of our proposed constraints with HLR as described in Section 3.3. Table 1 show that
HMI+HLR outperforms HLR with statistical confidence, showcasing that HMI is able to improve the
predictive performance and consistency of HLR. However, there is no significant difference (with
p-value larger than 0.05 in Table 2) between the two variants of our method (HMI and HMI+HLR).

4.3 Ablation studies & parameter sensitivity.

For further ablation, we introduce one additional metric. Exclusion Constraint Violation (ECV)
measures, analogous to HCV, the fraction of the exclusion constraints violated by the predictions
i.e., ECV =

1
|D||Ee|

P|D|
k=1

P
(li,lj)2Ee

�
f
k
i ^ f

k
j

�
. We introduce this because HCV can be made

zero trivially by associating all labels with the same score. Hence, in the ablation study, we will
show how the exclusion constraints (the results of ECV) complement HCV and influence the overall
performance.

Table 3: Impact of violation penalty weight � on CellcycleFUN and
CellcycleGO dataset.

Dataset Metric � = 0.0 � = 0.001 � = 0.005 � = 0.01 � = 0.1

CellcycleFUN

mAP 33.87 34.78 34.82 34.76 32.28
CmAP 34.03 34.83 34.90 34.85 33.75
HCV 2.33 1.87 1.30 1.04 0.75

ECV 4.33 3.77 2.40 1.67 1.35

CellcycleGO

mAP 40.26 41.47 45.58 45.56 41.28
CmAP 39.87 42.05 45.58 45.60 40.75
HCV 2.28 1.57 1.19 0.99 0.86

ECV 3.98 3.27 2.17 1.71 1.34

Impact of penalty weight Ta-
ble 3 shows the results of HMI
on "CellcycleFUN" and "Cellcy-
cleGO" dataset. We observed that
with different penalty weights, the
obtained results are slightly differ-
ent. Even without penalty (� =

0), the model already achieves ac-
ceptable results, in particular, it
outperforms MVM, MHM, and
BoxE, indicating that our hyper-
bolic model, to some extent, is ca-
pable of capturing label hierarchies without any explicit constraints. However, as Table 3 shows,
a proper � = 0.001, � = 0.005 and � = 0.01 indeed improves the performance and consistency.
Finally, we observed that increasing � to 0.1, though further improves consistency (HCV and ECV),
does not further improve mAP and CmAP. We conjecture that this is because a large � would
encourage the model to "overfit" the given constraints while "underfitting" the classification loss.

Table 4: Impact of implication and exclusion constraints on Cellcycle-
FUN and CellcycleGO dataset.

Dataset Metric HMI w/o implication w/o exclusion non constraints

CellcycleFUN mAP 34.82 34.70 34.74 33.87
CmAP 34.90 34.75 34.82 34.03
HCV 1.30 2.34 1.45 2.33
ECV 2.40 2.67 3.63 4.33

CellcycleGO mAP 45.58 42.56 44.50 40.26
CmAP 45.58 42.56 45.31 39.87
HCV 1.19 2.16 1.73 2.28
ECV 2.17 3.68 3.07 3.98

Impact of implication & exclu-

sion To study the roles of impli-
cation and exclusion. We imple-
mented three variants of HMI by
removing either implication or ex-
clusion, or removing both of them.
Table 4 depicts the results of these
variants. It is clear that both impli-
cation and exclusion constraints
improve the base model that has
no constraints. When implica-
tion and exclusion are jointly con-
strained, the performance is significantly improved again. We also observed that implication and
exclusion constraints, to some extent, do complement each other, e.g., by only using implication
(resp. exclusion), the model archives lower ECV (resp. HCV). Finally, we observed that even without
exclusion, our model still slightly outperforms MBM, showcasing the advantages of hyperbolic space
for modeling hierarchies.

Impact of sampling ratio To study whether our method is able to preserve logical constraints
from incomplete label constraints we compare the performance of HMI with different ratios for
sampling the training constraints. As Figure 4(a) depicts, with zero sampling ratio, our method
already achieves acceptable results. We conjecture that this is because some constraints can be
learned from the data. However, Figure 4(a) clearly shows that including constraints indeed helps to
improve the performance. Making the sampling ratio larger than 30-40% does not lead to a significant
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performance gain. We conjecture that this is because certain ratio of training constraints is sufficient
for inferring the full set of constraints.

(a) (b)

Figure 4: (a) The variation of performance w.r.t the sampling ratio. (b) The
variation of performance w.r.t the embedding dimensions.

Impact of embedding

dimensionality We study
how the choice of dimen-
sionality affects performance.
As Figure 4(b) depicts, HMI
achieves acceptable results
even in a very low dimension
(n  100). When increasing
the dimension an order of
magnitude (n = 1000), the
performance grows only
slightly. Note that all reported
baselines achieved acceptable
results with dimensions
in [500, 1000, 1750] (see
hyperparameter settings in the Appendix of Patel et al. [11]). We conjecture that the reason we can
achieve good performance with fewer dimensions is that the hyperbolic hyperplane is more suitable
for representing hierarchical decision boundaries.

Comparison with MBM with only implication or without any constraint To faithfully study
the advantages of hyperbolic hyperplane on modeling label relations than that of the box model
(MBM), we also implement two versions of HMI by considering only (30%) implication constraints
and without any constraint (sampling ratio= 0), respectively. Our Wilcoxon test in Table 5 shows
that HMI with only implication and HMI without any constraint still outperform their corresponding
counterparts of MBM on CmAP and HCV (with p-value < 0.05) while achieving comparable results
on mAP (i.e., with better average ranks but without statistical significance, we believe this is because
mAP is less sensitive to the constraints than CmAP).

Table 5: Results of Wilcoxon test on HMI against MBM in the settings where only implications are available
and without any constraint. � means no statistical difference between the compared methods.

Method mAP CmAP CV
HMI (impl.) vs MBM (impl.) � 2.4⇥ 10

�4
1.2⇥ 10

�3

HMI (no conts.) vs MBM (no conts.) � 1.3⇥ 10
�2

6.1⇥ 10
�3

5 Conclusion

In this paper, we focus on a structured multi-label prediction task whose output is supposed to
respect the implication and exclusion constraints. We show that such a problem can be formulated
in a hyperbolic Poincaré ball space whose linear decision boundaries (Poincaré hyperplanes) can
be interpreted as convex regions. The implication and exclusion constraints are geometrically
interpreted as insideness and disjointedness, respectively. Experiments on 12 datasets show significant
improvements in mean average precision and lower constraint violations, even with an order of
magnitude fewer dimensions than baselines.
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