
A Appendix

Kyoto-2006+ When an attack occurs, the honeypot saves the network access pattern and other
metadata and, at some point, might decide to reboot the system and rewrite back the original
configuration. The authors deployed another machine in the network to generate normal traffic data,
with a mailing server and a DNS service for a single domain. All traffic data from this server was
labeled as clean (the logs also include other protocols for managing the machine over ssh or http
and https). The 14 conventional features of the dataset includes 2 categorical features: connection
service type and flag of the connection and 12 numerical features: connection duration, number of
source and destination bytes, number of connections with corresponding IP addresses in a timeframe
of two seconds and the percentage of connections accessing the same service and their rate of "SYN"
errors, the prevalence of the connection’s source IP address and the requested service in the past 100
connections to the current destination IP (Kyoto features). The malicious traffic is further labeled
using three software solutions: an Intrusion Detection Systems at the network level, an Antivirus
product, and a shellcodes and exploits detector. In addition to those, the authors labeled other entries
based on their prior history of connections from a specific IP and destination port. Additional features
include source and destination IP addresses and ports, timestamp and protocol. We note that the
generality of the original dataset imposes several limitations for our benchmark. More specific, the
diversity of the normal traffic in a honeypot setup is quite restricted. Also, since the labeling is done
using existing software and rules, the dataset’s anomalies might be underestimated.

Visualization of the data shifts with PCA For completeness, in Fig. 9 we illustrate the distribution
shift between years using a PCA visualization of the point clouds associated with each year. We
observe similar results as the t-SNE visualization presented in Fig. 4.

Performance evolution over time In Tab. 2 and Fig. 10 we present the full evaluation of considered
baseline models on IID, NEAR and FAR splits.

Training strategies for data shift In Tab. 3 we present the full ROC-AUC, and PR-AUC for inliers
and outliers, for all three training strategies: iid, finetune and distill.

BERT for Anomalies We propose a simplified BERT architecture for detecting anomalies. The
network input is tokenized by a WordLevel tokenizer which obtains tokens for the individual events
in a system log sequence and, conversely, for the individual features of network traffic. Therefore, we
have fixed-length sequences for Kyoto-2006. We train the BERT model as a Masked Language Model
(MLM), using a data collator that randomly masks p% of the input sequence, by optimizing a cross-
entropy loss function between the model predictions at mask positions and the original tokens. We
derive a sequence anomaly score by randomly masking p% of tokens in the sequence and averaging
the probabilities of the correct tokens at mask positions given by the classification layer over the
vocabulary. The model is not pretrained and consists of two hidden layers of size 120, an intermediate
size of 192 and 6 attention heads. It has a hidden dropout and attention dropout probabilities of
0.1, an epsilon of 1e − 12 for the normalization layer and a 0.02 standard deviation range for the
truncated normal weight initialization. Our architecture totals 342135 trainable parameters. For
training we mask p = 15% of the input sequence and at evaluation time, we average over n = 10
mask samplings.

ŵj
i =

{
wj , if maski(j) = 0
[MASK], if maski(j) = 1

(1)

We repeat the masking process n times and average over all repeats to improve consistency. The
anomaly score formula is depicted in equation 2, where we denote by PM the classification layer
of the model of parameters θM , by Maskspk the set of random binary masks of length k and mask
probability p, where wt are the initial tokens in the sequence and ŵt

i is the j-th token in the sequence
under mask i.

anomaly_score([w1, w2, ..., wt]) =

∑
i=1..n

∑maski∼Maskspt
j=1..t (1− P (ŵj

i))

n
(2)

15

http://www.takakura.com/Kyoto_data/BenchmarkData-Description-New.pdf


2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Figure 9: Comparison between yearly splits using PCA visualization. Similar to the t-SNE visual-
ization, we observe that the discrepancy between point clouds increases with the temporal distance
between splits, colors becoming more separated over time.

P (ŵj
i) =

{
1, if maski(j) = 0
PM (wj |θM , [ŵ1

i, ..., ŵt
i]), if maski(j) = 1

(3)

We motivate this metric with the observation that inlier data should consist of common tokens with a
high retrieval probability given by the distribution of the training set, while outliers should usually
have either rare tokens or unusual combinations of features, within the context given by the unmasked
tokens.

Impure training Till now, we have considered anomaly detection models that were trained solely
on the clean data of the TRAIN split. Further, we will study the performance evolution between IID,
NEAR and FAR when the BERT model is trained on corrupt data containing mislabeled outliers
in different percentages. In Fig. 11 we present the ROC-AUC for the 3 testing splits. We observe
that the distribution shift is noticeable in the model performance even in this corrupt training setup.
This validates the usefulness of the proposed chronological protocol when dealing with potentially
mislabeled samples and highlights that the observed degradation over time is not a consequence of
such dataset issues.

Broader Impact Our benchmark proposal is tailored for finding intrusions in a computer network
(not at the user level, but at the network level), by detecting anomalous traffic, in a more robust
way than before, closer to the real scenario. One use-case is in the IT department of an company

16



IID NEAR FAR
split

20

40

60

80

100
ROC-AUC

IID NEAR FAR
split

20

40

60

80

100
PR-AUC inliers

IID NEAR FAR
split

20

40

60

80

100
PR-AUC outliers

OC-SVM
IsoForest
ECOD
COPOD
LOF
SO-GAAL
deepSVDD
AE
LUNAR
InternalContrastiveLearning
BERT

Figure 10: Performance evolution over time: IID vs NEAR vs FAR. We follow the evolution of
ROC-AUC and PR-AUC for inliers and outliers. We observe a large performance gap between the
considered splits, correlated with the temporal distance from the training set. (Best viewed in color)

IID NEAR FAR
split

30

40

50

60

70

80

ROC-AUC

Anomalies percent (%)
0
5
10
15
20
25

Figure 11: Performance evolution of our BERT model on IID, NEAR and FAR splits, when training
on a corrupt set of samples, containing different percentages of mislabeled data points. (Best viewed
in color)

or university, where a person monitors the traffic alerts and prioritizes certain alerts based on the
predictions of the robust models trained on our proposed benchmark. Our work does not have a
negative societal impact.

A.1 Discussions and future work

The inliers’ natural distribution For being able to annotate large amount of data, the network
datasets stay either in a clean space, where almost everything is normal, or in a "dark" one, where
every connection is considered infected. Kyoto-2006+ lies in the second case, where the normal
traffic is not very general, covering several behaviours. It might be interesting as future directions to
find a way to combine the two cases towards a more general and unbiased dataset.

Pre-process through binning We have performed the numerical to categorical conversion in
order to make the dataset suitable for BERT based models, whose vocabularies would become too
large otherwise. For a fair comparison, we consider it proper to use the same preprocessing for
all the methods. We binarize 3 numerical features, transforming them into categorical ones (out
of 12 total features). Namely, we convert only the float features: connection duration, number of
source bytes and number of destination bytes into categorical ones (bins of values). We also perform
experiments without preprocessing those numerical features (Tab. 4). Notice that the performance

17



Table 2: Performance evolution over time for unsupervised methods: IID vs NEAR vs FAR. We report
beside the ROC-AUC metric, also the PR-AUC for inliers and PR-AUC for outliers. With bold are
the best results per split.

Type Unsupervised Baselines IID NEAR FAR

ROC-AUC (%) ↑
C

la
ss

ic
al

OC-SVM [39] (train 5%) 76.86 ± 0.06 71.43 ± 0.29 49.57 ± 0.09
IsoForest [27] 86.09 ± 0.54 75.26 ± 4.66 27.16 ± 1.69
ECOD [24] 84.76 44.87 49.19
COPOD [23] 85.62 54.24 50.42
LOF [5] 91.50 ± 0.88 79.29 ± 3.33 34.96 ± 0.14

D
ee

p

SO-GAAL [28] 50.48 ± 1.13 54.55 ± 3.92 49.35 ± 0.51
deepSVDD [36] 73.43 ± 0.94 69.61 ± 0.83 31.81 ± 4.54
AE [1] for anomalies 81.00 ± 0.22 44.06 ± 0.57 19.96 ± 0.21
LUNAR [14] (train 5%) 85.75 ± 1.95 49.03 ± 2.57 28.19 ± 0.9
InternalContrastiveLearning [41] 84.86 ± 2.14 52.26 ± 1.18 22.45 ± 0.52
BERT [11] for anomalies 84.54 ± 0.07 86.05 ± 0.25 28.15 ± 0.06

PR-AUC inliers (%) ↑

C
la

ss
ic

al

OC-SVM [39] (train 5%) 70.84 ± 0.13 41.38 ± 0.29 15.12 ± 0.04
IsoForest [27] 83.68 ± 3.47 57.06 ± 10.27 9.16 ± 0.18
ECOD [24] 84.47 22.98 13.78
COPOD [23] 87.86 29.25 14.55
LOF [5] 84.11 ± 0.96 52.48 ± 4.56 10.15 ± 0.10

D
ee

p

SO-GAAL [28] 58.65 ± 5.36 43.52 ± 11.62 10.68 ± 2.42
deepSVDD [36] 71.24 ± 0.44 43.80 ± 2.87 9.72 ± 0.65
AE [1] for anomalies 73.76 ± 0.09 26.16 ± 0.15 8.51 ± 0.01
LUNAR [14] (train 5%) 78.91 ± 1.69 29.36 ± 2.58 9.33 ± 0.11
InternalContrastiveLearning [41] 76.96 ± 2.12 27.28 ± 0.59 8.81 ± 0.05
BERT [11] for anomalies 74.61 ± 0.13 58.94 ± 0.69 8.22 ± 0.02

PR-AUC outliers (%) ↑

C
la

ss
ic

al

OC-SVM [39] (train 5%) 67.94 ± 0.21 85.70 ± 0.16 87.27 ± 0.02
IsoForest [27] 81.46 ± 2.52 87.13 ± 2.08 78.33 ± 1.41
ECOD [24] 78.37 74.48 85.9
COPOD [23] 78.19 77.99 85.98
LOF [5] 83.86 ± 0.98 92.34 ± 1.26 81.99 ± 0.05

D
ee

p

SO-GAAL [28] 70.38 ± 0.28 87.71 ± 0.74 92.67 ± 0.13
deepSVDD [36] 62.06 ± 0.42 85.05 ± 0.86 81.03 ± 2.31
AE [1] for anomalies 78.99 ± 0.28 72.97 ± 0.38 75.71 ± 0.05
LUNAR [14] (train 5%) 88.01 ± 1.03 80.91 ± 0.62 79.45 ± 0.30
InternalContrastiveLearning [41] 89.08 ± 0.87 81.93 ± 0.39 77.55 ± 0.50
BERT [11] for anomalies 89.83 ± 0.07 95.96 ± 0.06 78.38 ± 0.02

varies depending on the method and split, and it is not clear that one feature set is better than the
other, over all the methods. Nevertheless, we see the same trend of performance drop across the three
splits, supporting the claim of our work. Additionally, we observe that the evaluation on data without
preprocessing numerical features instead of categorical ones achieves a better score on FAR. This
might be explained by the fact that numerical binning induces a higher rarity of tokens in the FAR
split compared to IID and NEAR, and therefore resulting in more uncertainty for the models.

Gap between supervised and unsupervised learning We evaluate several supervised learning
methods for anomaly detection modeled as a binary classification task, on our AnoShift bench-
mark. We test several classical baselines: (SVM [9], RandomForest [25], XGBoost [8]), but also
some attention-based deep learning methods (BERT with a classification head [10], TabNet [4],

18



Table 3: Training strategies: ROC-AUC (%) for IID training vs Finetune vs Distil on Kyoto-2006+

Train ON: 2006 -> 2007↑ 2008↑ 2009↑ 2010↑
Strategy Test split
IID 2011 88.95 88.93 88.27 89.92

2012 95.85 90.96 86.28 86.63
2013 94.05 87.00 80.79 81.87
2014 28.56 24.35 22.64 21.16
2015 49.01 42.20 37.05 34.07

Finetune 2011 88.56 87.18 87.3 89.92
2012 95.78 89.31 85.18 89.14
2013 94.19 85.29 79.36 84.06
2014 32.98 22.50 20.50 20.57
2015 53.39 38.99 30.98 30.04

Distil 2011 83.74 87.43 88.82 90.32
2012 95.10 91.96 88.78 91.51
2013 94.43 88.89 83.43 86.04
2014 43.65 26.69 23.55 23.13
2015 59.93 48.39 41.31 39.69

Table 4: Compare different numeric feature preprocessing. Notice that it is not clear that one feature
set is better than the other, over all the methods. Nevertheless, we see the same trend of performance
drop across the splits, supporting the claim of our work.

Method Feature binarization IID NEAR FAR

ROC-AUC (%) ↑
OC-SVM [39] w 76.86 71.43 49.57

w/o 81.87 71.24 50.95

IsoForest [27] w 86.09 75.26 27.16
w/o 94.41 95.13 32.81

ECOD [24] w 84.76 44.87 49.19
w/o 79.38 69.80 60.84

COPOD [23] w 85.62 54.24 50.42
w/o 79.03 65.67 60.12

AE [1] w 81.00 44.06 19.96
w/o 89.59 86.76 30.79

SAINT [42]). We report in Tab. 5 ROC-AUC, AUC-PR for Inliers and for Outliers for the supervised
baselines, where we also included our unsupervised BERT baseline for comparison. We plotted the
results in Fig. 12. We observe highly saturated scores on IID and NEAR and a major performance
degradation on FAR. The highest performing methods on IID and NEAR, XGBoost, BERT and
Saint, achieve the lowest scores on FAR across all baselines.

Full Kyoto-2006+ dataset As previously described, AnoShift contains subsets of the full data, for
allowing faster prototyping. We evaluate BERT for anomalies on the full Kyoto-2006+ yearly sets
and observe that the ROC-AUC results are consistent with the subsets. The evaluation is performed
on held-out test sets for each year and the results are available in Tab. 6. The subsets as well
as the full sets used in our experiments are available at https://share.bitdefender.com/s/
9D4bBE7H8XTdYDB.

19

https://share.bitdefender.com/s/9D4bBE7H8XTdYDB
https://share.bitdefender.com/s/9D4bBE7H8XTdYDB


IID NEAR FAR
30

40

50

60

70

80

90

100
ROC-AUC

IID NEAR FAR

20

40

60

80

100
AUC-PR (Inliers)

BERT
SVC
TabNet
RandomForest
SAINT
XGBoost

IID NEAR FAR

50

60

70

80

90

100
AUC-PR (Outliers)

Figure 12: Performance evaluation for several supervised learning baselines in a binary classification
task on the Kyoto-2006+ dataset.

A.2 Pseudo-code for BERT training

We present the three algorithms for each training strategies: IID 1, Finetune 2, and Distilation 3.

Algorithm 1 IID training
Model← init_model()
optimizer ← AdamW ()
set← shuffle(concat(set1, ..., setn))
for epoch← [1, ..., num_epochs] do

for batch ∼ set do
mask ∼ random(batch.shape) < 0.15 ▷ Sample a binary mask of batch size with 0.15

probability
predictions = Model(batch ∗mask)
loss_batch = loss(predictions, batch) ▷ Reconstruction loss for masked tokens
compute loss gradients
perform optimizer step

end for
end for

Algorithm 2 Finetune strategy
Model← init_model()
loss← CrossEntropy()
optimizer ← AdamW ()
for set← [set1, ..., setn] do

for epoch← [1, ..., num_epochs] do
for batch ∼ set do

mask ∼ random(batch.shape) < 0.15 ▷ Sample a binary mask of batch size with
0.15 probability

predictions = Model(batch ∗mask)
loss_batch = loss(predictions, batch) ▷ Reconstruction loss for masked tokens
compute loss gradients
perform optimizer step

end for
end for

end for

A.3 Other considered datasets

We show here the detailed process of how we choose the Kyoto-2006+ dataset and why we consider
it to be one of the few relevant in the distribution-shift context for stream-like data. We performed an

20



Table 5: Performance evolution over time for supervised methods: IID vs NEAR vs FAR. We report
the ROC-AUC, PR-AUC for inliers, and PR-AUC for outliers metrics. The performance degrades
over time also in this supervised setting. Notice there is a large (and consistent) gap between the
supervised methods and the unsupervised BERT baseline. Best score per split in bold.

Supervised Baselines IID NEAR FAR

ROC-AUC (%) ↑
XGB [8]) 99.79 ± 0.01 98.63 ± 0.03 38.66 ± 0.32
SVM [9] 89.95 ± 0.81 88.74 ± 0.51 55.92 ± 0.21
RandomForest [25] 95.81 ± 0.13 94.58 ± 0.40 46.22 ± 0.73
SAINT [42]) 99.33 ± 0.10 98.74 ± 0.09 37.85 ± 0.65
TabNet [4] 95.49 ± 0.28 92.86 ± 0.64 45.80 ± 0.57
BERT [10] - sup 99.20 ± 0.02 97.96 ± 0.08 30.42 ± 0.40

BERT [10] - unsup 84.54 ± 0.07 86.05 ± 0.25 28.15 ± 0.06
Difference (best sup, BERT-unsup) +15.25 +12.69 +27.77

PR-AUC Inliers (%) ↑
XGB [8]) 99.64 ± 0.01 97.49 ± 0.02 10.72 ± 0.05
SVM [9] 93.57 ± 0.10 92.96 ± 0.20 65.27 ± 0.42
RandomForest [25] 94.85 ± 0.13 91.67 ± 0.91 12.27 ± 1.52
SAINT [42]) 99.41 ± 0.08 98.89 ± 0.10 40.95 ± 0.42
TabNet [4] 94.24 ± 0.87 88.45 ± 1.89 11.63 ± 0.72
BERT [10] - sup 98.87 ± 0.04 93.37 ± 0.19 9.57 ± 0.06

BERT [10] - unsup 74.61 ± 0.13 58.94 ± 0.69 8.22 ± 0.02
Difference (best sup, BERT-unsup) +25.03 +39.95 +57.05

PR-AUC Outliers (%) ↑
XGB [8]) 99.81 ± 0.01 99.44 ± 0.02 84.52 ± 0.21
SVM [9] 92.16 ± 0.22 90.93 ± 0.39 74.56 ± 0.14
RandomForest [25] 98.21 ± 0.06 98.34 ± 0.11 91.51 ± 0.12
SAINT [42]) 99.28 ± 0.11 98.63 ± 0.07 46.21 ± 1.11
TabNet [4] 98.11 ± 0.04 97.83 ± 0.16 91.42 ± 0.27
BERT [10] - sup 99.51 ± 0.02 99.20 ± 0.04 80.12 ± 0.07

BERT [10] - unsup 89.83 ± 0.07 95.96 ± 0.06 78.38 ± 0.02
Difference (best sup, BERT-unsup) +9.98 +3.48 +13.13

Table 6: BERT for anomalies ROC-AUC evaluation on the full sets in comparison with the subsets

↑ ROC-AUC
Split 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
Full 83.07 84.84 82.39 85.87 84.98 90.79 90.40 86.74 24.05 38.84
300k Subset 82.20 84.63 83.80 85.60 83.51 88.03 88.12 82.31 22.10 36.90

in depth analysis over a large number of datasets. We wanted it to come from a stream-like data (as
opposed to the less natural, existing benchmarks on images or text [26, 22, 44, 6, 20] and we for two
characteristics that we consider essential for a distribution shift benchmark:

• It spreads over a large enough time-span, such that the distribution shift will naturally occur,
(rather than being synthetically injected, exhibiting sudden changes)

• It is not solved already (existing methods do not report almost perfect scores on it)

Network traffic datasets We first looked over a wide range of known network traffic datasets for
intrusion detection (see Tab. 7), and after analysing them we concluded that most are artificially

21



Algorithm 3 Distillation strategy
mlm_loss← CrossEntropy()
distil_loss← KL_divergence()
optimizer ← AdamW ()
Teacher ← train IID on set1
for set← [set2, ..., setn] do

Student← init_model()
for epoch← [1, ..., num_epochs] do

for batch ∼ set do
mask ∼ random(batch.shape) < 0.15 ▷ Sample a binary mask of batch size with

0.15 probability
pred_s = Student(batch ∗mask)
pred_t = Teacher(batch ∗mask)
loss_batch = mlm_loss(pred_s, batch) + distil_loss(pred_s, pred_t)
compute loss gradients
perform optimizer step

end for
end for
Student← Teacher

end for

Table 7: Network traffic datasets.

Dataset

Number
of

samples Time-span Other details

CIC-IDS2017 3 mil 5 days Different attack types per day
CSE-CIC-IDS2018 4.5 mil 17 days Different attack types per day
UNSW-NB15 2.5 mil 2 days too small
BoT-IoT 73 mil 4 days too small
ToN-IoT 22 mil 6 days too small
NSL-KDD 0.15 mil 45 days max reported ROC-AUC 99%
LANL 1.6 mil 58 days max reported ROC-AUC 99%
AAD 1.8 mil 90 days internally build dataset, max ROC-AUC 98%
Kyoto-2006+ 806M 10 years

created, with injected samples, in very restricted scenarios. Only Kyoto-2016 was a proper dataset,
extended over a long enough period of time for showing a natural distribution shift.

System logs datasets We next focused our attention on system logs, since the time-span is usually
more extensive in these dataset and the natural distribution shift is more probable to occur. But under
our analysis (t-SNE, Jeffreys divergence, OTDD, multiple baselines), these datasets did not exhibit a
clear distribution shift over time, so we decided to further analyse them until concludent results. We
used Drain and Spell as log parsers, and we report in Tab. 8 the results using the LogAnomaly [30]
baseline.

Multi-variate timeseries datasets We next looked over general multi-variate timeseries datasets,
but the most popular ones are quite small and almost perfectly solved already (see Tab. 9).

22

https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2018.html
https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://research.unsw.edu.au/projects/bot-iot-dataset
https://research.unsw.edu.au/projects/toniot-datasets
https://www.unb.ca/cic/datasets/nsl.html
https://arxiv.org/abs/1803.04967
http://www.takakura.com/Kyoto_data/


Table 8: System logs datasets.

Dataset - Preprocessor

Number
of

samples Time-span IID (%) NEAR (%) FAR (%) Split proportion

HDFS - Drain 11 mil 40h 54 66 57 6-6-6
BGL - Spell/Drain 4.7 mil 214 days 67/68 43/73 45/35 2-3-2
Thunderbird - Spell/Drain 211 mil 244 days 72/71 72/72 76/75 3-3-3
Liberty 266 mil 315 days grouped anomalies
Spirit-CMU - Spell 272 mil 570 days 80 67 72 6-5-3

Table 9: Multi-variate timeseries datasets.

Dataset

Number
of

samples Time-span

max reported
unsup

ROC-AUC (%)

SMAP - Soil Moisture Active Passive 0.5 mil 7-14 days 99
SWaT - Secure Water Treatment 0.9 mil 11 days 85
WADI - Water Distribution 0.96 mil 16 days 90
SMD - Server Machine Dataset 1.4 mil 35 days 99
MSDS - Multi-Source Distributed System 0.3 mil days - months 91
PSM - Pooled Server Metrics 147 days 98
MSL - Mars Science Laboratory 0.13 mil - 99
NAB - Numenta Anomaly Benchmark 0.37 mil - 99
MBA - MIT-BIH Supraventricular Arrhythmia 0.2 mil 78 half-hour ECGs 99

23

https://zenodo.org/record/3227177#.YvZIGuxBwpM
https://www.usenix.org/cfdr-data#hpc4
https://www.usenix.org/cfdr-data#hpc4
https://www.usenix.org/cfdr-data#hpc4
https://www.usenix.org/cfdr-data#hpc4
https://smap.jpl.nasa.gov/data/
https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat/
https://itrust.sutd.edu.sg/testbeds/water-distribution-wadi/
https://github.com/NetManAIOps/OmniAnomaly/tree/master/ServerMachineDataset
https://zenodo.org/record/3549604#.YvZLEexBwpM
https://github.com/eBay/RANSynCoders/tree/main/data
https://github.com/khundman/telemanom
https://numenta.com/machine-intelligence-technology/numenta-anomaly-benchmark/
https://physionet.org/content/svdb/1.0.0/


B Appendix

Raw Kyoto dataset documentation The dataset used in our proposed benchmark consists of a
preprocessing of the Traffic Data from Kyoto University’s Honeypots and results from a discretization
of the numerical features in the original dataset, such that a language-modelling approach can be easily
applied. The original dataset consists of 14 conventional features and 10 additional features. The
conventional features in the original dataset includes connection duration, type of service, number
of source and destination bytes, server rate errors percentage and flag of connection. We keep
all the conventional features and apply a exponentially-scaled binning over the continuous values
(duration, number of source and destination bytes) which results in 233 bins and a discretization of
the percentage features in 100 distinct values. As an observation, some of the 10 additional features
(the source and destination IP addresses, source and destination port numbers) might be useful when
designed models (eg. graphs) focusing on connections between the nodes in the system.

Our split proposal documentation We propose a yearly split of the dataset and group adjacent
years into Train, NEAR data and FAR data, which we use to highlight the performance degradation
of several benchmarks in time, due to the distributional shift of the data which we demonstrate with a
comprehensive analysis. In our proposed split, Train data consists of the first 4 years (2006-2010),
Near data of the following 3 years (2011-2013) and Far data of the last two available years (2014-
2015). We publish the data in splits of single years, in csv format. The columns 0 to 13 are the
discretized conventional features in the Kyoto-2006+ dataset, preserving the original order, column
14 contains the complete timestamp. Columns 15, 16 and 17 correspond to the first 3 additional
features in the original data, namely IDS_detection, Malware_detection and Ashula_detection, which
indicates presence of alert triggers from the 3 IDS solutions: Symantec IDS, clamav and Ashula
shellcode detector. Column 19 in the preprocessed dataset corresponds to the protocol used by the
connection.

Intended uses We hope that our proposed benchmark shifts the general direction of treating network
intrusion detection towards a timely fashion that suffers from distributional shift, hereby providing a
better suited evaluation protocol for upcoming research in this field.

URL to dataset download We redirect our readers to the repository of the raw Kyoto dataset
published by the Kyoto University at https://www.takakura.com/Kyoto_data/ and provide
a repository of data under our proposed processing at https://share.bitdefender.com/s/
9D4bBE7H8XTdYDB, with subsets of 300000 instances and heldout sets of 30000 instances for each
split, maintaining the original inlier to outlier ratio from the original data in each split, as well as
the full processed splits, with each full split except 2006 being provided in two parts. We make the
remark that the 2006 split contains fewer instance, due to data collection debuting in November.

B.1 Code for dataset loading

We publish our code as a public GitHub repository https://github.com/bit-ml/AnoShift/,
containing the data preprocessing script that transforms the original data in our format, sample data
manipulation notebooks, license and additional information.

B.2 Author responsibility for violation of rights

There is no sensitive data leaked in the preprocessed dataset. The authors are not aware of any
possible violation of rights and take responsibility for the published data.

B.3 Dataset hosting and long-term preservation

The authors take full responsibility for the availability of the processed data in the provided repository.
However, no statement can be made about the availability of the raw Kyoto-2006+ data published by
the Kyoto University, as it depends on Takakura.com. To avoid further problems, we have published
our preprocessed version.

24

https://www.takakura.com/Kyoto_data/
https://share.bitdefender.com/s/9D4bBE7H8XTdYDB
https://share.bitdefender.com/s/9D4bBE7H8XTdYDB
https://github.com/bit-ml/AnoShift/


B.4 Licence

We release our code under a BSD 3-Clause License, therefore allowing the redistribution and use in
source and binary forms, with or without modification, under the 3 clauses specified by the Berkeley
Software Distribution License:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

25


	Appendix
	Discussions and future work
	Pseudo-code for BERT training
	Other considered datasets

	Appendix
	Code for dataset loading
	Author responsibility for violation of rights
	Dataset hosting and long-term preservation
	Licence


