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Abstract

Analyzing the distribution shift of data is a growing research direction in nowadays
Machine Learning (ML), leading to emerging new benchmarks that focus on
providing a suitable scenario for studying the generalization properties of ML
models. The existing benchmarks are focused on supervised learning, and to the
best of our knowledge, there is none for unsupervised learning. Therefore, we
introduce an unsupervised anomaly detection benchmark with data that shifts over
time, built over Kyoto-2006+, a traffic dataset for network intrusion detection.
This type of data meets the premise of shifting the input distribution: it covers a
large time span (10 years), with naturally occurring changes over time (e.g. users
modifying their behavior patterns, and software updates). We first highlight the
non-stationary nature of the data, using a basic per-feature analysis, t-SNE, and
an Optimal Transport approach for measuring the overall distribution distances
between years. Next, we propose AnoShift, a protocol splitting the data in IID,
NEAR, and FAR testing splits. We validate the performance degradation over
time with diverse models, ranging from classical approaches to deep learning.
Finally, we show that by acknowledging the distribution shift problem and properly
addressing it, the performance can be improved compared to the classical training
which assumes independent and identically distributed data (on average, by up to
3% for our approach). Dataset and code are available at https://github.com/
bit-ml/AnoShift/.

1 Introduction

Analyzing and developing Machine Learning algorithms under gradual distribution shifts is a problem
of high interest in the research community. There is a growing enthusiasm for building benchmarks
over existing or new datasets [26, 22, 44, 6, 20], that formulate a setup for isolating the shifting aspect
and create a better ground for this research field. A better understanding of the distribution shift
problem might lead to findings of underlying fundamental aspects, shedding new light on robustness
and generalization problems. We argue that the distribution shift occurs naturally and gradually
in a continuous data stream (e.g. monitoring network traffic), allowing an in-depth analysis of the
problem. On the other side, artificially generated scenarios usually exhibit sudden changes that do
not simulate the natural shift problem. Yet, the annotation process for streaming data is quite difficult
and expensive, considering the massive amount of data.
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Figure 1: a) The proposed AnoShift splits over Kyoto-2006+ dataset. The IID (gray) testing split
comes from the same temporal span as the TRAIN set (white), while NEAR (yellow) and FAR (blue)
splits are from different time spans, with NEAR being closer to the training set than FAR. b) To
highlight the utility of the proposed chronological protocol, we exemplify the continuous evolution of
data, illustrating the distributions of normal and anomaly samples over the considered 10 years. We
exemplify the evolution of the percent of recent connections that have the same source and destination
IP addresses as the current connection (feature 9 - Dst host srv count).

From a practical point of view, continuous IT infrastructure monitoring has become essential for
computer security and resilience. Recent anomaly detection and intrusion detection systems (IDS)
obtain strong results on specific datasets but drastically fail in real-world scenarios [47]. Our
experimental analysis proved a natural change of the Kyoto-2006+ data over the 10 years period
when the data was collected. The shift is noticeable both over the input distribution and considering
the performance of several anomaly detection systems. Several reasons behind the observed shift
are: users leaving or coming to the network, per user interest changes leading to network interaction
changes, updates to the software versions, patching old vulnerabilities but revealing new attack
vectors for intruders.

To better assess the models’ capabilities, we introduce a chronology based evaluation protocol,
distinctly evaluating performance on test data splits (IID, NEAR and FAR - Fig. 1) with different
temporal distances towards the training set (TRAIN -Fig. 1). We observe that the performance of
anomaly detection models consistently degrades when tested on data from longer time horizons.
Moreover, we prove that a basic distillation technique overcomes a classic IID (assuming independent
and identically distributed data) training under gradual data shifts, proving that the awareness of the
shift problem might lead to better solving the task.

Summarized, our main contributions are the following:

• We analyzed a large and commonly used dataset for the unsupervised anomaly detection
task in network traffic (Kyoto-2006+) and demonstrated that it is affected by distribution
shifts. The per-feature distributions and t-SNE show multiple changes over the years, and
the Optimal Transport Dataset Distance gave us an estimate of its magnitude.

• We propose a chronology-based benchmark, which focuses on splitting the test data based
on its temporal distance to the training set, introducing three testing splits: IID, NEAR, FAR
(Fig. 1). This testing scenario proves to capture the in-time performance degradation of
anomaly detection methods for classical to masked language models. This benchmark aims
to enable a better estimate of the model’s performance, closer to the real world performance.

• We prove that properly acknowledging the distribution shift may lead to better performing
anomaly detection models than classical IID training. When facing distribution shift, a basic
distillation technique positively impacts the performance by up to 3% on average.

2 Related work

Relation to benchmarks targeting distribution shift Recently, there has been an increased amount
of effort and focus in this direction, with several benchmarks emerging. They emphasize the non-
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stationary nature of the data, with various underlying reasoning. The most common approach is to
search for gaps in the input data distribution that appear with time [26, 22], taking into perspective that
the world is continuously evolving; therefore, the data acquired continuously from it should exhibit
the same behavior. Our work aligns with this perspective by working with traffic logs from a large
university network over 10 years. In [26], the authors focus on how the appearance of basic objects
changes from year to year, while [22] emphasizes the seasonal patterns that appear in news language
(e.g. elections, hurricanes). A second axis exploited for noticing shifts in data is the spatial one. In [6],
geolocalization is used in conjunction with the time for guiding the shift. In [20], the gap is based
on higher level characteristics, like x-ray data from different hospitals, but also on geolocalization.
In searching for the autonomous driving robustness, a more complex variation is provided in [44]
following the weather, time of day, and congestion levels. Nevertheless, all works analyze the
distribution shift for supervised tasks, focusing on NLP or Computer Vision. In [22], the authors
monitor the evolution of the perplexity metric, with models learned in a self-supervised manner as a
masked language model. They emphasize the need to link the shift analysis to a downstream task,
several supervised ones in their case. Differently, AnoShift, our benchmark proposal, tackles an
unsupervised anomaly detection task under non-stationary data.

Relation to traffic anomalies Models tackling Network Intrusion Detection are covered by lots of
surveys [16, 2, 19], structured around dataset variations, anomaly types, and methods variation. A fair
amount of the approaches are supervised [34], based on tree classifiers [48], modeling the task as a
binary or multi-class anomaly (intrusion) classification. But we are interested here in the unsupervised
setup [31]. Usually, the best models are quite simple, most of them are shallow [17], based on OC-
SVM [39] or Isolation Forest [27], or very small neural nets [31]. Several solutions introduce deep
learning approaches for intrusion detection [33], transforming the data into images [13], or modeling
the problem using GNNs [29].

An important problem we identified in this area is that the datasets used for the task are easily
saturated, mainly because they either lack variety (e.g. simulated traffic patterns for anomalies) or
have a very few annotated anomalies, or are small-scale, covering only several days [12, 45, 40,
37, 38, 32, 18, 7, 34]. In contrast, Kyoto-2006+ [43] spans over 10 years (2006-2016), containing
continuous natural traffic logs from a large university network, within a sub-net of honeypots. Most
of those datasets cover basic networks, but there are some oriented towards IOT traffic [38], or even
to the autonomous driving field, Internet of Vehicles [48]. But another reason for saturation, is the
IID training setup, as we will show in this work. These generalization problems are very acute,
leading to weak performances for those algorithms when applied on real world data, or on a new
dataset [47]. With AnoShift, we highlight the IID training problem, by proposing a different training
and evaluation setup based on temporal distances, closer to a realistic case.

3 Chronological protocol

We introduce a chronological protocol for building train and testing splits that can highlight the
temporal evolution of data. Taking into consideration the timestamps of our data, we propose to build
a training split (TRAIN) along with three different testing splits (IID, NEAR and FAR), comprising
multiple years of data (Fig. 1a)). The TRAIN and IID splits are extracted from the first period of
time, and the IID tests should highlight the expected performance when there is no distribution shift
between train and test. The NEAR and FAR splits are each extracted from different periods of time,
where NEAR is closer to the training data and FAR is farther away. We expect standard models to
exhibit better performance on NEAR compared to FAR, which we experimentally prove in Sec. 4.2.
Our proposed benchmark will provide a better estimate of the expected performance when the model
is deployed in the wild and exposed to the inevitable distribution shift of the data. To the best of
our knowledge, AnoShift is the first to provide a proper scenario for studying the generalization
capabilities of unsupervised learning models for anomaly detection.

Our work revolves around Network Intrusion Detection Systems (NIDS), tackling the problem of
distribution shifts that naturally appear in network traffic data. We work over the popular Kyoto-2006+
dataset (Sec. 3.1), which was collected over ten years, providing us with enough data to capture the
temporal evolution. Starting from Kyoto-2006+, we introduce our AnoShift Benchmark (Sec. 3.2)
that proposes one training and three testing splits, which highlight the difficulty of dealing with data
temporarily distant from the training set.
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Figure 2: a) Yearly splits of the network traffic data from Kyoto-2006+ dataset, highlighting the
proportion of normal and anomaly samples. b) Proposed train and test splits in our AnoShift
benchmark. Considering that TRAIN and IID splits are sampled from the same time span, we have
jointly represented them. Note that while for TRAIN , NEAR and FAR we extract the same number of
normal samples per year, the IID split contains 10 times less normal samples. The anomaly samples
are extracted such that we maintain the normal vs. anomaly proportion of the original data.

3.1 Kyoto-2006+

Kyoto-2006+ [43] is a reference dataset for Anomaly Detection over network traffic data [35]. It is
built on 10 years of real traffic data (Nov. 2006 - Dec. 2015), captured by a system of 348 honeypots
in 5 sub-networks inside the Kyoto University. Briefly, a honeypot is a real or virtual machine
simulating a regular computer (having an OS and multiple services running on it). Its purpose is to
deceive an attacker into taking advantage of the vulnerabilities present on the honeypot machine (e.g.
software not updated). A honeypot does not request any connection on its own. So in such a scenario,
almost all traffic coming to a honeypot machine is unsolicited and therefore considered malicious.
By design, this type of dataset has a large percent of anomalies (89.5% anomalies in Kyoto-2006+)
compared to other anomaly detection datasets. The 14 conventional features of the dataset include
2 categorical ones like connection service type or flag of the connection and 12 numerical like the
connection duration or the number of source bytes. We put more details about Kyoto-2006+ in
Appendix A. This dataset is spread across a very large period of time, and it contains exclusively
real-world traffic, without simulated events.

3.2 AnoShift benchmark

To keep the natural distribution shift of the network traffic data, we sample a fixed number of normal
samples per year (#months×25k for TRAIN, NEAR, and FAR and #months×2.5k for IID). The number
of anomalous samples is chosen such that we maintain the proportion of normal vs. anomaly samples
from the original yearly subset. We illustrate this process in Fig. 2. In Fig. 1 b) we illustrate the
continuous evolution of the data features over the considered 10 years, comparing the distribution for
one feature (feature 9 - Dst host srv count). Such behavior can be observed for the majority of features,
a fact highlighted by our in-depth analysis from Sec. 4.1. The TRAIN and IID samples are collected
from [2006 − 2010], while the NEAR and FAR splits consist of [2011 − 2013] and [2014 − 2015]
intervals. The protocol is illustrated in Fig. 1 and Fig. 2.

3.2.1 Experimental setup

Preprocess network traffic data We use the 14 conventional features from the new version of
the Kyoto dataset [2006-2015] and convert 3 of the 12 numerical features to categorical values by
using an exponentially-scaled binning method between 0 and the maximum value of each feature,
such that the bins have a higher density for smaller values and get increasingly wider towards
larger values. We used a basis of 1.1, which results in 233 bins, where the width of the ith bin
is given by: bini = [1.1i − 1, 1.1i+1 − 1]. We keep the original percentage features (9 out of 12
numerical features), which are discretized in 100 values. Therefore, our preprocessing results in a
fixed vocabulary size and each possible token is known apriori. See in Fig. 3 a preprocessed sample.
Our processing of the original dataset does not pose any privacy concerns since it does not contain
any sensitive information, such as IP address. However, data binning constitutes another potential
limitation in our work.
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Figure 3: Examples of preprocessed Kyoto-2006+ instances. See Appendix A for details.

Metrics for anomaly detection To analyze the performance of various models on our proposed
benchmark, we use the labels (normal and anomaly) provided by the Kyoto-2006+ dataset. As we
deal with imbalanced sets, we study the ROC-AUC metric and also evaluate the PR-AUC metric, for
both inliers and outliers (note that for a random classifier, PR-AUC for a specific class is close to the
ratio of data in that specific class). We report the IID, NEAR and FAR performances as the arithmetic
mean of performances over their associated yearly splits.

4 Distribution shift analysis

We perform an in-depth analysis of the proposed benchmark from three points of view. First, we
study the inherent non-stationarity of the considered data, highlighting the natural shift between the
years, considering both simple, per feature metrics and more complex metrics between distributions
(Sec. 4.1). Second, we analyze various anomaly detection models, highlighting the performance
decrease when dealing with testing data that is temporarily distant from the training set (Sec. 4.2).
Third, we discuss the importance of acknowledging the data shift and emphasize the positive impact
of a basic distillation technique over the standard IID approach (Sec. 4.3). We add supplementary
discussions on the method in Appendix A.1.

We run our experiments on an internal cluster with multiple GPU types: GTX 1080 Ti, GTX Titan X,
RTX 2080 Ti, RTX Titan. We estimate that we need 5 days to reproduce the experiments on 1 GPU.
The CPU training for OC-SVMs, IsolationForest, and LOF benchmarks takes 3 days.

4.1 Inherent non-stationarity

Visualization of the data shifts For a visual interpretation of the yearly shift, we have considered
the unsupervised t-SNE [46] to illustrate the high dimensional data structure (PCA visualization
available in Appendix A). In Fig. 4 we introduce the comparison between pairs of yearly splits and
the whole figure can be interpreted as a similarity matrix, each cell (i, j) illustrating the similarity
between point clouds of year i vs. year j. Each row illustrates the point clouds of the corresponding
year over all the other point clouds. At the same time, each column presents the point clouds of the
corresponding year below all the other point clouds for a better understanding of the distribution
shifts. We observe that point clouds move away as we increase the temporal gap between their
corresponding years. This confirms our intuition that the analyzed network traffic data is continuously
shifting in time and emphasizes the need for a benchmark as AnoShift that can efficiently test the
robustness of models under this inherent non-stationarity of natural data.

Per-feature shift We further analyze whether the dataset’s statistics at the feature level are changing
from one year to another. Recall that we have 2 categorical features and 12 numerical ones. We extract
the normalized histogram per year for each feature and compute the Jeffreys divergence [15] between
those histograms. The Jeffreys divergence is a commonly used symmetrization for Kullback-Leibler
divergence [21]: KL(p, q) +KL(q, p), and it is proven to be both symmetric and non-negative. We
highlight that such an analysis can only illustrate simple scenarios, studying the distribution change
from the perspective of single feature changes. With all the considered baselines from Sec.4.2, we
have observed a significant decrease in performance for the years 2014 and 2015, leading to the
intuition that this subset may have substantial differences from the others. Consequently, in Fig. 5, we
illustrate the Jeffreys divergence for two features that we find to have a large 2014-2015 distance, but
also for a third one that has significant high values in the distance map on other years than the two.
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Figure 4: Comparison between yearly splits using t-SNE visualization. We observe that the discrep-
ancy between point clouds increases with the temporal distance between splits, colors becoming
more separated over time. The analysis is performed considering 2k randomly sampled points per
split. Follow the 2007 row: see the orange cluster on top of clusters associated to the other years. It is
very similar to its neighbours 2006-2008, and the similarity diminishes in time (see 2015).

General shift We next explore the distribution differences between dataset splits over time by using
the Optimal Transport Dataset Distance method (OTDD) [3]. OTDD relies on optimal transport, a
geometric method for computing distances between probability distributions for comparing datasets.
This analysis shows how the splits move away from each other over time (see Fig. 6). Compared with
the per feature approach, this method allows us to gain a better intuition for the performance on a
new split, giving us a single distance based on all features. We observe how the inliers (first image)
nicely distances in OTDD value, directly correlated with the distance in time. As for the outliers
(third image), it is noticeable that they are quite different between the splits of the first years. We
notice that the distances between inliers and outliers (in the middle) show that FAR years’ outliers
are similar to TRAIN years’ inliers, an observation that we empirically confirm in Tab. 1, where all
models suffer from a steep descent in performance (bellow random). We run the method with the
default parameters for DatasetDistance, over the standardized input of Kyoto, with one-hot encoded
categorical variables, 3 times, with a randomly sampled 5k entries per year.

4.2 Impact on IID models

We introduce the AnoShift benchmark to understand better the impact of data shifts that naturally
appear over time on the performance of anomaly detection models. We hope that the proposed splits
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Figure 5: Jeffreys divergence between Kyoto years. First two images represent features with a large
2014-2015 distance. The 3rd one is for a feature with significant difference between the histograms
across years. Note that it is difficult to predict the performance of the method on a new split, only
based on those per feature distances between distributions.

Figure 6: Optimal Transport Dataset Distance for Kyoto. See distances between inliers (first), inliers
and outliers (second), and outliers (third). The distances from inliers generally increase as you move
further from the diagonal, showing large distances between TRAIN and FAR data. Moreover, notice in
second image how outliers in the FAR splits are quite similar with inliers from TRAIN, also explaining
the abrupt performance drop on farther data (Tab. 1).

will push forward the research in this direction and help build more robust models that can deal with
mild to severe distribution changes between test and training sets. In this context, in the current
section, we will study the performance degradation of various anomaly detection approaches, from
IID to NEAR and FAR testing splits.

Anomaly detection models We have considered several unsupervised baselines, ranging from more
classical approaches, like Isolation Forest [27], OC-SVM [39], LocalOutlierFactor(LOF) [5] and
recent ECOD [24] and COPOD [23], to deep learning ones, like SO-GAAL [28], deepSVDD [36],
AE [1] for anomalies, LUNAR [14], InternalConstrastiveLearning [41] and our proposed transformer
for anomalies model, based on the BERT [11] architecture. For part of the baselines, we have
employed the PyOD library [49].

BERT for anomalies We use a simplified BERT architecture, without pretraining, with around
340k trainable parameters. We train the BERT model as a Masked Language Model (MLM), using a
data collator that randomly masks a fraction p of the input sequence and optimizing a cross-entropy
loss function between the model predictions at mask positions and the original tokens. We derive a
sequence anomaly score by randomly masking a fraction p of tokens in the sequence and averaging
the probabilities of the correct tokens at mask positions given by the classification layer over the
vocabulary. At evaluation time, we average the score over 10 mask samplings. A detailed description
of the model is introduced in Appendix A. In our experiments, we used p = 15%.
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Table 1: Performance evolution over time, for classical and deep methods: IID vs NEAR vs FAR.
Notice that the ROC-AUC is dropping over time in all cases, except for BERT and SO-GAAL
methods, showing this is a property of the method, rather than a problem with the dataset. More
precisely, those methods model the outliers very well in the NEAR split (see PR-AUC-out), while the
PR-AUC-in is dropping, confirming the distribution shift over time (see Appendix A). The variance
for FAR is the highest and almost all methods perform under-random on it. Best scores per split
are shown in bold: NEAR-best is BERT, but interestingly, IID-best is LOF, and FAR-best is COPOD.
PR-AUC for inliers and outliers are available in Appendix A-Fig. 10 and in Tab. 2.

ROC-AUC ↑
Type Baselines IID NEAR FAR

C
la

ss
ic

al

OC-SVM [39] (train 5%) 76.86 ± 0.06 71.43 ± 0.29 49.57 ± 0.09
IsoForest [27] 86.09 ± 0.54 75.26 ± 4.66 27.16 ± 1.69
ECOD [24] 84.76 44.87 49.19
COPOD [23] 85.62 54.24 50.42
LOF [5] 91.50 ± 0.88 79.29 ± 3.33 34.96 ± 0.14

D
ee

p

SO-GAAL [28] 50.48 ± 1.13 54.55 ± 3.92 49.35 ± 0.51
deepSVDD [36] 73.43 ± 0.94 69.61 ± 0.83 31.81 ± 4.54
AE [1] for anomalies 81.00 ± 0.22 44.06 ± 0.57 19.96 ± 0.21
LUNAR [14] (train 5%) 85.75 ± 1.95 49.03 ± 2.57 28.19 ± 0.9
InternalContrastiveLearning [41] 84.86 ± 2.14 52.26 ± 1.18 22.45 ± 0.52
BERT [11] for anomalies 84.54 ± 0.07 86.05 ± 0.25 28.15 ± 0.06

In Table 1 we report the results of our experiments. Each baseline model was trained 3 times with a
basic set of hyperparameters, and we reported the average results and the standard deviation. Both
the OC-SVM and the LUNAR model were trained solely on 5% of the TRAIN set to reduce the
computational burden. For all of the considered models, except ECOD, we observe a performance
degradation between NEAR and FAR splits, highlighting that these anomaly detection models cannot
cope with the distribution shift. In the case of ECOD, the performances of both NEAR and FAR splits
are below random, making their relative order irrelevant. The IID evaluation, which is the most
popular methodology, proves to give an illusion of high performance, as the performance quickly
degrades once we consider a testing set from a different period. The evolution is also presented in
Appendix A-Fig. 10, illustrating ROC-AUC along with PR-AUC for inliers and outliers. We observe
a rapid degradation for inliers PR-AUC, indicating that normal data distribution is continuously
changing, and the outliers detection may not be reliable. These experiments highlight the issues of
current anomaly detection models and prove the benefits of the AnoShift benchmark.

Performance on FAR With all tested baselines, we notice a significant decrease in performance
for 2014-2015 years for inliers, which motivates us to further investigate the particularities of this
subset. We observe a large distance in the Jeffreys divergence between 2014-2015 and the rest of the
years for 2 features: service type and the number of bytes sent by the source IP (see Fig. 5). From the
OTDD analysis in Fig. 6, we observe that: first, the inliers from FAR are very distanced to training
years; and second, the outliers from FAR are quite close to the training inliers. One root cause of those
events can be the steep increase of the "DNS" traffic percentage (from 4% to 37%, in 2013, and 2014
respectively). This contributes to the distribution shift on FAR, explaining the low performance.

Monthly evaluation In Fig. 7, we take a closer look at the BERT’s performance at month granularity
and break down performance on inliers and outliers. First, notice how the inliers’ performance
gradually degrades over time, to an abrupt drop at farther months. This doubles the analysis from
Sec. 4.1, where we notice the difference between the TRAIN years and FAR (through Jeffreys and
OTDD experiments). Second, we observe that on IID years, the anomalies are modeled quite poorly
by our language model, resulting in a slightly lower IID performance in comparison with NEAR.
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Figure 8: ROC-AUC, PR-AUC-in, PR-AUC-out for Finetune and Distill strategies, relative to the
iid. The performance is averaged over all training subsets. Even though the strategies have a high
variance in general, the distill is clearly more robust over time when compared to iid and finetune.

4.3 Addressing the shifted data

We next compare the performance of a BERT model in 3 training regimes: iid, finetune, and
knowledge distillation, for subsets of 300k entries from each year. We use 2006-2010 as training data
and evaluate 2011-2015 as individual splits. First, in the a) iid mode, we use sets of data starting
from 2006 and gradually add each successive split from the train period, initializing a new model for
each subset. Next, in the b) finetune mode, we start from the iid model trained on 2006 and gradually
finetune it on each successive year in the train period. Finally, in the c) distillation mode, we start
from the iid model of 2006 and reinitialize a same-sized model for each new split, which becomes
a student for the previous model by combining the MLM loss with a KL divergence loss with the
teacher predictions on the current split. The best performance is achieved by the final distilled model
for every test split (see Fig. 8), outperforming iid and finetune by over 3% on average in ROC-AUC. It
is worth noting that the effects of distillation are visible over time, with the iid method outperforming
it in the first two iterations over the train splits. At all stages, the distillation method obtains the best
performance on FAR data, providing a more robust training alternative to distribution shifts in data.
The metrics are available in Appendix A-Tab. 3 and pseudocode for the training modes is available in
Appendix A.2.

4.4 Discussions

MLM as anomaly detector Even though the BERT model greatly exceeds the number of parame-
ters and the complexity of other classical baselines, its generalization performance on farther data is
extremely low. The anomaly performance in our case is based on the perplexity score when predicting
several masked features in the sample. So if the features are not correlated, the MLM model might be
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unable to learn something useful, which might result in learning some specific training set biases,
failing to generalize on temporarily distant data (eg. lower score on FAR wrt other baselines). We did
not investigate this, but we consider it an interesting direction for future work.

MLM with the training vocabulary In a real world setup, we expect that the fraction of tokens that
are previously unseen during training increases with temporal distance. The evaluation score might
get artificially inflated due to mapping of unseen features to the UNK token, as for farther points it is
easier to predict UNK instead of the right word. Alongside the requirement of a discrete vocabulary,
this is another limitation of vocabulary based methods as opposed to other classical approaches. We
did not investigate these effects, but it might constitute an interesting direction for future work.

Other considered datasets To emphasize the Kyoto-2006+ value, we briefly discuss here the other
considered datasets and why we choose it in the end. We performed an in depth analysis over a large
number of datasets, looking for two characteristics, essential for a distribution shift benchmark: it
spreads over a large enough time-span, such that the distribution shift will naturally occur, rather than
being synthetically injected, exhibiting sudden changes, and it is not solved already (existing methods
do not report perfect scores on it). We first looked over a wide range of known 1. network traffic
datasets for intrusion detection, and after analysing them we concluded that most are artificially
created, with injected samples, in very restricted scenarios. Only Kyoto-2016 was a proper one,
extended over a long enough period of time for showing a natural distribution shift. We next focused
our attention on 2. system logs, since the time-span is usually more extensive in these dataset and
the natural distribution shift is more probable to occur. But under our analysis (t-SNE, Jeffreys
divergence, OTDD, multiple baselines), these datasets did not exhibit a clear distribution shift over
time, so we decided to further analyse them until concludent results. Finally, we looked over 3.
general multi-variate timeseries datasets, but the most popular ones are quite small and almost
perfectly solved already. We leave this exact numbers for the considered datasets in the Appendix A.3.

5 Conclusion

Our approach highlights the true dimension of distribution shifts that appear in naturally and con-
tinuously evolving data streams. We analyze it in Kyoto-2006+ network traffic dataset that spans
over 10 years from multiple angles: visually with t-SNE, statistically with histogram distances,
and by measuring its magnitude with an Optimal Transport approach. Next, we propose AnoShift,
a chronology-based benchmark for anomaly detection, to enable the development of models that
generalize better and are more robust to shifts in data. Further, we show that by acknowledging the
shift and addressing it, the performance can be improved, obtaining a +3% performance boost using
a basic distillation technique.
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where a person monitors the traffic alerts and prioritizes certain alerts based on the
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