
A Gradient analysis

SVHN CIFAR10
ImageNet25

BloodMNIST Keratitis ISIC

Datasets

0

20

40

60

80

100
C

on
fid

en
ce

 a
sc

en
t r

at
io

 (%
)

99.4 99.9

90.6

99.5 100.0 99.5

(a) Confidence ascent ratio (CAR)

SVHN CIFAR10
ImageNet25

BloodMNIST Keratitis ISIC

Datasets

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
ra

di
en

t c
om

pr
es

si
on

 ra
tio

 (%
)

1.6

1.2

0.8

1.2

0.1
0.3

(b) Gradient compression ratio (GCR)

Figure 7: Confidence ascent ratio (CAR) and Gradient compression ratio (GCR) on various datasets.

To better understand why our generated confounder noise can make the data unlearnable, we can
also gain some insights according to optimization gradient. Empirically, if one image provides a
large gradient in a backpropagation, this image has a lot of learnable knowledge, and vice versa.
Thus a natural question is: How do the confidence and optimization gradients produced by our
encrypted dataset change relative to those of the original dataset during model training? We propose
two statistical metrics for validation: Confidence Ascent Ratio (CAR) and Gradient Compression
Ratio (GCR). Specifically, suppose that the training model is h with the parameters of the last layer
(classifier) W , the number of images in the training set Dtr is n. The confidence of the original
image x corresponding to ground truth class t is h(x)t, and this confidence of the encrypted image is
x+Gθ(x) is h(x+Gθ(x))t, then CAR is defined as

CAR =

∑Dtr
x∈Dtr 1((h(x+Gθ(x))t − h(x)t) > 0)

n
, (6)

where 1(·) is a indicator function. GCR is defined as

GCR =

∑Dtr
x∈Dtr (‖∇W `(x+Gθ(x), t)‖2/‖∇W `(x, t)‖2)

n
. (7)

where ‖ · ‖2 represents the L2 norm, ∇W `(·) represents the gradient of the given input w.r.t. the
classifier.

Figure 7 demonstrates CAR and GCR in all datasets, where the checkpoint of model h is randomly
selected during the training phase. From the result of Figure 7(a), we can find that CAR exceeds 90%
in all datasets and even reaches 100% in Keratitis. This means that most images can be correctly
classified by the model h after adding our confounder noise, so that the model ‘thinks’ that these
encrypted images have nothing to learn. This phenomenon can be understood because the confounder
noise and the label have a strong correlation in ConfounderGAN. Further, we can observe that GCR
is less than 2% for all datasets in Figure 7(b). That is, the backpropagation gradient provided by
the encrypted image x+Gθ(x) to the deep neural network is less than 2% of that provided by the
original image x, which fully shows the exploitable knowledge in x+Gθ(x) is greatly suppressed
compared to x.

13



B Visualization

Figure 8: Visualization: Orig. represents the original image, Enc. represents the encrypted image.

C Stability analysis about early stopping

(a) Training accuracy curves (b) Test accuracy curves

Figure 9: Training and test accuracy curves on different datasets during model training.

Huang et al. [12] find that if the model is trained on the dataset with predefined class-wise noises, it
can achieve satisfactory test accuracy in the early stage of training. This means that the model trainer
can use early stopping to circumvent the protection of predefined class-wise noises. Then they prove
that their proposed EMN does not suffer from the above phenomenon. We are also curious: Is the
noise generated by our ConfounderGAN effective for the entire epoch of training? Figure 9 shows the
accuracy curves of our method during the training epoch. It reveals that the model always has low test
accuracy at all stages of training, so the early stopping trick cannot circumvent our confounder noise.

14



D Stability analysis about adaptive setting

In this section, we first conduct the experiment to investigate the effectiveness of our method under
the adaptive setting proposed by [28]. Then we give a detailed discussion about this setting.

To better understand this adaptive setting, we first illustrate the assumption on the data owner’s
capability and the model trainer’s capability under this setting:

Assumption on data owner’s capability: A data owner processes some natural images Dnat into
encrypted images Den via ConfounderGAN and uploads them to social media.

Assumption on model trainer’s capability: A model trainer knows that these images Den have
been processed by ConfounderGAN and can directly access the generator of ConfounderGAN.
The model trainer wishes to train a denoiser against the noise generated by the ConfounderGAN.
However, the trainer cannot obtain the original images Dnat corresponding to the encrypted images
Den, otherwise he/she can directly use these original images Dnat to train the model. Therefore,
in order to denoise the encrypted images Den, the model trainer needs to do the following steps:
1) collect additional natural images D′nat. 2) feed the surrogate images D′nat into the generator of
ConfounderGAN to build the encrypted images D′en. 3) use D′nat and D′en to train a denoiser. 4)
remove the noise of the encrypted images Den by the trained denoiser.

We conduct the experiment on CIFAR10 to investigate whether the adaptive denoiser can completely
remove the effect of the encrypted noises. In practice, we divide the training set of CIFAR10 into two
equally as Dnat and D′nat, and then use the above steps to obtain the denoised images, where the
training of the denoiser follows DnCNN [48]. The experimental results are shown in the table below.

Training dataset Natural images Denoised images Encrypted images
Test accuracy 87.4% 77.9% 11.9%

Table 3: Test accuracies (%) of the model trained on different datasets.

The result shows that although the denoiser can resist our encryption method to a certain extent,
the model’s performance can still be compromised by our confounder noises, which shows that our
method retains its effectiveness under the adaptive setting.

Meanwhile, for the adaptive setting proposed by Radiya-Dixit et al. [28], we believe there are two
important points that need to be clarified.

1) We believe that this adaptive setting has unbalanced assumptions about the strength of the
data owner’s capability and model trainer’s capability, leaving the data owner (or crypto tool
designer) on the weaker side. Specifically, Radiya-Dixit et al. [28] assume that the model trainer
has full access to the encryption tool, while the crypto tool designer has no knowledge of the model
trainer’s decryption method. For example, in our paper, ConfounderGAN’s designer does not know
that the model trainer will use a denoiser to remove encryption noises. However, if we know this
information in advance, we might be able to introduce the knowledge of the denoiser into the training
process of the ConfounderGAN, making it robust to the denoiser. An intuitive idea is to change
the existing training architecture from ‘original image -> generator -> confounder noise -> pretrain
classifier’ to ‘original image -> generator -> confounder noise -> pretrain denoiser -> pretrain
classifier’, so that the confounder property can be preserved even if the generated noises encounter
a denoiser in the future. Of course, this solution is very rudimentary. We will explore the optimal
solution in future work, thus giving the data owner (or crypto tool designer) an edge in the arms race
with the model trainer.

2) Since data owners usually don’t reveal which encryption tool they use, we believe that the
non-adaptive setting may be more practical than the adaptive setting in real-world scenarios.
Specifically, Radiya-Dixit et al. [28] believe that the adaptive setting is practical in the real-world, and
they give the following argument: encryption tools are usually publicly accessible applications, thus
model trainers can adaptively train a feature extractor that resists these encryption noises. We agree
that encryption tools are generally publicly accessible, but disagree that model trainers can adaptively
train feature extractors. This is because multiple encryption methods will be proposed in the future.
When data owners publish encrypted data, they won’t reveal the encryption tools they use in most
scenarios. Thus it is difficult for the model trainers to determine which encryption method should be

15



used when adaptively training decryption feature extractors. In fact, referring to the community of
adversarial examples [14, 15], one encryption method can derive multiple instantiations by modifying
the encryption constraints. For example, data owners can replace small pixel-wise perturbation with
watermark [14], color channel perturbation [15], etc., according to their preferences. As long as the
data owner does not expose the information of the encryption tool, the model trainer cannot decrypt
it in an adaptive manner. Based on these analyses, we believe that the non-adaptive setting may be
more practical than the adaptive setting in real-world scenarios. Note that this does not mean that the
adaptive setting is unnecessary, we realize that it is important to design an encryption tool that strictly
satisfies the Kerckhoffs’s principle [25]. In future work, we will further improve ConfounderGAN so
that it can work optimally under this principle.

E Comparing CounfounderGAN with DeepConfuse under
out-of-distribution encryption

We notice that DeepConfuse [8] can also be applied to out-of-distribution (OOD) data encryption.
Therefore, we compare the effectiveness of this method in the OOD setting with our method. The
experiment is conducted on CIFAR10 and the evaluation settings are consistent with Figure 6(b) of
the manuscript. The experimental results are as follows:

Method p% Din,en + (1-p%) Dout,en
p=50% p=60% p=70% p=80% p=90%

DeepConfuse 71.3% 61.6% 50.2% 45.8% 36.3%
Ours 60.2% 56.1% 41.9% 32.0% 28.0%

Table 4: Test accuracies (%) under different combinations of training data.

We can find that the dataset processed by our ConfounderGAN can obtain lower test accuracy,
indicating that our method outperforms DeepConfuse for out-of-distribution encryption.

F Datasets

We show some key information about each dataset to better understand our experiments.

SVHN2. SVHN is a digit dataset, containing numbers 0 to 9. This dataset is collected from house
numbers in Google Street View images with low resolution, which consists of 73,257 training images
and 26,032 test images in 10 classes. The number of each class in the training and test sets is
unbalanced. All images are 3× 32× 32 three-channel color images.

CIFAR103. CIFAR10 are labeled subsets of the 80 million tiny images dataset. The latter is
automatically downloaded from the Internet through a crawler script, and this unauthorized data
collection matches the scenario assumed in this paper. CIFAR10 consists of 50,000 training images
and 10,000 test images in 10 classes, classes, with 5,000 and 1,000 images per class. All images are
3× 32× 32 three-channel color images.

ImageNet254. ImageNet25 is a subset of the ImageNet dataset (the first 25 classes). The experiments
on this dataset are to confirm the effectiveness of the method on high-resolution images. It consists of
32,500 training images and 1,250 test images, with 1,250 and 50 images per class. All images are
3× 224× 224 three-channel color images.

BloodMNIST5. BloodMNIST is based on a dataset of individual normal cells, captured from individ-
uals without infection, hematologic or oncologic disease. It is organized into 8 classes and consists of
11,959 training images and 3,421 test images. The number of each class in the training and test sets
is unbalanced. All images are 3× 28× 28 three-channel color images.

2http://ufldl.stanford.edu/housenumbers/
3https://www.cs.toronto.edu/~kriz/cifar.html
4https://www.image-net.org/
5https://medmnist.com/

16

http://ufldl.stanford.edu/housenumbers/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.image-net.org/
https://medmnist.com/


Keratitis. This dataset is collected at our local hospital to evaluate the effectiveness of the method
in real-world scenarios. It consists of 4,047 training images and 581 test images in 4 classes. The
number of each class in the training and test sets is unbalanced. All images are 3 × 224 × 224
three-channel color images.

ISIC6. ISIC is a high-resolution medical datasets, which is collected from leading international
clinical centers. This dataset consists of 8,005 training images and 2,010 test images in 7 classes.
The number of each class in the training and test sets is unbalanced. All images are 3× 224× 224
three-channel color images.

G Experimental setup

G.1 Hardware

In all experiments, the GPU is NVIDIA GTX 1080Ti and the CPU is Intel(R) Xeon(R) E5-2678 v3
@ 2.50GHz.

G.2 Experimental setup for toy experiments

In the class-wise patches experiment, we select the first 25 classes from ImageNet to construct
a new dataset ImageNet25 for evaluation. In the training set, each 224 × 224 image adds a
32 × 32 patch by class in the lower right corner. Since images of ImageNet are color images,
the added patches are also three-channel color images. To simplify, we design the value of each
patch by channel. e.g., the patch for Class 0 is represented as (220,0,0), which means that all the
pixels of the first channel are 220 and the other channels are all 0. Then we list the patch for all classes:
(220,0,0),(230,0,0),(240,0,0),(250,0,0),(0,220,0),(0,230,0),(0,240,0),(0,250,0),(0,0,220),(0,0,230),(0,0,
240),(0,0,250),(220,220,0),(230,230,0),(240,240,0),(250,250,0),(220,0,220),(230,0,230),(240,0,240),
(250,0,250),(220,0,220),(230,0,230),(240,0,240),(250,0,250),(250,250,250).

We use ResNet18 as the backbone. The hyperparameters for model training are listed as follows:
the optimizer is SGD, momentum is 0.9, initial learning rate is 0.025, the learning rate scheduler is
cosine scheduler without the restart, training epoch is 90.

G.3 Experimental setup for ConfounderGAN

ConfounderGAN contains three neural networks: a generator, a discriminator and a pretrained classi-
fier. The generator consists of a 4-layer convolutional neural network and a 4-layer deconvolutional
neural network. The discriminator consists of a 4-layer convolutional neural network and a binary
classifier. The pretrained classifier is ResNet18. The input and output layers of the generator and
pretrained classifier are adjusted according to the image size and class number of each dataset. The
classifiers for all datasets are pretrained on their training set, except for ImageNet where the pretrained
model is downloaded directly from the Pytorch official website.

The training of ConfounderGAN consists of generator training and discriminator training. The
hyperparameters for generator training is listed as follows: the optimizer is SGD, the momentum is 0.9,
the initial learning rate is 0.025, the learning rate scheduler is cosine scheduler without the restart, the
loss weight factor is 0.001, the training epoch is 200(SVHN,CIFAR10,Keratitis)/5000(ImageNet25)/
100(BloodMNIST)/400(ISIC). The training hyperparameters of the discriminator refer to those of the
generator, except that the learning rate is set to a constant 0.025.

G.4 Experimental setup for EMN

EMN requires a source model as a surrogate model to compute the noise gradient. Referring to the
original paper, the backbone of this model architecture is ResNet18.

EMN is a two-level optimization method. The inner loop generates noise, and its hyperparameters
are as follows: the optimizer is SGD, the learning rate is 0.003, the number of iterations is 20. The
outer loop updates the source model with the following hyperparameters: the optimizer is SGD, the

6https://challenge2018.isic-archive.com/

17

https://challenge2018.isic-archive.com/


learning rate is 0.003, the number of iterations is 10. The stopping condition for training is that the
error of the source model on the training set is 0.01.

G.5 Experimental setup for evaluation

We need to train a model h on the unlearnable dataset to prove the effectiveness of the encryption
algorithm. In our experiments, all datasets share a set of hyperparameters for training model h: the
optimizer is SGD, the momentum is 0.9, the initial learning rate is 0.025, the learning rate scheduler
is cosine scheduler without the restart, the training epoch is 90.

G.6 Experimental setup for data augmentations

For RC, we set the padding length to 4 pixels. For CutOut, we set the cutout length to 16 pixels.
For MixUp, we apply linear mixup of random pairs of training examples and their labels during the
training process. For CutMix, we apply linear mixup on the cutout region. For FA, we use the fixed
augmentation policy, which consists of change contrast, brightness, sharpness, rotations and cutout.

18


	Introduction
	Related work
	Problem statement
	Methodology
	Motivation
	Confounder-based encryption framework
	ConfounderGAN:Confounder generation method based on GAN

	Experiments
	Experimental setup
	Effectiveness of ConfounderGAN
	In-distribution data encryption
	Out-of-distribution data encryption

	A Series of Analytical Experiments about ConfounderGAN
	Transferability analysis
	Stability analysis

	Visualizations

	Conclusion
	Acknowledgements
	Gradient analysis
	Visualization
	Stability analysis about early stopping
	Stability analysis about adaptive setting
	Comparing CounfounderGAN with DeepConfuse under out-of-distribution encryption
	Datasets
	Experimental setup
	Hardware
	Experimental setup for toy experiments
	Experimental setup for ConfounderGAN
	Experimental setup for EMN
	Experimental setup for evaluation
	Experimental setup for data augmentations




