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Abstract

The impossibility theorem of fairness is a foundational result in the algorithmic
fairness literature. It states that outside of special cases, one cannot exactly and
simultaneously satisfy all three common and intuitive definitions of fairness -
demographic parity, equalized odds, and predictive rate parity. This result has
driven most works to focus on solutions for one or two of the metrics. Rather
than follow suit, in this paper we present a framework that pushes the limits of the
impossibility theorem in order to satisfy all three metrics to the best extent possible.
We develop an integer-programming based approach that can yield a certifiably
optimal post-processing method for simultaneously satisfying multiple fairness
criteria under small violations. We show experiments demonstrating that our
post-processor can improve fairness across the different definitions simultaneously
with minimal model performance reduction. We also discuss applications of our
framework for model selection and fairness explainability, thereby attempting to
answer the question: who’s the fairest of them all?

1 Introduction

While fairness in machine learning has received significant attention in recent years, most existing
works focus on one of the many fairness criteria [3]. Consequently, practitioners are perhaps left
with no choice but to use their best judgment to apply a single fairness criterion. We suspect that the
conflicting nature of existing mathematical definitions of fairness might have led to this undesirable
practice of narrowing down fairness-related measurement and mitigation to one chosen definition.
This is somewhat analogous to the trade-off between precision and recall while evaluating model
performance [5]. Instead of choosing one of precision or recall to evaluate the performance of a
classification model, practitioners often evaluate the trade-off and choose models that can maintain
a certain level of precision while optimizing recall or vice-versa [14]. In this paper, we provide
a framework for explicitly addressing such trade-offs among multiple fairness criteria and model
performance toward optimal model selection.

One of the most prolific examples of fairness in machine learning arose from the ProPublica recidivism
study ([2]), in which a risk assessment tool called COMPAS was found to be biased against black
defendants. But beyond the immediate implications in criminal justice, the study also prompted
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more general studies in algorithmic fairness and, in particular, led to a key result highlighted in [10],
[16], and [18] which some colloquially refer to as the "impossibility theorem" in fairness [22, 17].
This theorem essentially states that three common definitions of algorithmic fairness - demographic
parity [11], equalized odds [16], and predictive parity [3], cannot be simultaneously satisfied outside
of pathological situations. Several works following these initial results have therefore focused on
satisfying one metric ([16, 23]) or proposing adaptable methods for different metrics ([8, 27]). Yet,
while we do not deny the conclusions of the impossibility theorem, we also believe there have not
been sufficient efforts to reconcile the conflicting fairness definitions to the best extent possible. We
fill this gap in the literature by translating the trade-offs among multiple fairness criteria and model
performance into a constrained optimization problem and propose a post-processing methodology for
simultaneously achieving approximate fairness in the conflicting definitions simultaneously.

We believe our framework would alleviate the practitioner from making the hard choice in choosing
a particular metric. Instead, if they have a partial ordering of importance amongst the metrics
(which many possess), our framework would explicitly allow them to evaluate such trade-offs. The
application which we highlight in Section 4 discusses these in detail. Overall, we make three main
contributions in this work:

1. We design a flexible optimization framework that returns a post-processing score transformation
function that can make scores group-wise ϵ-fair along three definitions (demographic parity,
equalized odds, and predictive rate parity) simultaneously. This framework can be applied to
any binary classifier that produces a continuous score, can be configured for singular or multiple
metrics of fairness, and also can account for fairness vs. performance trade-offs in terms of
ROC-AUC.

2. We present a novel reformulation of this non-convex optimization problem as a Mixed Integer
Linear Program (MILP) [31]. This reformulation allows us to find provably globally optimal
solutions. We further show that in practice, we can consistently find better solutions through our
global optimization method compared to local optimization methods in a reasonable time.

3. We discuss and extend our framework from a post-processing mechanism to a tool that can aid
practitioners in better understanding their data and models’ empirical fairness characteristics and
trade-offs and compare these traits across models.

The rest of the paper is organized as follows. In Section 2 we mathematically define fairness metrics
and the multiple fairness optimization problem. We discuss the optimal solution via MILP in Section
3. We try to answer the question of “who’s the fairest of them all?” through our applications and
experiments in Section 4. Finally, we conclude with a discussion in Section 5. We wrap up this
section with a discussion of the related literature.

Related Work: Early works [10] exploring the conflicts between fairness definitions show that for a
binary predictor, predictive rate parity conflicts with equalized odds ([16]) unless base rates are equal
or the model is perfectly predictive. Chouldechova [10] also considers trade-offs between the fairness
definitions in the binary prediction case. Kleinberg et al. [18] generalizes this study by showing that
statistical (i.e., demographic) parity is also inconsistent with predictive rate parity and equalized odds.
The same paper studies these inconsistencies in a more general bin-wise prediction setting and shows
that approximate fairness definitions (predictive rate parity, equalized odds) can simultaneously hold
but only under ϵ-approximate equal base rates or ϵ-approximate perfect performance. This work
further proves that there is an inherent trade-off between fairness and loss.

Beyond impossibility theorem results, several works have focused on trade-offs between fairness and
model performance [16, 12, 27, 32]. They develop in-processing solutions aimed at reducing one
metric while maintaining accuracy. A few authors have analyzed trade-offs or attempted to achieve
multiple fairness. One example is Pleiss et al. [26], which shows that predictive rate parity and a
relaxed form of equalized odds are reconcilable under a randomized prediction scheme. Another
notable example is Celis et al. [8], which develops a flexible in-processing approach to achieve
multiple types of fairness (potentially at the same time). Like Celis et al. [8], the framework we
develop also aims for a flexible approach to focus on one or many fairness metrics simultaneously.
However, our method is distinct in that it is a post-processing based solution and also more general as
it works for continuous scores (rather than binary classification). Our work is most closely related
to Nandy et al. [23] in terms of the underlying score transformation mechanism, and we leverage
some of their methods. However, whereas [23] only targets equalized odds, we go further and include
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demographic parity and predictive rate parity in our framework—this posits computational challenges,
which we address by proposing novel methodology based on integer programming.

As noted at the end of [18], some open questions are how to optimally assign scores to satisfy
multiple criteria when base rates are equal and additionally, how to satisfy predictive rate parity and
either equal TPR or TNR when one cost outweighs the other. To our knowledge, no prior work
has attempted to reconcile all three fairness conditions (demographic parity, equalized odds, and
predictive rate parity) simultaneously with model performance through a post-processing framework.
Although the post-processing methods tend to be less flexible for fairness-performance trade-offs
than their in-processing counterparts, they can be much more easily added on top of any existing
model training pipeline. This makes a post-processing approach modular, and in particular, more
appealing in complex web-scale recommender systems that use (a combination of) certain prediction
scores to rank a list of items.

2 Multiple Fairness Optimization

We consider a binary classification problem where the i-th observation is characterized by their
label yi ∈ {0, 1}, their group membership gi ∈ G, and model predicted probability (also known as
a risk score [18]) si ∈ [0, 1] for i = 1, . . . , N . The corresponding random variables are denoted
as Y , G and S respectively. To set up the problem, we discretize the scores into nonempty bins
b ∈ B := {1, . . . , |B|} by using, for example, a quantile transformation (we will denote |B| as B).
Additionally, let N [g]

b+ denote the number of group g positive class (yi = 1) instances in bin b, N [g]
b

denote the total number of instances of group g instances in bin b, N [g]
+ (N [g]

− ) be the total number
of group g positive (negative) instances, and N [g] be the total number of group g instances. Lastly,
our approach seeks to achieve fairness by moving instances from one bin to another bin: hence, we
define variable x

[g]
bb′ as the probability of moving an instance of group attribute g and score in bin b

into a new bin b′ 2. In other words, for every group g, the collection {x[g]
bb′}b,b′ can be represented as

a B ×B transition matrix (with additional constraints, as discussed next).

For the optimization framework and the remainder of this paper, we translate a single fairness
definition (e.g. equal true positive rate) as a constraint that controls for the worst-case violations
across all bins. Below, we discuss different fairness constraints that we consider in our framework,
and describe how they can be represented in terms of the optimization variables {x[g]

bb′}.

2.1 Fairness Constraints Under Binning Framework
Demographic Parity (DP): For simplicity, we assume that there are exactly two groups g ∈ {1, 2} as
we formulate the fairness metrics, although everything discussed below can be applied for non-binary
groups by using pairwise constraints, which we elaborate on in Section 2. Starting with demographic
or statistical parity from [11], this condition states that the model’s predicted score is independent of
group membership. This is equivalent to

P (S = s | G = 1) = P (S = s | G = 2).

Our version of this constraint uses bins B to empirically approximate the probability P (S = s |
G = g) and we also relax the equality to an ϵ-approximate equality (for some pre-specified ϵ > 0).
Therefore, after transforming the scores using {x[g]

bb′}b,b′ the ϵDP -approximate DP can be expressed
via linear constraints3:∣∣∣∣∣ 1

N [1]

∑
b∈B

x
[1]
bb′N

[1]
b − 1

N [2]

∑
b∈B

x
[2]
bb′N

[2]
b

∣∣∣∣∣ ≤ ϵDP ∀ b′ ∈ B, (1)

where N
[g]
b denote the number of observations from group g in bin b (before transformation),

and N [g] =
∑

b∈B N
[g]
b . In practice, we choose ϵDP to be larger than the approximation error

2In applications, we can discretize the scores into B bins with a quantile discretizer and consider how we can
move them across bins. More bins allow for more granular interpretation of the transformed scores at the cost of
us solving a harder problem and vice versa.

3For every b′, the constraint (1) can be written as a collection of linear constraints
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O(1/
√
N [g]) as we replace P (S = s | G = g) with its empirical counterpart.

Equalized Odds (EOdds): The equalized odds condition for binary predictors, given in Hardt et al.
16, is a balance condition where the groups must have equal true positive and false positive rates. For
continuous scores, it translates to having equal score distributions for each group conditional on their
true labels [23]:

P (S = s | Y = y,G = 1) = P (S = s | Y = y,G = 2) for y ∈ {0, 1}.

Like demographic parity, our empirical score bin version requires that the distribution of positive or
negative instances be ϵEOdds-approximately equal between groups in the new bins b′. Both equal
true positive rate and false positive rate can be expressed as linear constraints, respectively:∣∣∣∣∣ 1

N
[1]
+

∑
b∈B

x
[1]
bb′N

[1]
b+ − 1

N
[2]
+

∑
b∈B

x
[2]
bb′N

[2]
b+

∣∣∣∣∣ ≤ ϵEOdds ∀ b′ ∈ B∣∣∣∣∣ 1

N
[1]
−

∑
b∈B

x
[1]
bb′N

[1]
b− − 1

N
[2]
−

∑
b∈B

x
[2]
bb′N

[2]
b−

∣∣∣∣∣ ≤ ϵEOdds ∀ b′ ∈ B.
(2)

Predictive Rate Parity (PRP): Lastly, we examine the predictive rate parity condition popularized
in [10]. This condition states that the probability of being a positive instance is independent of group
membership when we condition on the score. Formally:

P (Y = 1 | S = s,G = 1) = P (Y = 1 | S = s,G = 2).

Using the empirical score bin framework, an approximate version of the above implies that the
proportion of positive instances in each bin must be ϵPRP -approximately equal among groups:∣∣∣∣∣

∑
b∈B x

[1]
bb′N

[1]
b+∑

b∈B x
[1]
bb′N

[1]
b

−
∑

b∈B x
[2]
bb′N

[2]
b+∑

b∈B x
[2]
bb′N

[2]
b

∣∣∣∣∣ ≤ ϵPRP ∀ b′ ∈ B. (3)

Unlike constraints (1) and (2), which can be expressed as a linear function of the optimization
variables {x[g]

bb′}, condition (3) yields bilinear terms and is in general a non-convex constraint. A
main technical difficulty of our framework arises from this non-convex fairness constraint—Section
3 presents an integer programming framework to handle this non-convexity, ensuring we can obtain a
globally optimal solution to the resulting optimization problem.
Remark. Our definition of fairness as the worst-case violation across all bins aims to resemble
approximations of the respective probabilistic definitions but we have not found identical definitions
in other works. We comment on the differences and discuss why it does not contradict the traditional
impossibility theorem of [18] in Appendix ??.

2.2 MFOpt: Multiple Fairness Optimization Framework

We use constraints discussed in Section 2.1 to state the multiple fairness optimization (MFOpt)
problem:

minimize
{x[g]

bb′}b,b′,g

∑
g∈G

∑
b∈B

∑
b′∈B

∣∣∣∣∣N [g]
b

N
(s̄b − s̄b′)x

[g]
bb′

∣∣∣∣∣ (4a)

s.t.
∑
b∈B

x
[g]
bb′ = 1 ∀ b′ ∈ B, g ∈ G (4b)

x
[g]
bb ≥ 1− ξ ∀ b ∈ b′ ∈ B, g ∈ G (4c)

x
[g]
bb′ = 0 ∀ b′ s.t. |b′ − b| ≥ w, ∀g ∈ G (4d)

Fairness Constraints: (1), (2), (3) (4e)∑
b∈B x

[g]
bb′N

[g]
b+∑

b∈B x
[g]
bb′N

[g]
b

≤
∑

b∈B x
[g]
b(b′+1)N

[g]
b+∑

b∈B x
[g]
b(b′+1)N

[g]
b

∀ b′ ∈ {1, ..., B − 1}, g ∈ G (4f)
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0 ≤ x
[g]
bb′ ≤ 1, ∀ b, b′, g. (4g)

Above, the optimization variables are the group-specific movement probability x
[g]
bb′ terms and all

remaining terms are problem data and/or configurable hyperparameters. Starting with the objective
(4a), we define s̄b as the midpoint score in the bin and hence the objective is the product of the
movement distance s̄b − s̄b′ weighed by the fraction of total samples moved N

[g]
b /N and the amount

of movement x[g]
bb′ . (4b) states that the total movement out of bin b, including the movement back to

itself, must sum up to 1 and along with (4g) ensures that x[g]
bb′ represent probabilities in a transition

matrix. (4c) states that the total movement from bin b back to itself must be lower bounded by
hyperparameter ξ. This parameter controls how far we allow the new scores to stray from the original
and is necessary to prevent zero denominators in 3 and 4f. Constraint (4d) represents window
constraints to restrict extreme movements of scores beyond w bins. Constraint (4e) are the fairness
constraints in Section 2.1. (4f) ensures that we preserve the rank-ordering of the scores and expected
values, which is desirable for comparing bins against each other. While constraints (4d), (4f) are not
fairness-related, we add them to retain the utility of the solution. The predictive rate parity constraint
(3) and (4f) both introduce non-convexities into Problem (4). These two constraints also require us to
assume overlap, or that each bin contains at least one member from each group. Without overlap,
predictive rate parity is undefined since it is not possible to compare expectations across groups for
a given bin and demographic parity is likely violated as it means one group has zero probability of
landing in a given bin.

Another option we considered for the objective following ([23]) is the Riemann approximation of
AUC from the bins. ROC AUC be approximated by the FPR at bin k and TPR of the cumulative
bins b ∈ {k, . . . , B}. Hence, it possible to optimize for maximizing AUC as a quadratic objective
rather than minimizing score movement as a linear objective. However, in our empirical experience,
maximizing AUC as the objective led to a harder numerical optimization problem (e.g, in terms of
finding good feasible solutions) compared to minimizing score movement.

We close this section with two major benefits of this framework compared to inprocessing solutions
such as adding fairness regularization ([32, 12, 27]) or using an entirely different fairness-based
model ([8], [33]). First, the number of optimization variables scales in the order of O(|G||B|2)
while the number of constraints scale in the order of O(|B||G|2). This is significant as it entails that
our framework can be applied in arbitrarily large data settings as long as score-based binning is
possible. Applying the transformation is equally scalable, as it only requires binning observations and
making independent draws from a multinomial distribution with B possible outcomes. Extending
the framework to non-binary groups requires creating pairwise constraints for all groups in each bin
to achieve the same fairness effect. This means that the number of constraints scale in the order of
O(|B||G|2) (in practice, we expect |G| to be in the range of 3-4). This pairwise procedure does not
affect the scaling of the number of optimization variables, which remains at O(|G||B|2) 4.

The second benefit of our framework is that it returns a highly interpretable solution as it returns one
optimized B ×B transition matrix per group. Hence given a newly scored instance, several facts can
be read from the corresponding row of the matrix such as the likelihood of moving to a specific bin b,
moving into any higher or lower bin, etc. These probabilities can also be controlled via constraints as
shown with the window constraints (4d) and max movement constraints (4c). This interpretability is
an advantage over model regularization frameworks, where it is difficult to know how an individual’s
score might change when switching from the base model to a fair model or evaluating how much
regularization is required to achieve a certain fairness effect.

3 Finding Optimal Solutions via Mixed Integer Programming (MIP)

The primary difficulty of the above optimization problem are the predictive rate parity constraint
(3) and rank-order constraint (4f) which turn the problem non-convex. Non-convex constrained
optimization is generally NP-hard and traditional methods that seek locally optimal solutions include
gradient-based interior point optimization ([30]), sequential quadratic programming ([13]), or algo-

4Without the reformulation we present in 3, the pairwise constraints from pairwise groups would generate
O(|B|3|G|2) bilinear terms from the cross-multiplication of the numerator/denominator sums and result in a
much more computationally intensive problem.
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rithms specific to quadratically-constrainted-quadratic-programs (QCQPs) such as operator splitting
methods, semidefinite relaxations, among others (see [24] for an overview).

Rather than pursuing a locally optimal solution, we study a reformulation ([7], [6]) of the problem as
a mixed-integer-linear-program (MILP), which can theoretically be solved to global optimality in
finite time via branch-and-bound methods [31]. Our reformulation grants two benefits over traditional
locally optimal solvers. First, global strategies theoretically enable us to find the best possible solution.
Second, as our problem primarily scales with the number of bins, we find that in practice, our problem
is solvable to near-optimality when utilizing the power of modern MIP solvers.

3.1 Reformulations for computational efficiency

We first observe that a direct reformulation of the fractional terms into bilinear terms in constraints (3)
and (4f) will lead to bilinear terms in the order of O(B3). We show that we can reduce this to O(B)
bilinear terms through a substitution that exploits the problem structure. Next, we take advantage of
the vastly reduced number of bilinear terms to apply the normalized multiparametric disaggregation
technique (NMDT, [1]) which we explain in Section 3.1.2. This allows us to approximate products of
continuous variables as products of binary variables, which can be easily linearized and handled by
MIP solvers. Importantly, this transformation of xy (i.e, product) terms requires upper and lower
bounds for x and y and we propose a method in Section 3.1.2 for generating and tightening these
bounds by solving fractional linear program subproblems ([9]). Taken together, the reduction of
bilinear terms combined with the bound-tightening procedure enable us to effectively apply the
NMDT methodology and transform the problem from a non-convex QCQP to an MILP that can be
solved to global optimality.

3.1.1 Step 1: Reducing the number of bilinear terms

We reduce the number of bilinear terms in our problem by making a substitution for the fraction term
by introducing new optimization variables v[g]b ≥ 0 (to represent a sum) and t

[g]
b ≥ 0 (to represent the

fractional quantity) as additional variables (see Appendix ?? for more details). We can then use them
to write equivalent constraints with only O(B) bilinear terms.

Let,

v
[g]
b′ =

∑
b∈B

x
[g]
bb′N

[g]
b and t

[g]
b′ v

[g]
b′ =

∑
b∈B

x
[g]
bb′N

[g]
b+ ∀ b′ ∈ B.

Then we have the following:

Constraint (3) ⇐⇒
∣∣∣t[1]b′ − t

[2]
b′

∣∣∣ ≤ ϵPRP ∀ b′ ∈ B,

Constraint (4f) ⇐⇒ t
[g]
b′ ≤ t

[g]
b′+1 ∀ b′ ∈ {1, . . . , B − 1}

3.1.2 Step 2: NMDT and bound tightening through fractional LP subproblems

Linearizing bilinear terms (NMDT): We show how we can model each bilinear term t
[g]
b v

[g]
b by

using a binary expansion for the continuous variables t[g]b , v
[g]
b , and by observing that the product of

binary variables can be modeled via integer programming (see [20, 29] for reference). To this end,
we make use of the NMDT transformation [1]. We review this method below following [1]5 Given
any bounded optimization variable x ∈ [xL, xU ], and precision factor p, a negative integer, we can
represent this variable exactly as x = (xU − xL)λ+ xL where

λ =
∑

l∈{−p,...,−1}

2lzl +∆λ

where 0 ≤ ∆λ ≤ 2p is a remainder term and zl ∈ {0, 1} are binary optimization variables. Dropping
the remainder term ∆λ gives us the approximate form and product forms of xy become dot products
of several integer variables, which can be effectively handled via modern MIP solvers, such as [15].
Although we are solving an approximation (e.g. precision of 1e−4) this is not a practical problem

5The open-source implementation can be found in https://github.com/joaquimg/
QuadraticToBinary.jl (MIT License) which we utilize.
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since it is precise enough for reasonable choices of ϵ and we do not expect the constraints to hold
exactly when we apply the post-processor on the testing data.

Bounds on v
[g]
b , t

[g]
b via Fractional LPs: A key requirement to apply NMDT is that all optimization

variables in the bilinear terms (t[g]b and v
[g]
b in our case) must be bounded and we need to be able

to accurately estimate these bounds (i.e., tighter bounds leads to faster runtimes [1]). We propose
obtaining these lower and upper by minimizing and maximizing respectively, the sub-problems
while keeping all fairness constraints except the quadratic constraints. Firstly, note that bounds on
v
[g]
b can be solved as a simple LP (details in Appendix ??). Meanwhile, obtaining a bound on t

[g]
b

requires solving a nonlinear problem due to fact that t[g]b represents a fractional objective (ratio of two
affine terms of optimization variables). However, we observe that we can apply the Charnes-Cooper
transformation [9] to reformulate the nonlinear problem into a simple LP (details in Appendix ??).

3.2 Choice of algorithm: QCQP (heuristic) vs MIP (optimal solution)

In this section we show the results and benefits of our reformulation from a non-convex QCQP to an
MILP. In Table 1, we take each dataset, create a 60/40 train-test split, train a grid-searched random
forest model, and score the training data. Next, we discretize the scores into bins, parameterize the
problem (# bins, ϵ, max movement, window size, solve time) on the scored training data, and compare
our MILP solution solved by Gurobi ([15]) against the QCQP problem solved by IPOPT ([21]),
which is a generic interior-point log-barrier penalty method for nonlinear constrained optimization.
We discuss the datasets and problem parameters for all experiments in the Appendix ??. For each
metric such as AUC, we use AUCINT and AUCIP to denote the average result of applying the
interior-point (INT, for short) or integer programming (IP) method, respectively. The metrics used are
the objective value, optimality gap (%∆), 6 and AUC. We also report the statistical significance of the
improvement based the p-value from the Wilcoxon signed-rank test to determine if %∆IP ≤ %∆INT

is a consistent result. Bold figures indicate statistical significance w.r.t. 1 standard deviation7 8.

Table 1: Interior Point Solution vs. MIP Solution
Dataset ObjINT ObjIP %∆INT %∆IP p-value AUCINT AUCIP

ACS Income 2.0809 1.9682 15.076 ± 6.461 10.621 ± 3.402 0.0029 0.9041 0.9044
ACS Insurance 0.9769 0.9599 3.432 ± 0.225 1.715 ± 0.169 0.0010 0.7411 0.7413
ACS Mobility 2.4580 2.3781 5.37 ± 0.803 2.193 ± 0.138 0.0010 0.7971 0.7973
ACS Poverty 2.0693 2.0526 3.756 ± 0.435 2.972 ± 0.324 0.0010 0.8440 0.8440
ACS Coverage 8.9361 1.9665 79.711 ± 0.782 7.878 ± 2.207 0.0010 0.5420 0.8149
ACS Travel 2.3935 2.3859 2.554 ± 0.254 2.242 ± 0.28 0.0010 0.7725 0.7725
Heart Disease 1.8871 1.3035 26.385 ± 17.401 3.81 ± 0.864 0.0010 0.8302 0.8629
COMPAS 7.4551 3.1300 62.88 ± 13.407 17.055 ± 7.482 0.0010 0.5143 0.7378

As the results show, the MIP reformulation consistently beats the interior point solver applied on the
raw optimization problem, even when solving for only 10 minutes. We also observe that in most
cases, regardless of the method we choose, we can quickly find near optimal solutions that are high
performing in the AUC sense. This is a significant result as it means that even a locally optimal
solution to our optimization problem can yield a practically useful post-processing result. Additional
experiments on these datasets showing the effectiveness of MFOpt with respect to performance and
fairness in a training/testing data scenario can be found in Appendix ??.

We conclude this section by reiterating two benefits of the reformulation. First, solving a MIP method
yields lower bounds that can be used to prove optimality or otherwise gauge the quality of a feasible
solution. Second, by framing the problem as a MIP, we can always theoretically continue improving

6The optimality gap is defined %∆ = UpperBound−LowerBound
UpperBound

where the upper bound is the best feasible
solution and the lower bound is produced by the branch-and-bound method. The INT method does not have the
benefit of providing lower bounds, hence we use the bound produced by the IP method to compute this.

7We are limited in the number of trials we can run and actively chose to prioritize the variety of datasets we
apply on rather than a large number of trials for a single dataset. As such, we expect relatively large standard
errors but we reflect the consistency of our method through the p-value.

8See Appendix ?? for an explanation of the stark underperformance of IPOPT on the ACS Coverage and
COMPAS datasets.
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the solution to optimality based on the acceptable time limits. There are other applicable global
optimization methods, such as spatial branch and bound. We considered these solutions but ultimately
opted for a MIP approach due to the maturity and availability of solvers (see Appendix ?? for details).

4 Applications

In this section, we illustrate a few methods of applying our framework and how it can be used to
help model developers select and understand models from a fairness perspective. To apply these
procedures, we first require developing an efficient frontier of fairness solutions to understand which
ϵ configurations are feasible for a given model type and dataset. To generate this frontier, we solve
the problem over a grid of parameters ϵDP , ϵEOdds, ϵPRP . Each feasible solution will yield a point
s ∈ {(AUC, ϵDP , ϵEOdds, ϵPRP )} and the collection of non-dominated points from the solution
set yields a efficient frontier. We show the 2-d profile shots of our 4-d fairness surface in Figure 1
as an example, where the axes represent one of three fairness metrics and the point color gradient
represents AUC. In theory, we could obtain a true Pareto-optimal frontier since we have devised a
method of obtaining globally optimal solutions. However, we generate this frontier using IPOPT due
to practical limitations as we are solving a 7× 7× 7 grid of ϵ parameters.

Figure 1: Efficient frontier of solutions for ACS West Insurance data

Table 2: Performance Fairness Trade-off Analysis
Trade... For... s∗AUC s∗ϵDP

s∗ϵEOdds
s∗ϵPRP

Base Base 0.7434 0.0123 0.018 0.0123
AUC ϵDP - - - -
AUC ϵEodds - - - -
AUC ϵPRP 0.7422 0.0123 0.0180 0.0067
ϵDP ϵPRP 0.7436 0.0152 0.0123 0.0067
ϵEodds ϵPRP - - - -
ϵEodds ϵDP 0.7436 0.0152 0.0123 0.006

4.1 Understanding fairness tradeoffs

After the Pareto frontier is generated, the modeler can pick an operating point s based on the
desired AUC and tolerable fairness violations ϵ. However, when communicating fairness properties
to stakeholders and accounting for potential changes in strategy, it can be helpful to additionally
understand the cost of further increasing fairness in terms of ϵDP , ϵEOdds, ϵPRP .

This tradeoff can be understood by looking at the characteristics of points on the frontier near the
operating point. Suppose we are at an operating point s. If we want to trade AUC for ϵEOdds, then
we would find a point s′ with at least as good ϵDP , ϵPRP but worse AUC and better ϵEOdds. More
generally, if we pick trade performance/fairness characteristic c (cost) for characteristic b (benefit),
then we hold all other factors constant and find a point with better b and worse c. We illustrate this
in the Table 2. The first row shows a hypothetical operating point while the following rows show
other points on the efficient frontier that we could move to when we make a certain trade. Blank rows
indicate that no such point was found that permits the desired trade-off. This trade-off perspective can
enable developers to better understand and communicate the costs to performance or other fairness
metrics when trying to close the disparity in one fairness metric.
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Table 3: Comparison with other fairness methods

Method Metric Testing Data
Base Method MF-Opt

Rezaei

AUC 0.7471 ± 0.003 0.6619 ± 0.0022 0.747 ± 0.003
ϵDP 0.0117 ± 0.0014 0.0124 ± 0.0013 0.0088 ± 0.001

ϵEOdds 0.0266 ± 0.007 0.0291 ± 0.0059 0.0167 ± 0.0029
ϵPRP 0.109 ± 0.0145 0.1091 ± 0.0143 0.0986 ± 0.0133

Pleiss

AUC 0.8319 ± 0.0033 0.8149 ± 0.0087 0.831 ± 0.0032
ϵDP 0.0212 ± 0.0016 0.0137 ± 0.0016 0.0106 ± 0.0011

ϵEOdds 0.0329 ± 0.0042 0.023 ± 0.0038 0.0142 ± 0.0028
ϵPRP 0.1465 ± 0.0178 0.4147 ± 0.1537 0.1547 ± 0.0293

4.2 Performance Comparison

Lastly, we compare our framework against two methods and show that we can satisfy fairness
constraint(s) just as well or better, while obtaining significantly stronger performance. Our comparison
is done as follows (details in ??), in each iteration we randomly split and pre-process the data, tune and
fit a random forest model, and score the training and testing data to get the base scores ŷ0. Next, we
run the methodology that we are comparing against (i.e. build a model or apply the postprocessor) to
get method scores ŷm. We then bin the outputs of the base model and compared method and compute
the AUC along with the fairness metrics (ϵ0, ϵm). Next, we solve our constrained optimization
problem on the training data, where we set the parameters ϵ to 1

2min(ϵ0, ϵm). After optimizing, we
can apply the optimal solutions x[g]

bb′ to assign new bins in the testing data based on the original score
bins. One method of assigning a group g instance with score s ∈ b (denote as s

[g]
b ) would be to

randomly draw from a multinomial distribution parameterized by probabilities (x[g]
b1 , x

[g]
b2 , . . . , x

[g]
b|B|).

We propose alternative methods to this stochastic assignment method in the Appendix ??. Lastly, we
compute the resulting AUC and fairness metrics on remapped bins for the testing data (and do the
same for ŷ0 and ŷm on the testing data). These figures are shown in Table 3. We only show the results
on the test set due to space constraints and have placed the results for the training set in Appendix ??.
Bold figures indicate that a metric is statistically significant to 1 standard deviation.

First, we compare our framework against the in-processing framework in Rezaei et al. [27], which is a
robust optimization-based logistic regression model for reducing equality of opportunity violation. We
found that this method works well compared to standard logistic regression and managed to decrease
fairness violations while maintaining the similar performance. It improves in ϵEodds compared to a
random forest as well. However, its weakness is that the underlying model is still logistic regression
and therefore has limited expressiveness. In comparison, MFOpt can be applied on top of any model
class and thus the performance advantages of more flexible models are better maintained.

Next, we compare our framework against the post-processing framework in Pleiss et al. [26]. In this
method, the authors use randomization to maintain the model’s calibration while simultaneously
satisfying a relaxed equalized odds condition (whereby a linear combination of TPR and TNR are
satisfied). Again, we see that this method maintains close performance as the base model, successfully
shrinks equalized odds violations, and even decreases demographic parity violations too. However, it
results in large violations of bin-wise predictive rate parity in contrast to our method.

4.3 Who’s the fairest of them all?

In industry, machine learning model selection is guided by many factors including performance,
speed, interpretability, among others. Yet, the fairness dimension is commonly overlooked unless
the developers specifically induce it in their model. Even then, picking a specific fairness metric to
optimize for can be a nebulous task. Rather than focus on a single metric, we describe a simple and
intuitive method of gauging a model’s efficiency in trading between different fairness definitions.

To do so, we first construct the frontier for the two models in question and then filter all points on
the efficient frontier with tolerable performance AUC ≥ AUCmin. Next, we find the point on the
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respective frontiers with minimum Euclidean distance to the origin. The model with the shorter
distance to their frontier can then be declared as the model that has better tradeoff properties. This
procedure combined with the trade-off analysis can be useful when a developer is iterating between
models that were not designed for fairness, but wants a model that can be flexibly made more fair
through the MFOpt framework. As fairness requirements may change over time, the model that can
yield the best tradeoffs between different definitions can offer the most overall utility.

5 Discussion

In our study, we have devised a flexible and interpretable post-processing method which we apply
to push the limits of the impossibility theorem. We show that while theoretical limitations remain
undisputed, there is a path forward to practically reconciling the conflicting fairness definitions.
These results extend the findings of [28], which state that the trade-off of fairness and accuracy are
negligible in practice. Our work reinforces this claim but also adds on that trade-offs between fairness
definitions can be negligible as well. For further research, one area is to improve the consistency of the
PRP violation reduction, as we observed the largest standard error in reducing this metric. This could
be due to us using random forests for all experiments, which is known to be an uncalibrated model
[4]. One method to address this is therefore first calibrating the model through other methodologies
such as Platt scaling ([25]) or binning-based calibration ([19]) before applying MFOpt. We could
also consider incorporating uncertainty in the training data through principled approaches such as
stochastic or robust optimization.
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