Multi-Objective Deep Learning
with Adaptive Reference Vectors

Weiyu Chen James T. Kwok
Department of Computer Science and Engineering
The Hong Kong University of Science and Technology
Hong Kong
{wchenbx, jamesk}@cse.ust.hk

Abstract

Many deep learning models involve optimizing multiple objectives. Since ob-
jectives are often conflicting, we aim to get diverse and representative trade-off
solutions among these objectives. Gradient-based multi-objective optimization
(MOOQ) algorithms using reference vectors have shown promising performance.
However, they may still produce undesirable solutions due to mismatch between
the pre-specified reference vectors and the problem’s underlying Pareto front. In
this paper, we propose a novel gradient-based MOO algorithm with adaptive ref-
erence vectors. We formulate reference vector adaption as a bilevel optimization
problem, and solve it with an efficient solver. Theoretical convergence analysis is
also provided. Experiments on an extensive set of learning scenarios demonstrate
the superiority of the proposed algorithm over the state-of-the-art.

1 Introduction

Deep learning models are often evaluated under multiple, potentially conflicting, criteria. For example,
in multi-task learning [6], a single model is required to perform well on multiple tasks. In some
scenarios, besides accuracy, model fairness is also important so as to ensure that the model is not
biased against gender and race. These problems can all be formulated as multi-objective optimization
(MOO) [39] problems, and have attracted attention from various fields such as energy resource
optimization [9] and signal processing [4].

Since the multiple objectives usually cannot be optimized simultaneously by a single solution, the
goal of MOO is to find a set of solutions with different trade-offs to approximate the true Pareto front
(PF). The past decades have witnessed the birth of a large number of gradient-free MOO algorithms,
such as evolutionary multi-objective optimization algorithms [11, 52] and Bayesian multi-objective
algorithms [26, 3]. These algorithms perform well on small-scale problems but fail to provide useful
solutions when facing the huge number of parameters in deep learning models.

Recently, gradient-based MOO algorithms [14] have demonstrated promising performance in deep
learning. Following the pioneering work in [45], Lin et al. [31] and Mahapatra et al. [37] propose
to use a set of reference vectors (RV), and generate multiple solutions on the PF each of which
is closest to an RV. Later, strategies are further proposed to improve the efficiency by training a
hypernetwork [40, 30] or reference-vector-conditioned network [44]. However, note that a set of
uniformly distributed RVs may not lead to a set of uniformly distributed solutions. Hence, an
important limitation of these algorithms is that solutions generated using fixed RVs may not cover
some parts of the PF, thus failing to provide enough information about the PF. As an illustration, in
Figure 1a, solutions obtained by the fixed RVs are close to the ends of the PF. If the RVs are properly
positioned, it is possible that the obtained solution set can uniformly cover the PF (Figure 1b).

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

f2 ,'I f2 /,' ¥
,

fi fi

(a) Fixed RVs. (b) Adaptive RVs.
Figure 1: Illustration of the difference between
fixed and adaptive reference vectors. The dashed
lines are reference vectors, the blue curve is the
PF, and the points are solutions on the PF closest
to each reference vector.

Since it is impossible to know the true PF of the
problem before optimization, how to generate a
proper set of RVs is a big challenge. In this paper,
we propose to learn the set of RVs simultaneously
with the model parameters. This is formulated
as a bilevel optimization problem [13], in which
the lower-level optimization problem obtains the
Pareto-optimal solutions with a given set of RVs,
while the upper-level problem optimizes the RVs
based on a quality measure. Moreover, we solve
this optimization problem with an inexpensive
solver, while still showing theoretically nice con-
vergence properties. Experiments on an extensive
set of learning scenarios demonstrate the superi-

ority of the proposed algorithm.

Notations. In this paper, [m] denotes the set {1,...,m}, and R7" = {u € R™|u; > 0,Vi € [m]}.
For two vectors u,v € R™, u > v means that u; > v; for all ¢ € [m]. || - || denotes the Euclidean
norm for vectors and the Frobenius norm for matrix.

2 Related Work: Multi-Objective Optimization (MOO)

In multi-objective optimization (MOO) [39], one aims to minimize m > 2 objectives
{f1(®), f2(P), ... fm(9)}, or, equivalently, the vector-valued function:

m(;nf(éf)) =[f1(¢),. .., fm(d)] € R™.

A solution ¢; is dominated by another solution ¢ if and only if f;(¢1) > fi(¢2) fori € [m], and
3 € [m], fi(é1) > fi(d2). A solution ¢* is Pareto-optimal if and only if it is not dominated by any
other ¢'. A Pareto front (PF) is the set of multi-objective values of all Pareto-optimal solutions. A PF
is regular [48] if it is simplex-like (i.e., all vectors with positive directions intersect it when they start
at the origin), and irregular otherwise. It is shown that regular PFs are not very realistic [24].

(D

Since the number of Pareto-optimal solutions is usually large or even infinite, a set of n Pareto-
optimal solutions ® = {¢1,...,¢,} is often used to approximate the PF. Let the corresponding
multi-objective values be F = {f(¢1),..., f(én)}. The quality of ® can be evaluated from two
perspectives: convergence and diversity [27]. Convergence refers to the distance between JF and the
true PF, while diversity measures whether the solutions are well-distributed in the space of objectives.
A popular measure, which evaluates both convergence and diversity, is the hypervolume (HV) [53].
Given a reference point z € R™, the HV of F is:

HV(]:§ Z) =)‘(UffE]:[Z’ fl])v
where [z, f;] = {q € R™|f; < ¢ < z}, and A(+) is the Lebesgue measure of a set.

2

A reference vector (RV) [52], sometimes called the weight vector or preference vector, can be used to
guide the optimization algorithm by indicating the preferred point on the PF. Usually, an algorithm is
expected to obtain the Pareto-optimal solution closest to the given RV in the objective space. Given
aRV r € R, the MOO problem in (1) can be converted to a single-objective problem by using a
scalarization function s(¢; r). The most straightforward construction is linear scalarization:

s(osr) = (i) fi(9),

j=1

m

3)
which weights the m objectives with the elements r(j)’s of r. It is known that the minimizer ¢ of
s(¢;) is also Pareto-optimal for the original problem in (1) (Ch 4.7, [5]). However, the vector of
objectives f(¢) obtained may be far away from the given RV. To encourage them to be closer to this
vector, a penalty term can be added to the linear scalarization function, leading to [44]:

r'f(9)

s(¢;r) = ZT(])fJ(Qb) JF’Yma

Jj=1

“4)

where v > 0 is a constant. Given a (discrete) set of solutions, Ma et al. [36] generate exploration
directions to spawn new solutions on the PF, leading to a continuous PF.

By using n RVs from a subset R C]RTX", a set of solutions can be obtained to approximate the

entire PF. Usually, R is simply set to IRTX”. However, sometimes the decision-makers may only be
interested in a specific region of the PF [2]. For example, we may limit the angle between any RV
and each coordinate axis. R can then be changed to:

{{rl,...,rn}

where u; is the ¢th coordinate axis and ¢, @2 are the maximum and minimum allowable angles,
respectively. However, note that the set of pre-specified RVs may not fit the problem’s PF (e.g., some
of them may not intersect the underlying PF), leading to an undesirable solution distribution.

Gradient-Free MOO. Evolutionary MOO algorithms (e.g., NSGA-II[11], MOEA/D[52]) and
Bayesian MOO algorithms (e.g., BMOA[26], USeMO[3]) are widely used for small-scale black-box
problems. These algorithms assume that gradient information is not available. Hence, they often fail
to converge on deep learning problems where the solution space can be very large.

roui . .
cospg < —=——— < cosyy, Vi € [m],j € n]p, ®)
7l

Gradient-Based MOO. Gradient-based MOO algorithms are more efficient when problems have
differentiable objectives and a large number of parameters. Sener and Koltun [45] propose to apply
Multiple-Gradient Descent Algorithm (MGDA) [14] to multi-task learning. Liu and Vicente [33]
provide theoretical analysis of stochastic MGDA. MGDA can be further extended to incorporate
RVs (e.g., EPO [37, 38] and Pareto-MTL [31]). Some algorithms (e.g., MOO-SVGD [34], HIGA
[49]) can output a solution set without using RVs. However, they optimize several neural networks
simultaneously, and so are computationally expensive and need large GPU memory (especially when
the neural network is large).

3 Proposed Algorithm

As mentioned in Section 1, the fixed uniformly-distributed RVs used in common practice may result
in undesirable solution distributions. Instead of using a fixed set of n RVs (R = [rq,...,7,] € R),
we propose to adapt them so that the resultant solution set is well-distributed. In Section 3.1, we
first introduce a reference vector-conditioned neural network so that reference vectors can be easily
handled without using a lot more parameters. Section 3.2 then formulates reference vector adaptation
as a bilevel optimization problem, and an efficient solver is presented in Section 3.3. Its convergence
properties are then studied in Section 3.4

3.1 Reference Vector-Conditioned Neural Network

In deep learning models, ¢ corresponds to the network parameters. Optimizing ® = {¢1,..., ¢, }
means optimizing n neural networks (as in EPO [37] and MOO-SVGD [34]), which is highly
inefficient. To alleviate this problem in deep MOO algorithms, Navon et al. [40] and Lin et al.
[30] propose to train a single hypernetwork [22] that can output neural network parameters based
on the RV. In particular, the Pareto Hypernetwork (PHN) in [40] proposes two ways to optimize
the hypernetwork: (i) PHN-LS, which uses linear scalarization, and (ii) PHN-EPO, which uses
EPO. However, the hypernetwork still incurs significant computational overhead. For example, the
hypernetwork in [40] is around 100 times larger than the base neural network. In this paper, we
use the more efficient conditioned network [15, 44]. Specifically, COSMOS [44] concatenates the
RV and data sample, and treats this as a joint input to the network. On the other hand, YOTO [15]
is originally developed for use with a family of parameterized loss functions, in which the loss
parameter is incorporated with the sample into the network via FilM layers [42]. It is theoretically
shown that YOTO is as powerful as using n neural networks [15]. In this work, we adapt the YOTO
architecture by replacing the loss parameter with the RV. In this way, the proposed model only has a
small parameter overhead compared to the single deep network.

3.2 Reference Vector Adaption via Bilevel Optimization

Consider an RV-conditioned neural network f(¢;r) with parameter ¢ and RV r as input. With
a set of RVs R = [rq,...,r,], the multi-objective values of a solution set can be written as

[f(#;71), ..., f(¢;r)]. We use a function Q(-) to measure its quality. Two choices are con-
sidered in this paper. The first one encourages the f(¢;r;)’s to be far away from each other (and thus
more uniformly distributed in the space of objectives):

QR == 3 e (gl - fesm)l?). ©

ij=1

where h is a constant. The second one is:
Q(R,¢) = HV({f($;71), -, F(#57mm)}; 2), (7)

which encourages the maximization of HV in (2). Note that the HV-optimal solution is usually not
uniformly distributed [21, 47].

To obtain the set of RVs R that generates ¢, we formulate it as a bilevel optimization problem [13].
Recently, bilevel optimization has gained great popularity in many machine learning problems such
as meta-learning [18], neural architecture search [32], and hyperparameter optimization [19]. We
consider the following bilevel optimization problem:

minger Q(R, ¢"(R)) ()
s.t. ¢*(R) = arg m(gn S(R, ¢),)

where Q(R, ¢*(R)) = —Q(R, ¢*(R)), S(R,¢) = S, s(¢;7:), and s(¢;7) is the scalarization
function in (3) or (4)." The lower-level optimization problem (9) obtains the Pareto-optimal solutions
with the given set of RVs R, while the upper-level optimization problem (8) optimizes R to maximize
the corresponding solution quality.

The idea of RV adaption is also used in some evolutionary algorithms [43, 29]. However, they update
the RVs using information from the current population and archive, and cannot be directly used in
gradient-based MOO algorithms. Moreover, they cannot scale to problems with a large number of
parameters, as is typically the case in deep learning.

3.3 Solving the Bilevel Optimization Problem

There are various bilevel optimization solvers for (8). Many of them involve propagation through the
inner loop [18, 20], which has a large computational overhead compared to [44]. The proposed algo-
rithm, which will be called Gradient-based Multi-Objective Optimization with Adaptive Reference
vectors (GMOOAR), is shown in Algorithm 1. It performs only one stochastic gradient descent
step in both the inner and outer loops, as in FO-MAML [18] and DARTS [32]. In each iteration k,
mini-batches & and 7, are randomly sampled from the data and then used to estimate the stochastic
gradients V ,S(Ry, ¢;) and V RQ(Ry, dr11; Tk), respectively. projz(-) is the Euclidean pro-
jection operator onto R that ensures that RVs are inside R. In the sequel, the algorithm using the
uniformity-related quality function (6) will be denoted GMOOAR-U, while the one using HV in (7)
will be denoted GMOOAR-HV. The gradient of (6) can be computed directly from the computation
graph, while the gradient of (7) can be computed using an efficient dimension-sweeping algorithm
[17].

The proposed algorithm has O(w + m) memory and O(w + m) time complexity per iteration, where
w is the dimension of ¢. Since m < w in most cases, it has comparable time and space complexity
with COSMOS, which is O(w). In Section 3.4, we will show that this simple solver can still provide
theoretical guarantees on its obtained solution.

Algorithm 1 Gradient-based Multi-Objective Optimization with Adaptive Reference vectors
(GMOOAR).

Input: learnable RVs R, learning rates {cay, O}, initial parameter ¢, number of iterations K.

1: for k=1to K do

2: sample a mini-batch & of samples;

3: Py — Pk — BVeS(R, dk; &k); /* optimize network parameters */

4: sample a mini-batch 7y, of samples;

5: Rpt1 < projg (Rx — axVRQ(Rk, ¢r+1; mr)); /* optimize reference vectors */
6: end for

! As we use the RV-conditioned network here, f; () (resp. f(¢)) in (3), (4) becomes f;(#; 1) (resp. f(d;7)).

3.4 Convergence

In this section, we provide convergence analysis for Algorithm 1. As in [23], we make the following
assumptions on S(R, ¢) and Q(R, ¢).

Assumption 1. (i) S(R,¢) is twice-differentiable in (R,). (ii) V4S(R,¢), Vi,S(R,¢),
V(ZMJS(R, ®), VRQ(R, ¢), and V 4Q(R, ¢) are Lipschitz continuous w.r.t. ¢ with constants Ls, L 1,
Ls o, Ly, and Ly o, respectively. (iii) V%wS(R, ?), V%S(R, @), and V 4Q(R, ¢) are Lipschitz

continuous w.r.t. R with constants L 3, and Ly 4, and L 3, respectively. (iv) S(R, ¢) is ps-strongly
convex in ¢. (v) [[V,S(R, ¢)|| < Cs and ||V¢Q(R)| < Cy.

Given ¢*(R), the gradient of the upper-level objective u(R) = Q(R, ¢*(R)) can be obtained as
Vu(R) = VRQ(R, ¢"(R)) = Vi, S(R, ¢"(R))[V3,S(R, ¢*(R))] ' VRQ(R, 6" (R)), (10)

where VRQ(R, ¢*(R)) is the direct gradient with respect to R. In [23], Vu(R) is evaluated using a
surrogate constructed by replacing ¢*(R) in (10) with ¢ 1:

VrQ(Ri, brt1) = VRQ(Ri, brg1) — VigS(Ri, d141) [V S (Ris drs1)] VRQ(Ry, ¢kJa)1~)
However, this involves computing the Hessian and is expensive. On the other hand, the proposed
algorithm uses h’; = VrQ(Ryg, di+1; Tk), which is the stochastic estimate of V g Q(Rk, ¢r+1). Note
that VR Q(Ry, ¢x+1) is the first-order approximation of the gradient in (11). Such an approximation
is also used in [18, 32]. It greatly reduces the time and space complexities, but leads to a bias that can
be bounded by a constant:

IVRQ(R, $rs1) — En [1E]]] = (V7S (Ri, 141) V55 (Riey o1t1)] ™ VRQ(Ri, drerr) |
< Cscq//f&&

Next, we also make the following assumption similar to [23]. Let h’; = V4 S(Rk, Or; k).

Assumption 2. For any k > 0, there exist constants 0,04, and by such that:

]Efk [h?] = V¢S(Rk7 ¢k)> Eﬂ'k [h};] = ﬁRC)(RIW ¢k+1) + Bk?’ ||B]€|| S bg’
Ee, [IRY — VS (Ri, i) [1*] < 02(1 4 IV S(Ri, 1)),
Er [lI1f = By, — VQ(Ry, ¢rs1)|’] < o2

Let AL = Ee, [[¢x — ¢*(Ri—1)||, the expected gap between ¢y, and the optimal network parameter
given reference vectors Ry_;. Similarly, denote the expected gap between Ry and the optimal
reference vectors R* in (8) by Ak, = E,, |[Rx — R*||.

Theorem 1. Assume further that uw(R) is pq-strongly convex, and the step sizes (ou, i) satisfy

1
ay < min{coﬁ3/2,} Bt <14 Bepe (12a)
Hq 6k
. 2/3 1 Hs Il
< — 8 < usPr, Vk >0, 12b
ﬁk > mln{clak ’/JS’ Lg(]. +0_§)a 48C8L2L3 }7 HqOk = [/Bk = ()

where L, L, are constants and co,ci > 0 are free parameters. For any k > 1, the iterates generated
by Algorithm 1 satisfy

k—1
L? al?ro? cjLE 1 o5 U2
VIS 1—a;p {AO +A°] [s 4 04 }a/_ + -2
" lll(q>] Br2=e) 2 by p2 R
k—1 0_2 L2
AL S T =Bims/4) ot u‘“? B, (13)
i=0 s s

where < denotes that numerical constants are omitted.

With diminishing step sizes o, = co/(k + ko), Br = cg/(k + kg)*/3, where

L\3 512)2 L2 8 k 32
ka:max{35<f) (1—1—0?)%,()72(]}, Ca = 5 52*(}, g =)

s M 31iq 4 3pLs
the following Corollary shows that the assumptions (12a) and (12b) in Theorem 1 are satisfied, and
thus A’q‘; converge to 0, i.e., ¢y, converges to the optimal solution ¢*(Ry—1).

Corollary 1. ¢ converges to the optimal ¢*(Ry—1) of (9).

4 Experiments

In this section, extensive experiments are performed, including synthetic problems (Section 4.1),
multi-task learning (Section 4.2), accuracy-fairness trade-off (Section 4.3), and usage on larger
networks (Section 4.4). Finally, ablation study is presented in Section 4.5. All experiments are
conducted on an RTX-2080Ti with 11GB memory.

4.1 Synthetic Problems

Experiments are performed on four commonly used multi-objective benchmark problems [11, 52, 34]
with different numbers of objectives: (i) 2-objective DTLZ2 [12], (ii) 3-objective DTLZ2 [12], (iii)
2-objective scaled-DTLZ2 [12], and (iv) 3-objective MaF1 [8]. Their detailed definitions are in
Appendix B.1. The PFs of problems (i) and (ii) are regular, while those of (iii) and (iv) are irregular.
The number of inputs is set to 30. We aim to get 15 non-dominated solutions for each 2-objective
problem, and 36 non-dominated solutions for each 3-objective problem.

The proposed algorithm? (GMOOAR-U using quality function (6) and GMOOAR-HYV using quality
function (7)) is compared with the state-of-the-art COSMOS [44],which uses fixed reference vectors.
For the 2-objective problems, reference vectors for COSMOS are generated by following their strategy
in [44]. For the 3-objective problems, we generate reference vectors for COSMOS by the method in
[10], which can obtain more uniform reference vectors. For GMOOAR, the reference vectors are
initialized randomly. As in [40], a neural network (with 2 hidden layers, each with 20 units) is used.
More experimental details can be found in Appendix B.2.

Figure 2 shows the solutions and HV values obtained. For the 2-objective and 3-objective DTLZ2
(Figures 2a and 2b), the solutions obtained by COSMOS are relatively uniform. However, on the
scaled-DTLZ2 (Figure 2¢) and MaF1 (Figure 2d) with irregular PFs, many of its solutions are near
the boundary and close to each other. In contrast, solutions obtained by GMOOAR-U are distributed
more uniformly. Solutions obtained by GMOOAR-HV are not uniform, but have higher HV than
COSMOS and GMOOAR-U.

Figure 3 shows the solution sets obtained by GMOOAR-U on the 3-objective DTLZ2 when the region
of interest is a subspace R constrained as in (5). Note that imposing this constraint on COSMOS
is difficult as (i) it is hard to generate a set of uniformly distributed RVs; and (ii) even with a set of
uniformly distributed RVs, they may not lead to a uniformly distributed set of solutions.

4.2 Multi-Task Learning

In this experiment, we use three benchmark datasets from [31]: Multi-MNIST, Multi-Fashion,
and Multi-Fashion+MNIST. In Multi-MNIST, each image is constructed by putting two different
MNIST images together, one at the bottom-right (BR) and the other at the top-left (TL). Similarly,
Multi-Fashion images are constructed by combining images from FashionMNIST [50], while Multi-
Fashion+MNIST images are constructed by combining one MNIST image with one FashionMNIST
image. More details can be found in [31]. The goal is to classify both the BR and TL images correctly,
by minimizing the two cross-entropy losses using a single neural network. As in [31, 37, 44], we use
the LeNet [28] with multi-head as base network. Details of the reference-vector-conditioned network
are in Appendix B.3.

We compare the proposed algorithms (GMOOAR-U and GMOOAR-HV) with (i) EPO [37], (ii)
Pareto hypernetworks (PHN-LS and PHN-EPO) [40], (iii)) MOO-SVGD [34], and (iv) COSMOS

>We use linear scalarization with penalty term in (4).

COsSMOS

GMOOAR-U

GMOOAR-HV

0.8

0.6

0.4

0.2

0.0

HV=2.935

HV=3.100

0.8

0.6

0.4

0.2

0.0

HV=3.123

(a) 2-objective DTLZ2.

00 02 04 06 08

GMOOAR-U

1.0

(b) 3-objective DTLZ2.

COSMOS GMOOAR-U GMOOAR-HV
1.0 =S 10 oo 1.0 R
LI LR . ., .
08 . 08 . 08 e,
.
)
. . .
N 0.6 \ 06 \ 06 .
& Y L] L
041 HV=2.470 H 047 HV=2.488 . 041 HV=2.489
. .
02 02 02
0.0 0.0 0.0

1.0

00 02 04 06 08

1.0

0.0

02 04 06 08

(c) 2-objective scaled-DTLZ2.

GMOOAR-U

COSMOs

GMOOAR-HV

HV=5.156

HV=5.327

or
@o

cooog!
S38a

(d) 3-objective MaF1.

Figure 2: Solution sets (red) and HV values obtained on the synthetic datasets. The Pareto-optimal
solutions is in blue.

0.; 0.8
1.0 1.0

(b) p1 = /10, p2 = 37w/10. (c) p1 = 37/10,p2 = /2.
Figure 3: Solution sets obtained by GMOOAR-U with different (¢1, o) settings.

8 0. 0.8
1.0 10 1.0

(@) o1 = 0,02 = 7/2.

[44]. For EPO, PHN-LS, PHN-EPO and COSMOS, we generate reference vectors following the
strategy in [44]. For GMOOAR, the reference vectors are initialized randomly. The experiment is
repeated 10 times with different random seeds.

Following common practice [44], we obtain a set of n solutions in each iteration (with n = 15 in all
experiments). They are evaluated on the validation set every 5 epochs. We only keep the solutions of
iteration kp.s; as the final solution set, where k., is the iteration that yields the solution set with
the largest validation HV. Note that the original implementation of MOO-SVGD (obtained from the

» § % *

7

+
+

Loss for Task BR

.

. +

AR S
.

»

TR ox,

. E g unl
+

+

*, * *

0.25 0.30

0.35 0.40 0.45

Loss for Task BR

o
S
o

o
o
o

4
@
)

=4
o
v

=4
I
o

I
s
o

et o+
4

¢ 3l
Wl SN

* *

+

o -

o4 #

o+ *

.+
%

+

+%

.
s kel b, of

EPO
PHN-epo
PHN-LS
MOO-SVGD
COSMOS
GMOOAR-U
GMOOAR-HV

]
+ ® m+ g o@m

+

0.45 0.50 0.55 0.60 0.65 0.70

0.2 0.3 0.4

0.5

0.6

Loss for Task TL

(2) Multi-MNIST.

Loss for Task TLL

(c) Multi-Fashion+MNIST.

Loss for Task TL

(b) Multi-Fashion.

Figure 4: BR and TL test losses obtained on the multi-task learning datasets.

HY . .
Multi-MNIST ~ Multi-Fashion Fashion-MNIST | * parameters | runtime (s)
EPO [37] 2054002 2.31+001 2.8610.02 478,650 8.370
PHN-EPO [40] | 2.8240.04 2.16+0.05 2.7440.05 3.243.410 1515
PHN-LS [40] 2794004 2.14+0.04 2.67+0.06 3.243.410 644
MOO-SVGD [34] | 2.6740.02 2.020.02 2.5440.04 478,650 8.661
COSMOS [44] | 2954002 2.3140.03 2.8240.03 43,058 260
GMOOAR-U 3.0240.01 2.33+0.10 2.9140.02 43.685 288
GMOOAR-HV | 3.024001 2.33+0.09 2.9210.02 43,685 348

Table 1: Average HV, number of parameters and runtime on the multi-task learning datasets.

authors) stores all non-dominated solutions of each iteration in an archive .4. On termination, they
try all size-n subsets of A and select the subset with the largest HV on the validation set as the final

solution set. As there are CLAI such subsets and |A| is large when MOO-SVGD terminates, this
can be very expensive. In order to be fair to all algorithms being compared, we thus also use the
aforementioned commonly practiced strategy on MOO-SVGD.

As in [7], Figure 4 shows the testing performance obtained by the solution set with median HV
(over the 10 runs). As can be seen, on Multi-MNIST and Multi-Fashion, the solution sets obtained
by COSMOS are dense in the middle but sparse towards the ends, while the solution sets obtained
by GMOOAR-U are more uniform. Moreover, compared to all other baselines, the solution sets
obtained by GMOOAR are closer to the bottom-right corner where the underlying true PF resides.
For MOO-SVGD, many of its obtained solutions are much inferior, and only one of them is in the
range shown in Figure 4. A complete plot of all the MOO-SVGD solution sets is in Appendix C.

Table 1 shows the HV’s of the solution sets (averaged over the 10 runs), the number of parameters and
runtime. As can be seen, GMOOAR has consistently higher HVs than the other baselines. Moreover,
its number of parameters is comparable to that of COSMOS, and is much fewer than the other
baselines. Compared to the base network LeNet, GMOOAR has only 37% more parameters. In terms
of the runtime, GMOOAR is only slightly slower than COSMOS and is much faster than the other
baselines. GMOOAR-HYV is slower than GMOOAR-U as the computations of HV and its gradient
are more expensive [53].

4.3 Accuracy-Fairness Trade-off

In this experiment, we follow [44] and aim to achieve both high accuracy and fairness on three tabular
datasets: Adult [16], Compass [1], and Default [51]. The accuracy is measured by the cross-entropy
loss, while fairness is measured by a hyperbolic tangent relaxation of the Difference of Equality of
Opportunity (DEO) [41]. As in [40, 44], a 2-hidden-layer multilayer perceptron is used as the base
network. More details can be found in Appendix B.4. The experiment is repeated 10 times.

Figure 5 shows the test loss and fairness measure obtained by the solution set with median HV over
the 10 runs. Since the datasets are not difficult, the approximated PFs obtained by various algorithms
are close. Solutions obtained by GMOOAR are uniformly distributed, while those obtained by EPO,
PHN-LS, PHN-EPO and COSMOS are very dense in the top-left region. Solutions obtained by

0.14 0.35

0.014

S + EPO
0.12 0.30 L9 0.012 ® PHN-epo
i : X PHN-LS
0.10 0.25 - 0.010 MOO-SVGD
: cosMos
0.08 1 | 0.008{ #
R 5‘ o 020 T ° n * GMOOAR-U
3 0.06 8015 #* 8 0.0064 % + GMOOAR-HV
> - n
| * 1
0.04 14 010 .\ 0.0041 %y
4 * * *
0.02 Jae s r o 0.05 . 00021 » ¢
] A, x ok,
0.00 4 . % 0.000 DEGRR? % 0 *
. 0.00 +® ¢ o me
030 035 040 045 050 055 0.60 00 02 04 06 08 10 05 06 07 08 09 10
Binary Cross-Entropy Loss Binary Cross-Entropy Loss Binary Cross-Entropy Loss
(a) Adult. (b) Compass. (c) Default.

Figure 5: Test losses and fairness measures obtained on the fairness datasets.

MOO-SVGD are clustered and only cover parts of the PF. Table 2 shows the HV values obtained. It
can be seen that GMOOAR achieves better HVs than the baselines.

\ Adult Compass Default

EPOI[37] 3.342+0.001 3.709+0.002 3.119+0.001
PHN-EPO [40] 3.340£0.006 3.709+0.004 3.11140.005
PHN-LS [40] 3.341£0.008 3.698+0.007 3.12140.003
MOO-SVGD [34] | 3.3304+0.008 3.716£0.011 3.110+0.005
COSMOS [44] 3.336£0.006 3.710+0.004 3.11440.005
GMOOAR-U 3.344£0.004 3.719+0.008 3.123+0.004
GMOOAR-HV | 3.345+0.005 3.714+£0.008 3.12340.002

Table 2: Average HV and standard deviation on the fairness datasets.

4.4 Larger Networks

To demonstrate that the proposed method can be used on larger networks, we apply GMOOAR on
the EfficientNet-B4 [46] with about 17 million parameters. Following [44], we perform experiments
on two easy tasks ("Goatee" and "Mustache") and two hard tasks ("Oval Face" and "Pointy Nose")
selected from the 40 tasks in CelebA [35]. Since EfficientNet-B4 is around 400 times larger than the
LeNet used in previous experiments, PHN-LS, PHN-EPO, and MOO-SVGD cannot be run on our
machine. For performance evaluation, the testing cross-entropy loss of each selected task is used.
The experiment is repeated 5 times with different random seeds.

Figure 6 shows the test losses obtained by the solution set with median HV over the 5 runs. The
corresponding HV values are shown in Table 3. On CelebA-Easy, both GMOOAR-U and GMOOAR-
HYV outperform COSMOS in terms of HV. On CelebA-Hard, all three algorithms achieve similar
HVs, though that of GMOOAR-HYV is slightly better.

0.24 0.75 {4
COSMOS COSMOS 50
0.221 * GMOOAR-U * * GMOOAR-U
0204 * + GMOOAR-HV [0707 « GMOOAR-HV
v * 2 K 40
5018 20651 * =
Foa6{ * 7y S 30 —e— COSMOS
2o gosoq £ GMOOAR-U
8012] 4 8055 ézo —e— GMOOAR-HV
0.10 ':,‘ . -
0.08 Plhtaqun, *, 4 * o 030 P 4 ey > * xp 10
0,;)8 DEI.O 0,’12 043.4 0.’16 O,EI.B 0,_‘;50 0‘_‘;75 0.6;00 0,é25 046'50 0.6;75
Loss "Goatee" Loss "Oval Face" 3 5 10 15
number of tasks
(a) CelebA-Easy. (b) CelebA-Hard.
Figure 6: Test losses on the two easy tasks (left) and two Fl%}‘:zef? AVteragebruntlnfli: 011(1 CelebA
hard tasks (right) of CelebA. With cifierent numBbers of tasks.

Next, we select more tasks from CelebA. Table 4 shows the average HV over 3 runs with different
random seeds on CelebA with 3, 5, 10, and 15 tasks. Details of the selected tasks are in Appendix B.4.
As can be seen, as the number of tasks increases, GMOOAR exhibits more significant performance

| CelebA-Easy ~CelebA-Hard

COSMOS [44] | 3.700£0.005 2.21740.002
GMOOAR-U | 3.710£0.005 2.217£0.002
GMOOAR-HV | 3.711+£0.005 2.22240.006

Table 3: Average HV and standard deviation of solution sets obtained on CelebA with 2 tasks.

gains compared to COSMOS. In particular, GMOOAR-HV always achieves the highest HV, which is
then closely followed by GMOOAR-U. However, the computation of HV is NP-hard with respect to
the number of objectives [53]. Hence, as can be seen from Figure 7, the runtime of GMOOAR-HV
grows much faster with the number of tasks than COSMOS and GMOOAR-U. On the other hand,
GMOOAR-U is very scalable and its running time changes little with the number of tasks.

\ 3 tasks 5 tasks 10 tasks 15 tasks

COSMOS [44] | 6.925£0.005 11.56+0.09 118.1£1.0 1805+52
GMOOAR-U | 6.953 £0.004 15.19+0.18 215.0+6.1 4057+47
GMOOAR-HV | 6.967 = 0.007 15.34+0.06 217.8+1.5 -

Table 4: Average HV and standard deviation of solution sets obtained on CelebA with 3, 5, 10, and
15 tasks. GMOOAR-HYV cannot be run on 15 tasks as it takes more than a month on our machine.

4.5 Ablation Study

In this experiment, we study the effects of the RV learning rate o and bandwidth % in (6) on the
performance of GMOOAR-U. We use the same setting as in Section 4.3. The experiment is repeated
10 times with different random seeds.

3.72

o / N / \\ Figure 8a shows the variations of HV with o

(h is fixed to 0.01). As can be seen, an « too
small results in almost no RV adaption and
thus poor performance, while an « too large

> 368
X

3.66 3.66

362l] g] may lead to unstable learning. Figure 8b
S el eToem T % shows the variation of HV with h (a is fixed
(a) RV learning rate o (b) Bandwith h. to 0.005). When h is too small (resp. too

Figure 8: Averge HV and 95% confidence interval large), Q(Rz 9) is C_lose to zero (resp. ~”)
with different a’s and s on GMOOAR-U using the 2nd the gradient vanishes, making learning
Compass dataset. difficult.

5 Conclusion

In this paper, we present a novel gradient-based MOO algorithm with adaptive RVs. The proposed
algorithm can efficiently adapt the RVs during optimization and provide diverse solutions with a small
overhead compared to single-objective optimization. Experiments show the ability of the proposed
strategies to obtain well-distributed solutions based on the specified quality function. In the future,
we will consider the incorporation of [36] (to obtain a continuous PF) and other state-of-the-art MOO
algorithms.

Acknowledgements

This research was supported in part by the Research Grants Council of the Hong Kong Special
Administrative Region (Grant 16200021).

10

References

[1] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias. In Ethics of Data
and Analytics, pages 254-264. Auerbach Publications, 2016.

[2] Slim Bechikh, Marouane Kessentini, Lamjed Ben Said, and Khaled Ghédira. Preference
incorporation in evolutionary multiobjective optimization: A survey of the state-of-the-art. In
Advances in Computers, volume 98, pages 141-207. 2015.

[3] Syrine Belakaria, Aryan Deshwal, Nitthilan Kannappan Jayakodi, and Janardhan Rao Doppa.
Uncertainty-aware search framework for multi-objective Bayesian optimization. In AAAI
Conference on Artificial Intelligence, pages 10044-10052, 2020.

[4] Emil Bjornson, Eduard Axel Jorswieck, Mérouane Debbah, and Bjorn Ottersten. Multiobjective
signal processing optimization: The way to balance conflicting metrics in 5G systems. I[EEE
Signal Processing Magazine, 31(6):14-23, 2014.

[5] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[6] Rich Caruana. Multitask learning. Machine Learning, 28(1):41-75, 1997.

[7] Ran Cheng, Yaochu Jin, Markus Olhofer, and Bernhard Sendhoff. A reference vector guided
evolutionary algorithm for many-objective optimization. IEEE Transactions on Evolutionary
Computation, 20(5):773-791, 2016.

[8] Ran Cheng, Miqing Li, Ye Tian, Xingyi Zhang, Shengxiang Yang, Yaochu Jin, and Xin Yao.
A benchmark test suite for evolutionary many-objective optimization. Complex & Intelligent
Systems, 3(1):67-81, 2017.

[9] Yunfei Cui, Zhigiang Geng, Qunxiong Zhu, and Yongming Han. Multi-objective optimization
methods and application in energy saving. Energy, 125:681-704, 2017.

[10] I Das and JE Dennis. Normal-boundary intersection: A new method for generating Pareto-
optimal points in multieriteria optimization problems. SIAM Journal on Optimization, 1996.

[11] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182—-197, 2002.

[12] Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. Scalable test problems
for evolutionary multiobjective optimization. In Evolutionary Multiobjective Optimization,
pages 105-145. Springer, 2005.

[13] Stephan Dempe. Foundations of Bilevel Programming. Springer Science & Business Media,
2002.

[14] Jean-Antoine Désidéri. Multiple-gradient descent algorithm (MGDA) for multiobjective opti-
mization. Comptes Rendus Mathematique, 350(5-6):313-318, 2012.

[15] Alexey Dosovitskiy and Josip Djolonga. You only train once: Loss-conditional training of deep
networks. In International Conference on Learning Representations, 2019.

[16] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[17] Michael Emmerich and André Deutz. Time complexity and zeros of the hypervolume indicator
gradient field. In EVOLVE - A Bridge between Probability, Set Oriented Numerics, and
Evolutionary Computation III, pages 169-193. Springer, 2014.

[18] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In International Conference on Machine Learning, pages 1126—1135,
2017.

[19] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil.
Bilevel programming for hyperparameter optimization and meta-learning. In International
Conference on Machine Learning, pages 1568-1577, 2018.

11

[20] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil.
Bilevel programming for hyperparameter optimization and meta-learning. In International
Conference on Machine Learning, pages 1568-1577, 2018.

[21] Tobias Friedrich, Frank Neumann, and Christian Thyssen. Multiplicative approximations, opti-
mal hypervolume distributions, and the choice of the reference point. Evolutionary Computation,
23(1):131-159, 2015.

[22] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. In International Conference on
Learning Representations, 2017.

[23] Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale frame-
work for bilevel optimization: Complexity analysis and application to actor-critic. Preprint
arXiv:2007.05170, 2020.

[24] Hisao Ishibuchi, Linjun He, and Ke Shang. Regular Pareto front shape is not realistic. In IEEE
Congress on Evolutionary Computation, pages 2034-2041, 2019.

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 2015.

[26] Marco Laumanns and Jiri Ocenasek. Bayesian optimization algorithms for multi-objective
optimization. In International Conference on Parallel Problem Solving from Nature, pages

298-307, 2002.

[27] Marco Laumanns, Lothar Thiele, Kalyanmoy Deb, and Eckart Zitzler. Combining convergence
and diversity in evolutionary multiobjective optimization. Evolutionary Computation, 10(3):263—
282, 2002.

[28] Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. Object recognition with
gradient-based learning. In Shape, Contour and Grouping in Computer Vision, pages 319-345.
Springer, 1999.

[29] Miqging Li and Xin Yao. What weights work for you? Adapting weights for any Pareto
front shape in decomposition-based evolutionary multiobjective optimisation. Evolutionary
Computation, 28(2):227-253, 2020.

[30] Xi Lin, Zhiyuan Yang, Qingfu Zhang, and Sam Kwong. Controllable Pareto multi-task learning.
Preprint arXiv:2010.06313, 2020.

[31] Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qing-Fu Zhang, and Sam Kwong. Pareto multi-task
learning. In Neural Information Processing Systems, 2019.

[32] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search.
In International Conference on Learning Representations, 2018.

[33] Suyun Liu and Luis Nunes Vicente. The stochastic multi-gradient algorithm for multi-objective
optimization and its application to supervised machine learning. Annals of Operations Research,
pages 1-30, 2021.

[34] Xingchao Liu, Xin Tong, and Qiang Liu. Profiling Pareto front with multi-objective Stein
variational gradient descent. In Neural Information Processing Systems, 2021.

[35] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In International Conference on Computer Vision, pages 3730-3738, 2015.

[36] Pingchuan Ma, Tao Du, and Wojciech Matusik. Efficient continuous Pareto exploration in
multi-task learning. In International Conference on Machine Learning, pages 6522-6531, 2020.

[37] Debabrata Mahapatra and Vaibhav Rajan. Multi-task learning with user preferences: Gradient
descent with controlled ascent in Pareto optimization. In International Conference on Machine
Learning, pages 6597-6607, 2020.

[38] Debabrata Mahapatra and Vaibhav Rajan. Exact Pareto optimal search for multi-task learning:
Touring the Pareto front. Preprint arXiv:2108.00597, 2021.

12

[39] Kaisa Miettinen. Nonlinear Multiobjective Optimization, volume 12. Springer Science &
Business Media, 2012.

[40] Aviv Navon, Aviv Shamsian, Ethan Fetaya, and Gal Chechik. Learning the Pareto front with
hypernetworks. In International Conference on Learning Representations, 2020.

[41] Kirtan Padh, Diego Antognini, Emma Lejal-Glaude, Boi Faltings, and Claudiu Musat. Address-
ing fairness in classification with a model-agnostic multi-objective algorithm. In Uncertainty in
Artificial Intelligence, pages 600-609, 2021.

[42] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. FiLM:
Visual reasoning with a general conditioning layer. In AAAI Conference on Artificial Intelligence,
2018.

[43] Yutao Qi, Xiaoliang Ma, Fang Liu, Licheng Jiao, Jianyong Sun, and Jianshe Wu. MOEA/D
with adaptive weight adjustment. Evolutionary Computation, 22(2):231-264, 2014.

[44] Michael Ruchte and Josif Grabocka. Scalable Pareto front approximation for deep multi-
objective learning. In International Conference on Data Mining, pages 1306-1311, 2021.

[45] Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In Neural
Information Processing Systems, 2018.

[46] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In International Conference on Machine Learning, pages 6105-6114, 2019.

[47] Ryoji Tanabe and Hisao Ishibuchi. An analysis of quality indicators using approximated
optimal distributions in a 3-D objective space. IEEE Transactions on Evolutionary Computation,
24(5):853-867, 2020.

[48] Ye Tian, Cheng He, Ran Cheng, and Xingyi Zhang. A multistage evolutionary algorithm for
better diversity preservation in multiobjective optimization. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 51(9):5880-5894, 2019.

[49] Hao Wang, André Deutz, Thomas Bick, and Michael Emmerich. Hypervolume indicator
gradient ascent multi-objective optimization. In International Conference on Evolutionary
Multi-Criterion Optimization, pages 654—669, 2017.

[50] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: A novel image dataset for
benchmarking machine learning algorithms. Preprint arXiv:1708.07747, 2017.

[51] I-Cheng Yeh and Che-hui Lien. The comparisons of data mining techniques for the predictive
accuracy of probability of default of credit card clients. Expert Systems with Applications,
36(2):2473-2480, 2009.

[52] Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm based on decom-
position. IEEE Transactions on Evolutionary Computation, 11(6):712-731, 2007.

[53] Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M Fonseca, and Viviane Grunert
Da Fonseca. Performance assessment of multiobjective optimizers: An analysis and review.
IEEE Transactions on Evolutionary Computation, 7(2):117-132, 2003.

13

