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Supplementary Material462

A Code and Data463

All coda and data, as well as additional video results can be found on our project page: d2nerf.github.io.464

We also include a static copy of the code and website as zip files in the supplementary.465

B Hyperparameters466

As we do not have large TPUs available for training, we incorporate a light-weighted HyperNeRF467

[40] as the dynamic component to reduce training time. Compared to the original hyperparameters468

described in the paper, we reduce the number of samples per ray (64 vs. 128 in [40]), batch size469

(1024 vs. 6144 in [40]), and number of iterations (100k vs. 250k in [40]). We also do not apply470

the background regularization, as it requires a set of known background 3D points, which rely on471

accurate dynamic masks during COLMAP registration.472

We experimentally established a set of hyperparameters applicable for a variety of scenes. In total,473

we used five sets of hyperparameters for the evaluation on the real-world dataset, and four on the474

synthetic dataset. To ensure the various scenes are fully separated into different components, we475

increase λs during training, where → indicates the value is linearly increased and ⇒ indicates it is476

exponentially increased. - entry for λρ indicates that the shadow field is not applied.477

Table 3: Hyperparameters – Row 1-4 specify hyperparameters for real-world scenes containing
a mixture of dynamic objects and shadows, whereas row 5 is suitable for real-world scenes with
dynamic shadows only. Row 6-9 contain hyperparameters for synthetic scenes.

k λs λr λσS λρ Dataset

1 1.75 1e−4 → 1e−2 1e−3 0 1e−1
Broom, Chicken, Curls, Pick2, Duck,
Balloon, Cookie, Hand, Shark, Toy

2 3 1e−4 ⇒ 1 1e−3 0 1e−1 Banana (novel view)
3 2.75 1e−5 ⇒ 1 1e−3 0 - Water, Banana (decoupling)
4 2.875 5e−4 ⇒ 1 0 0 - Pick
5 1.5 1e−3 ⇒ 1 1e−1 1e−2 1e−2 Camera Shadow, Shadow Car
6 2 1e−5 ⇒ 1 1e−5 1e−4 - Cars, Soft
7 1.75 1e−5 ⇒ 0.1 1e−4 0 - Car
8 2.5 1e−5 ⇒ 1 1e−5 1e−3 - Chairs
9 2.75 1e−4 ⇒ 1 2e−4 1e−4 - Bag

C Scene Decoupling – Figure 11, Figure 13, Figure 14478

We demonstrate additional qualitative results on scene decoupling task on both real-world and479

synthetic scenes; see Figure 11, 12, 13, and 14.480

D Video Segmentation – Table 4, Figure 15481

As our method learns a density distribution of the dynamic objects in the scene, we can further produce482

an alpha mask of the objects. We therefore also evaluate the correctness of object segmentation at483

the image level. Existing benchmarks on video segmentation [42, 56, 24] either contain too few484

video frames for reliable SfM reconstruction, or do not have correct ground truth masks for all of485

the dynamic objects and effects in the scene. Similarly, the dataset from NeuralDiff [54] focuses on486

egocentric videos and the over-exaggerated difference between frames in the videos is not suitable487

for HyperNeRF which we use as the dynamic component. Hence, to highlight the ability of our488

method to decouple dynamic objects and shadows from video sequences with large viewpoint shifts,489
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Figure 11: Additional results on real-world scene decoupling and segmentation – Similar to
Figure 7, we show the dynamic alpha mask, dynamic part and static background respectively. Last
two rows at bottom show the "broom" scene from HyperNeRF [40].

we evaluate on our synthetic dataset. In addition to the NeRF-like baselines, we also compare with490

Motion Grouping (MG) [64], a motion-based 2D image segmentation method. We fine-tuned the491
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Figure 12: Decoupled depth – We show the disentangled geometry as depth maps for dynamic and
static components respectively.

Figure 13: Background novel view – Our method learns the decoupled static background and can
render it from unseen views, with the dynamic occluders cleanly removed.

Figure 14: Scene decoupling and novel view background recovery on synthetic scenes – We train
each method with videos containing various dynamic occluders and shadows, decouple the scene and
render the background from unseen views to compare with the ground truth. Quantitative evaluation
on corresponding scenes can be found at Table 1.
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Car Cars Bag Chairs Pillow Mean
J ↑ F ↑ J ↑ F ↑ J ↑ F ↑ J ↑ F ↑ J ↑ F ↑ J ↑ F ↑

MG [64] .603 .743 .363 .474 .629 .738 .484 .613 .044 .080 .424 .529
NeRF-W [31] .072 .132 .098 .162 .027 .052 .154 .254 .194 .314 .109 .183
NSFF [26] .083 .152 .058 .104 .102 .182 .046 .087 .104 .188 .079 .143
NeuralDiff [54] .806 .891 .508 .578 .080 .144 .368 .513 .097 .177 .372 .461
Ours (w/o skew) .814 .896 .807 .883 .342 .483 .114 .198 .347 .511 .485 .594
Ours (w/o Lr ) .076 .139 .174 .261 .048 .089 .237 .367 .040 .078 .115 .187
Ours (w/o skew, Lr ) .077 .142 .376 .464 .043 .081 .315 .453 .027 .053 .168 .238
Ours .848 .917 .790 .874 .703 .818 .551 .687 .693 .818 .717 .822

Table 4: Video segmentation – We report Jaccard index J and boundary measure F on training
views. Our method performs well on "car" and "cars" scenes without the use of skewed entropy
because the background is clearly distinguishable from the moving object.

Figure 15: Video segmentation (qualitative) – MG fails to identify the moving pillow and segments
everything out except for the table due to its Hungarian setting. NeRF-W learns the transient
component with severe cloud-like effects. While our method achieves best segmentation in all the
scenes.

pre-trained MG model on each scene for 5k iterations. For other NeRF-based methods, we used the492

same settings as in Section 4.4 and produced the alpha masks as the normalized radiance weights493

of the time-varying component, and then applied a threshold of 0.1 to obtain the binary masks. See494

Table 4, Figure 15 for the results.495

E Novel View Synthesis – Table 5, Figure 16496

Although the aim of our method is not to improve the quality of time-varying scene reconstruction,497

as a by-product, we find that by introducing a static component to fully utilize the network capacity,498

our method achieves more robust reconstruction for both the dynamic objects and background. We499

therefore also evaluate our method on the ability to synthesize the whole scene from novel views.500

We compare several approaches for dynamic scene reconstruction, including NeuralDiff [54] and a501

baseline version of HyperNeRF [40], which has the same architecture as our dynamic component.502

Since our method uses an additional static component and naturally has more network parameters503

and capacity, we also compare with a fair version of HyperNeRF with roughly the same number of504

total parameters by extending the NeRF MLP width to 375. Unlike novel view experiments in [40],505

we do not interleave between two cameras, but use only the right camera as training view and the left506
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Figure 16: Novel view synthesis (qualitative) – For challenging scenes such as "water" and "duck"
where the dynamic object moves rapidly or training/validation views differ largely, HyperNeRF
[40] fails to reconstruct a reasonable shape for the dynamic object, while ours might potentially
predict a shifted object pose, but can still render the view with high fidelity. We additionally show
the decoupled dynamic object from our method. The quality is slightly degraded compared to the
decoupling results in Figure 7 and 11 as we are rendering from the more challenging novel views.

camera as validation view. This presents greater challenges to all the methods. See Table 5, Figure 16507

for the results.508
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Pick2 Duck Balloon Water Cookie
LPIPS↓ MS-SSIM↑ PNSR↑ LPIPS↓ MS-SSIM↑ PNSR↑ LPIPS↓ MS-SSIM↑ PNSR↑ LPIPS↓ MS-SSIM↑ PNSR↑ LPIPS↓ MS-SSIM↑ PNSR↑

NeuralDiff .208 .853 21.81 .222 .862 21.92 .167 .836 20.13 .172 .811 18.36 .159 .875 20.53
HN (base) .496 .413 13.06 .251 .830 20.64 .195 .803 17.81 .360 .483 15.06 .161 .836 19.93
HN (fair) .486 .409 13.14 .253 .818 20.32 .187 .804 17.92 .361 .465 14.80 .162 .801 19.75
Ours .253 .825 20.32 .214 .856 22.07 .153 .858 20.92 .153 .849 21.63 .156 .877 19.93

Broom Chicken Banana Mean
LPIPS↓ MS-SSIM↑ PNSR↑ LPIPS↓ MS-SSIM↑ PNSR↑ LPIPS↓ MS-SSIM↑ PNSR↑ LPIPS↓ MS-SSIM↑ PNSR↑

NeuralDiff .631 .468 17.75 .249 .822 21.17 .303 .748 19.43 .264 .784 20.14
HN (base) .524 .636 19.65 .222 .878 23.94 .223 .818 21.20 .304 .712 18.91
HN (fair) .503 .624 19.38 .180 .881 23.68 .194 .832 21.52 .291 .704 18.82
Ours .565 .712 20.66 .204 .890 24.27 .260 .820 21.35 .245 .836 21.39

Table 5: Novel view synthesis (quantitative) – We compare with NeuralDiff [54], a baseline version
of HyperNeRF [40], denoted HN (base), and a fair version with extended network width to match the
total number of parameters in our method, denoted HN (fair). Three scenes displayed in the bottom
row are from HyperNeRF[40]

F Ambiguity between Dynamic Component and Shadow509

The shadow field network represents the density-less shadows in a more physically realistic way, and510

resolves the ambiguity in their motion. However, the aim of our method is to achieve decoupling511

of dynamic occluders from the static environment, and we do not over-extend to consider further512

decoupling between objects and shadows, which would require more priors related to environmental513

lighting conditions and background texture.514

We empirically found that shadow field is not necessary for scenes with strong and fast-moving515

shadows, where they can be directly learned by the dynamic component as thin layers on top of the516

static geometry; see Figure 17. On the other hand, there exists unsolvable ambiguity between the517

shadow and dynamic object, especially for which with a similar or darker color to the background,518

and hence could be potentially explained as a moving shadow instead of an actual 3D shape due519

to our monocular camera setting; see Figure 18. As the later case causes failed dynamic geometry520

reconstruction, leading to a severe decrease in novel view synthesis performance, we deliberately521

choose a large value of λρ to suppress the shadow field for scenes containing a mixture of dynamic522

objects and shadows. Although this potentially favors the former case and causes more shadows to be523

interpreted as thin-layers, we found that such setting has minimal impact on performance of both524

scene decoupling and reconstruction, and is still sufficient to achieve correct shadow decoupling, as525

the shadow field resolves the ambiguity in shadow in very early stage of the training.526

Figure 17: Shadow as thin layer – Al-
though such representation could poten-
tially represent more than just shadows, it
still tends to exclude unnecessary texture
from static background and learns only the
darkening effects.

Figure 18: Incorrect shadow – The shadow field is
incorrectly used to explain the black sleeve as well as the
gray top of the moving car.
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