
D2NeRF: Self-Supervised Decoupling of Dynamic and
Static Objects from a Monocular Video

Anonymous Author(s)
Affiliation
Address
email

Abstract

Given a monocular video, segmenting and decoupling dynamic objects while recov-1

ering the static environment is a widely studied problem in machine intelligence.2

Existing solutions usually approach this problem in the image domain, limiting3

their performance and understanding of the environment. We introduce Decoupled4

Dynamic Neural Radiance Field (D2NeRF), a self-supervised approach that takes5

a monocular video and learns a 3D scene representation which decouples moving6

objects, including their shadows, from the static background. Our method repre-7

sents the moving objects and the static background by two separate neural radiance8

fields with only one allowing for temporal changes. A naive implementation of9

this approach leads to the dynamic component taking over the static one as the10

representation of the former is inherently more general and prone to overfitting.11

To this end, we propose a novel loss to promote correct separation of phenomena.12

We further propose a shadow field network to detect and decouple dynamically13

moving shadows. We introduce a new dataset containing various dynamic objects14

and shadows and demonstrate that our method can achieve better performance than15

state-of-the-art approaches in decoupling dynamic and static 3D objects, occlusion16

and shadow removal, and image segmentation for moving objects.17

1 Introduction18

Reasoning about motion is a fundamental task in machine vision which facilitates intelligent inter-19

actions with the 3D environment for applications such as robotics and autonomous driving. Given20

a monocular RGB video captured from a moving casual camera, we consider the problem of dis-21

entangling the camera from object motion, and simultaneously recovering a 3D model of the static22

environment.23

While decomposition of scenes in the image domain has been addressed in the literature, the use24

of 2D priors and inpainting technique lacks 3D understanding, leading to sub-optimal results. We25

approach this problem in 3D, aiming to reconstruct a decoupled 3D scene representation that allows26

for synthesizing the dynamic and static objects separately in a free-view and time-varying fashion.27

Compared to the task of static scene reconstruction [29], modeling a scene with time-dependent28

effects is a severely ill-posed problem. Existing works seek for robust solutions by incorporating29

additional supervision such as multi-view capture [23], optical flow [9], or depth [55], but they treat30

every part of the scene as time-dependent, leading to a poor reconstruction of background details due31

to limited network capacity.32

In this paper, we adapt Neural Radiance Fields [29] (NeRF) and its extension HyperNeRF [36] to33

time-varying scenes by decoupling the dynamic and static components of the scene into separate34

radiance fields. Previous techniques that decouple dynamic and static scenes either rely on pre-trained35
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object detection/segmentation modules [18, 24, 11, 22], or are limited to a single rigid object [63]36

or semi-static objects [50]. Our method learns dynamic and static components separately in a37

self-supervised fashion, using a novel skewed-entropy loss to encourage a clean separation of static38

and dynamic objects.39

A crucial issue in creating a clean separation is properly handling shadows, as dynamic objects cast40

shadows that cause the radiance of the shadow receiver to vary with time. When the shadow receiver41

is part of the static component, this time-varying change in radiance cannot be directly modeled. Our42

solution is to relax the static component with a time-varying shadow field that modulates the radiance,43

allowing the shadows cast by moving objects to be captured while constraining density and color to44

be static.45

Our method enables 3D scene decoupling and reconstruction from a monocular video captured from46

casual equipment such as a mobile phone, and can be readily extended to multi-view videos. By47

separately modeling the time-varying and time-independent targets in the video, our method can48

remove the dynamic occluders and their shadows, and synthesize a clean background from novel49

views.50

We demonstrate the effectiveness of our method in two aspects: (i) the quality of novel view synthesis51

of the decoupled static background for monocular videos where the dynamic objects and shadows52

heavily occlude the scene, and (ii) the correctness of segmentation of dynamic objects and shadows53

on 2D images.54

We introduce a new dataset with rigid and non-rigid dynamic objects, rapid camera motion and55

various moving shadows in both the synthetic and real-world settings to evaluate these two aspects,56

and show that our method achieves better performance than state-of-the-art approaches.57

2 Related Work58

As our method learns a decoupled neural 3D representation of the dynamic and static scenes, we59

start this section with a review of scene representations, and then focus on methods for object motion60

decoupling. We also review prior works for 2D segmentation of moving objects.61

Scene Representations A 3D scene representation is a data structure that encodes the geome-62

try and appearance of a 3D scene, upon which many algorithms and applications are developed.63

Recently, there has been a surge of methods that combine deep learning methods with traditional64

3D representations: point clouds [16, 37], meshes [7, 30], voxels [6, 54, 10, 1, 51, 3], implicit sur-65

faces [34, 58, 14, 13, 47], and light fields [46, 48, 2, 44]. Among neural representations, NeRF [29]66

has attracted substantial attention due to its photo-realistic performance in novel view synthesis67

for scenes with complex geometry, lighting, and materials. Via differentiable volume rendering68

and inputs of multiple views of the scene, NeRF applies an MLP to learn a 5D radiance field of69

the scene modeling the spatially and view-dependent radiance. Various extensions of NeRF have70

been developed to improve its performance and generality such as training with only one or few71

views [62, 17, 21, 32, 41], allowing for input images with inconsistent lighting and object loca-72

tions [28, 64], learning large-scale scenes with street or satellite views [43, 56], speeding up rendering73

to reduce training and inference time [26, 8, 40, 42, 61, 12, 31, 25, 49, 53, 60], and capture of74

dynamic effects within the scene [23, 39, 9, 55, 35, 36, 20]. We further extend NeRF to decouple75

dynamic from static effects.76

Motion Decoupling Prior works to acquire a decoupled 3D representation of dynamic and static77

scenes can be divided into either supervised or self-supervised approaches. Among the supervised78

approaches, STNeRF [18] learns individual NeRFs with deformation fields for each human in79

a dynamic scene through pre-trained human segmentation networks. Similarly, NSFF [24] and80

DynNeRF [11] rely on pre-trained semantic and motion segmentation methods to obtain masks for81

moving objects in a monocular video, and explicitly guide the training of separate NeRF networks82

to decouple the scene based on motion. Among the self-supervised approaches, SIMONe [19]83

incorporates a transformer encoder and variational autodecoder to simultaneously recover novel84

views, object segmentation masks and dynamic object trajectories, but they do not allow for a85

synthesis of dynamic or static objects alone. NeRF-W [28] employs per-frame embeddings to model86

non-photometric consistent effects in unconstrained photo collections, but their design was not87
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Figure 1: Overview – Given the ground truth view, camera pose and the time frame, our method
reconstructs the underlying scene as a composite radiance field. Dynamic objects are represented by
FD, while the static scene is represented by FS . The shadow-field Fρ models non-static shadows
within the input video.

intended for a clean separation between moving objects and the static scene. STaR [63] reconstructs88

and decomposes a rigid dynamic object and the static background simultaneously by optimizing two89

NeRFs and a set of time-varying object poses in a self-supervised way, but it is only suitable for90

scenes with a single rigid dynamic object and requires multi-view videos. Conversely, our approach91

works with more complex scenes involving multiple non-rigid and topologically varying objects,92

and our method can be directly applied from monocular video. NeuralDiff [50] incorporates three93

NeRF-based streamlines to decompose background, object and actor from an egocentric video,94

and it is the most similar to ours within the literature. However, its use of a naive time-varying95

NeRF architecture leads to blurry results and therefore heavily limits its performance on both scene96

decomposition and reconstruction.97

Image Segmentation of Moving Objects Orthogonal to the reconstruction and disentanglement in98

3D, there have also been extensive researches in self-supervised and template-free segmentation at the99

image level (i.e. 2D). The majority relies on motion-clues to segment objects with different optical100

flow patterns [4, 59, 33, 57]. Some techniques incorporate a transformer style slot-based attention101

scheme to learn consistent object segmentation over a sequence of optical flow images [59], while102

others learn alpha-matting from a single video with smooth camera movement and homographic103

background and extend the segmentation target to correlated effects such as shadow or reflectance [27].104

Those approaches come with obvious shortcomings, as they focus on image level segmentation and105

incorporate no 3D understanding, they cannot handle large scale camera motion, complicated static106

background and cannot recover 3D geometry, or perform novel view synthesis.107

3 Method108

Given a monocular video captured from a freely moving hand-held camera, our method reconstructs109

a neural scene representation that decouples moving objects from the static environment, assuming a110

constant illumination and known camera poses (e.g. calibrated with COLMAP [45]). As illustrated in111

Figure 1, our method achieves this by learning separate radiance fields for static and dynamic portions112

of the scene, and doing so in a fully self-supervised fashion. We describe our architecture (Section 3.1),113

detail of our self-supervised losses (Section 3.2), and describe how, while shadows are not explicitly114

modeled by NeRFs, a simple technique for their effective removal is attainable (Section 3.3).115
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3.1 Composite Neural Radiance Field116

The static component builds upon NeRF [29], which represents the scene as continuous spatial-117

dependent density σ and spatial-view-dependent radiance c using an multi-layer perceptron FS :118

σS(x) ∈ R
cS(x,d) ∈ R3

}
= FS(x,d) (1)

where x ∈ R3 is the spatial coordinate, and d ∈ R3, ∥d∥ = 1 is the view direction. To model the119

dynamic component of a scene, we adapt HyperNeRF [36], which accurately captures scenes with120

non-rigid motion as well as topological changes by introducing additional degree of freedom and121

network capacity. For convenience, we denote it as a neural function FD:122

σD(x, τi) ∈ R
cD(x,d, τi) ∈ R3

}
= FD(x,d, τi) (2)

where τi ∈ Rm is the per-frame time latent code. Given a camera ray r = o + td originating123

from o and with direction d, the two models are then composited to calculate the color Ĉ of the124

camera ray by integrating the radiance according to volumetric rendering within a pre-defined depth125

range [tn, tf ]:126

Ĉ(r, τi) =

∫ tf

tn

T (t)
(
σS(t) · cS(t) + σD(t, τi) · cD(t, τi)

)
dt (3)

T (t) = exp

(
−
∫ t

tn

(σS(s) + σD(s, τi)) ds

)
(4)

where we simplify our notation as σ(t) ≡ σ(r(t)) and c(t) ≡ c(r(t),d). Note that, with such an127

additive decomposition, samples from either fields are capable of terminating the camera ray and128

occluding the other.129

3.2 Supervision Losses130

To find the parameters of the static (Eq. 1) and dynamic (Eq. 2) NeRF networks, a photometric loss is131

applied to ensure that the output image sequences of the composite NeRF (Eq. 3) align with the input132

video frames:133

Lp(r, τi) = ∥Ĉ(r, τi)− C(r, τi)∥22 (5)
where C(r, τi) indicates the true color of camera ray r obtained from the i-th input video frame.134

However, note the dynamic component can naturally take over the static counterpart by incorrectly135

assigning occupancy of static objects to dynamic NeRF, and the photometric loss alone also does not136

guarantee a correct separation. In what follows, we design a collection of regularizers that promote137

such decoupling in a self-supervised fashion.138

Dynamic vs. Static Factorization As physical objects cannot co-exist at the same spatial location,139

a physically realistic solution should have any position in space either occupied by a the static scene140

or by a dynamic object, but not both. To enforce this behavior we denote the spatial ratio of dynamic141

vs. static density as:142

w(x, τi) =
σD(x, τi)

σD(x, τi) + σS(x)
∈ [0, 1] (6)

and then penalize its deviation from a categorical {0, 1} distribution via a binary entropy loss [63]:143

Lb(r, τi) =

∫ tf

tn

Hb(w(r(t), τi)) dt (7)

Hb(x) = −(x · log(x) + (1− x) · log(1− x)) (8)
However, due to the strong expressive power of the dynamic networks (Eq. 2), optimizing the144

loss (Eq. 7) leads to the technique modeling parts of the scene as dynamic, regardless of whether they145

are dynamic or static; see Figure 2 (right). To overcome this issue, we propose a skewed entropy loss146

to bias our loss to slightly favor static explanations of the scene with skewness hyper-parameter k,147

that, as illustrated in Figure 2 (left, k>1), attains the desired behavior:148

Ls(r, τi) =

∫ tf

tn

Hb(w(r(t), τi)
k) dt (9)
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Figure 2: Skewed entropy – (left) the skewed (k > 1) and classical (k = 1) entropy losses. A
skewed entropy encourages a wider range of w to decrease and has a larger gradient on values around
0.5, but its gradient vanishes when w approaches 0. (right) The decoupled alpha masks and static
components when original, properly-skewed and over-skewed binary entropy losses are applied.

Figure 3: Static regularization
– By encouraging a more con-
centrated density distribution along
each camera ray in static com-
ponent, the recovered background
contains less view-dependent arti-
facts.

Figure 4: Shadow ambiguity – When shadows occur fre-
quently in the input data, the average shadow gets integrated
in the static component, and the dynamic component incor-
rectly learns the differential with respect to this average and
appears as a brighter surface. This can be avoided by a more
direct modeling of shadow effects as a dynamic darkening of
static regions (i.e. the shadow field).

Ray Regularization Choosing a large value of skewness k causes the appearance of fuzzy149

floaters (low-density particles) in the static portion of the scene; see Figure 2 (right, k=10). As it can150

be intuitively understood from Figure 2 (left), this is caused by the small gradients of Hb(x
k) as x151

approaches zero. To mitigate this effect, and reduce fuzziness in the reconstruction, we penalize the152

maximum of w along each camera ray:153

Lr(r, τi) = max
t∈[tn,tf ]

w(r(t), τi) (10)

Such loss can be intuitively interpreted as constraining the dynamic component to occupy as few154

pixels as possible while keeping minimal impact on the overall loss for all samples. Note that Lr only155

removes density floaters that sit along camera rays that do not intersect with any dynamic objects.156

Static Regularization We empirically found that static component may abuse the camera pose157

as the hint for the current time frame and learn dynamic effects as sparse clouds that lead to high-158

frequency appearance changes; see Figure 3. The ambiguity comes from the fact that we are using159

monocular casual videos where the camera almost never visits the exact same position twice during160

the capture. That is, there exists a one-to-one mapping between camera pose and time variable. We161

solve this issue by imposing a prior on the distribution of density along a ray, penalizing density162

distributions that would cause cloud-like artifacts [21, 41]:163

LσS (r) = −
∫ tf

tn

p(t) · log p(t) dt where p(t) =
σS(r(t))∫ tf

tn
σS(r(s)) ds

(11)

3.3 Shadow Fields164

Neural radiance fields cannot faithfully model standalone shadows without significant changes to165

its architecture necessary to modeling materials and illumination; see NeRFactor [66]. In simple166
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cases where shadows of the dynamic objects move rapidly, they could alternatively be learned by167

the dynamic radiance field as semi-transparent layers on top of the static surface. However, this168

tends to fail for shadows that do not move much, or that are highly correlated with the camera view.169

As shadows are texture-less, understanding their movement is ambiguous, and representing them170

as a semi-transparent layer causes difficulties in the optimization; see Figure 4. To overcome this171

issue, and under the assumption of a direct illumination model (i.e. negligible global illumination172

effects), we make the observation that a cast shadow can be represented as a pointwise reduction in173

the radiance of the the static scene, and incorporate this within Eq. 3 as:174

Ĉ(r, τi) =

∫ tf

tn

T (t)((1− ρ(r(t), τi)︸ ︷︷ ︸ ) · σS(t) · cS(t) + σD(t, τi) · cD(t, τi)) dt (12)

ρ(x, τi) ∈ [0, 1] = Fρ(x, τi) (13)

where ρ(x, τi) is a shadow ratio that scales-down the radiance of the static scene to incorporate the175

shadow. To avoid the shadow-ratio from over-explaining dark regions of the scene, we penalize its176

average squared magnitude along a ray:177

Lρ(r, τi) =
1

tf−tn

∫ tf

tn

ρ(r(t), τi)
2 dt (14)

Finally, note that shadows cast from dynamic objects onto other dynamic objects are already expressed178

from the radiance term of the dynamic branch, and do not need explicit modeling.179

4 Experiments180

4.1 Implementation details181

Our method is easily reproducible, as we intend to release code and datasets upon publication to182

facilitate future research. We adopt the HyperNeRF [36] architecture as the dynamic component,183

which has a NeRF MLP network of 8 layers, each with 256 channels, and our static NeRF component184

has the same architecture. Similar to NeRF [29], we apply a hierarchical volume sampling with185

64 coarse and 64 fine samples. The optimization takes 100k iterations with batch size 1024 and an186

exponentially decayed learning rate from 10−3 to 10−5. This training procedure spans approximately187

two hours on four NVIDIA A100-SXM-80GB GPUs. The overall loss of our method is:188

L(r, τi) = Lp(r, τi) + λsLs(r, τi) + λrLr(r, τi) + λσSLσS (r) + λρLρ(r, τi) (15)

where λs, λr, λσS , λρ are the weights of the regularization terms respectively. For scenes with a189

mixture of dynamic objects and shadows, we apply shadow decay and set λρ=0.1. We set λρ=0.001190

for scenes featuring view-correlated dynamic shadows only. We experimentally found that the optimal191

choice of the hyperparameters, especially λb, λr and the skewness k, are strongly influenced by the192

level of object motion, camera motion, and video length. Therefore, we performed a grid search on193

our synthetic and held-out real-world scenes, and some scenes from DAVIS [38], to establish a set of194

hyperparameters applicable to a variety of scenarios; details about hyperparameters can be found195

in the supplementary. We do not apply shadow field for evaluations on our synthetic scenes, as we196

empirically found that shadow field is not needed to learn correct shadows. We also disable the view197

direction input for synthetic scenes as they do not contain strong view-dependent effects.198

4.2 Evaluation199

We demonstrate the performance of our method both quantitatively and qualitatively on three tasks.200

We focus our attention to our main objective of decoupling and removing dynamic objects, including201

their shadows, with a 3D reconstruction of the static environment. We only include a summary of202

our results for novel view synthesis (in Figure 5) and video segmentation (in Figure 6), and refer the203

reader to the supplementary for a more in-depth discussion. We strongly encourage the readers to204

watch our supplementary video to better appreciate our results.205

4.3 Datasets206

In addition to the data obtained from HyperNeRF [36] and Nerfies [35], we acquire more complex207

datasets in the real-world, as well as design a synthetic dataset to enable quantitative comparisons.208
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Pick2 Duck Balloon Water Cookie Mean

NeuralDiff [50] .208 .222 .167 .172 .159 .186
HN [36] .486 .253 .187 .361 .162 .290
Ours .253 .214 .153 .153 .156 .186

Figure 5: Novel view synthesis – LPIPS↓

Car Cars Bag Chairs Pillow Mean

MG [59] .603 .363 .629 .484 .044 .424
NeuralDiff [50] .806 .508 .080 .368 .097 .372
Ours .848 .790 .703 .551 .693 .717

Figure 6: Video segmentation – J↑

Synthetic dataset We generate a synthetic dataset with ground-truth masks for moving objects209

and their shadows with Kubric [15]. This dataset consists of five scenes containing one or multiple210

dynamic objects from ShapeNet [5] with rigid or non-rigid motion, and the corresponding Kubric211

worker script is provided in our supplementary material. We move the virtual camera over 10212

keyframes randomly sampled from azimuth [2, 2 + π/4] and altitude [1, 1.2] to generate a 200-frame213

video sequence for training. We also rotate the virtual camera around the center of all keyframes214

to generate 100 validation views with only the static background being visible. We additionally215

generate masks for both the dynamic objects and their shadows, allowing us to quantitatively study216

the performance of our algorithm. Note that shadows are usually absent in existing moving-objects217

segmentation benchmarks.218

Real-world dataset We also capture ten video sequences of real scenes to showcase our perfor-219

mance. Compared to HyperNeRF’s, our dataset contains more challenging scenarios with rapid220

motion and non-trivial dynamic shadows. Note however that we cannot perform quantitative analysis221

for these datasets due to the absence of ground-truth views of a static scene or ground-truth masks.222

Five of real scenes are captured with a similar setting as Nerfies, where we use a dual-hold phone rig223

and synchronize the capture based on audio. We use the images captured by one of the two phones as224

validation views for novel-view synthesis, which are discussed in the supplementary material. To225

demonstrate the ability of fully self-supervised scene decoupling, we do not apply any masks when226

registering real-world images using COLMAP [45].227

4.4 Scene Decoupling – Table 1, Figure 7228

We report the evaluation of our method on its ability to decouple dynamic objects and their shadows,229

while recovering the static background. We evaluate our performance against NeRF-W [28] and230

NeuralDiff [50]. For NeuralDiff, we disabled the actor component (as our input videos are not231

egocentric) and only use the transient component. For NeRF-W, we used only transient embedding232

and disabled the appearance embedding that models variable lighting for evaluation on synthetic233

scenes, as they have constant illumination.234

In the evaluation, we used each method to synthesize the static background from multiple validation235

views with the moving objects and their shadows removed; see Figure 7 for qualitative results on real236

data, as well as our supplementary for qualitative results on synthetic data. We compare the results237

with the ground truth on the synthetic data and report LPIPS [65], Multi-Scale SSIM [52], and PSNR238

as the metrics for novel view synthesis of the decoupled static background; see Table 1.239

4.5 Ablations – Table 2, Figure 8, Figure 9240

We quantitatively ablate our method on our synthetic dataset; see Table 2: where "skew" means241

skewness is applied in the binary entropy regularization, and "Lr" stands for the density ratio ray242

regularization. We also qualitatively ablate it on a real scene; see Figure 8. We also qualitatively243

illustrate the ablation on shadow field network, which is necessary for decoupling shadows with244

large area, slow or repetitive motion, or shadows that are highly correlated with the camera view;245

see Figure 9.246
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Car Cars Bag Chairs Pillow Mean
LPIPS↓ MS-SSIM↑ PNSR↑ LPIPS↓ MS-SSIM↑ PNSR↑ LPIPS↓ MS-SSIM↑ PNSR↑ LPIPS↓ MS-SSIM↑ PNSR↑ LPIPS↓ MS-SSIM↑ PNSR↑ LPIPS↓ MS-SSIM↑ PNSR↑

NeRF-W [28] .218 .814 24.23 .243 .873 24.51 .139 .791 20.65 .150 .681 23.77 .088 .935 28.24 .167 .819 24.28
NeuralDiff [50] .065 .952 31.89 .098 .921 25.93 .117 .910 29.02 .112 .722 24.42 .565 .652 20.09 .191 .831 26.27
Ours .062 .975 34.27 .090 .953 26.27 .076 .979 34.14 .095 .707 24.63 .076 .979 36.58 .080 .919 31.18

Table 1: Scene decoupling (quantitative) – We train on each scene with 200 frames, decouple the
dynamic objects and shadows, and render the static component from 100 novel views to compare with
ground truth. Note these are computed on the synthetic dataset, for which ground truth is available.

Figure 7: Scene decoupling (qualitative) – We visualize results on (top) our new real scenes, and
on (bottom) scenes from HyperNeRF [36] and Nerfies [35]. To better illustrate the decoupled object
and shadow, we render the dynamic component with a white background. Note that since our method
only decouples dynamic targets, it does not include parts of objects that remain still throughout the
capture, such as the body in "curls" and "banana" scenes.

5 Conclusions247

We presented D2NeRF, a method for self-supervised 3D scene decoupling and reconstruction from248

casual monocular videos. Our method decouples occluders and correlated shadows, recovers clean249

background representations, and enables high quality novel views synthesis. Our novel skewed250

entropy regularizer is critical to separate dynamic from static components of the scene, while our251

shadow-field allows for the removal of dynamic shadows without having to explicitly model the252

interaction between light and geometry. We demonstrate superior results for multiple tasks on existing253

datasets, as well as on two datasets that we introduce alongside our technique.254

Limitations Similar to many NeRF-based methods, our approach relies on accurate camera reg-255

istration to achieve success decoupling and reconstruction. Our approach also suffers from high256

frequency view-dependent radiance change, such as those caused by the presence of reflective surface257

within the scene. Due to the monocular moving camera setting, those effects could be misinterpreted258

as dynamic effects, resulting in incorrect decoupling. Removing texture-less target that repeatedly259
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Car Cars Bag Chairs Pillow Mean
skew Lr LPIPS↓ MS-SSIM↑ PNSR↑ LPIPS↓ MS-SSIM↑ PNSR↑ LPIPS↓ MS-SSIM↑ PNSR↑ LPIPS↓ MS-SSIM↑ PNSR↑ LPIPS↓ MS-SSIM↑ PNSR↑ LPIPS↓ MS-SSIM↑ PNSR↑

□ □ .214 .834 26.26 .119 .943 26.10 .254 .666 19.96 .104 .698 24.42 .385 .671 14.24 .215 .762 22.20
✓□ □ .182 .865 25.89 .260 .803 22.47 .189 .893 28.38 .107 .693 24.44 .311 .770 15.27 .210 .805 23.29
□ ✓□ .067 .973 34.06 .104 .948 26.19 .091 .955 31.55 .151 .653 22.92 .118 .940 28.17 .106 .894 28.58
✓□ ✓□ .062 .975 34.27 .090 .953 26.27 .076 .979 34.14 .095 .707 24.63 .076 .979 36.58 .080 .919 31.18

Table 2: Ablations (quantitative) – We train on each scene with 200 frames, decouple the dynamic
objects and shadows, and render the static component from 100 novel views for metric evaluations.

Figure 8: Ablations (qualitative) – For scenes with slow motion or strong view-dependent reflectance,
Lr is used together with the skewed entropy to prevent the dynamic component from incorrectly
decoupling the scene. In the scene above this appears as a slightly darkened color on the table.

Figure 9: Ablations (shadows) – Our method is able to remove large area of shadows, even if they
are strongly correlated with the view direction (e.g., shadow cast by camera or the photographer).
Note that the appearance embedding from NeRF-W [28] is not sufficient to remove shadow that is
present throughout the capture; see the supplementary for additional qualitative results.

Figure 10: Limitations – Because the hand stays around the same position for the majority of the
time during the video, our method is unable to fully decouple and remove the texture-less shadow.

moves within a very small range is also difficult, as the motion clues are extremely ambiguous in this260

case; see Figure 10.261
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