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Abstract

As a dominant paradigm, fine-tuning a pre-trained model on the target data is
widely used in many deep learning applications, especially for small data sets.
However, recent studies have empirically shown that training from scratch has the
final performance that is no worse than this pre-training strategy once the number
of training samples is increased in some vision tasks. In this work, we revisit this
phenomenon from the perspective of generalization analysis by using excess risk
bound which is popular in learning theory. The result reveals that the excess risk
bound may have a weak dependency on the pre-trained model. The observation
inspires us to leverage pre-training data for fine-tuning, since this data is also
available for fine-tuning. The generalization result of using pre-training data shows
that the excess risk bound on a target task can be improved when the appropriate
pre-training data is included in fine-tuning. With the theoretical motivation, we
propose a novel selection strategy to select a subset from pre-training data to help
improve the generalization on the target task. Extensive experimental results for
image classification tasks on 8 benchmark data sets verify the effectiveness of
the proposed data selection based fine-tuning pipeline. Our code is available at
https://github.com/ziquanliu/NeurIPS2022_UOT_fine_tuning.

1 Introduction

After the success on ImageNet [1], deep learning attracts much attention and improves the per-
formance of various computer vision tasks significantly, e.g., object detection [2], semantic
segmentation[3]. However, as a result of expensive labeling, it is unlikely that we have sufficient
labels for every application. Fortunately, given a model pre-trained on a large-scale data set like
ImageNet, an effective model for the target data set, which may only have hundreds of examples, can
be learned by fine-tuning the pre-trained model. It is because many vision tasks are related [4] and a
model learned from ImageNet that consists of more than one million examples can contain diverse
semantic information and provides a better initialization than random initialization.

Despite the prevalence of fine-tuning pre-trained models, its theoretical understanding is unclear. On
the one hand, when sufficient training data is available, some research [5] has shown that training
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Figure 1: The proposed pre-training
data reusing method, which is moti-
vated by our generalization analysis of
the effect of pre-training data on fine-
tuning. A novel data selection method
based on unbalanced optimal transport
is proposed to reuse the appropriate pre-
training data in fine-tuning. Averaged
over 8 classification data sets, the UOT-
selection method improves the perfor-
mance of vanilla fine-tuning with a large
margin of 2.93% using a self-supervised
pre-trained model.

from scratch can achieve the same accuracy as initialization with ImageNet pre-trained models after
additional training. As a warm-up of this work, we aim to understand this phenomenon from the
theoretical side of generalization analysis [6]. Our analysis reveals that the final prediction precision
may have a weak dependency on the pre-trained model when the target training set is large enough.
On the other hand, it is not realistic to have abundant labeled data for every target task. So in many
vision applications, training from scratch generally cannot match the performance of fine-tuning a
pre-trained model. However, our theoretical result tells us that when the pre-training data are too far
from the target data, the domain gap will hurt the accuracy of target tasks.

These two observations lead to the following question: can we develop a new strategy of fine-tuning
that achieves better generalization performance than the standard framework by reusing pre-training
data in fine-tuning to reduce the domain gap? This work will address this question with an affirmative
answer. Inspired by the theoretical observation, we propose to leverage the pre-training data, which
is also available for fine-tuning, for target tasks. Concretely, we propose to reuse pre-training data
and optimize its task loss (e.g., cross-entropy loss for classification task) along with the target data
when fine-tuning. The generalization analysis confirms that the performance on the target data can be
improved when an appropriate portion of pre-training data is selected, as illustrated in Figure 1.

Since target data can be from different domains, we study the reusing strategy of pre-training data
for different cases. First, when the target data is closely related to the pre-training data, one can
randomly sample a number of pre-training data for fine-tuning, which is referred to as random
selection. Second, if the label information of pre-training data is available and the classes overlapped
with target data are identifiable, one can directly use those data with overlapped classes in fine-tuning.
For example, given the data set of CUB [7], which consists of birds images, 59 bird classes [8] in
ImageNet can be reused in fine-tuning. This scheme is referred to as label-based selection. Finally,
when the labels between pre-training and target domains cannot match exactly or pre-training data
has no labels as in self-supervised pre-training, the similarity measured by representations extracted
from the corresponding pre-trained model will be adopted for selection. The last setting is prevalent
in real-world applications and referred to as similarity-based selection.

Given the large scale of pre-training data, the representations from the pre-trained model can capture
semantic similarity [9]. Based on this observation, we propose a novel selection algorithm to obtain a
subset from pre-training data closest to the target data by solving an unbalanced optimal transport
(UOT) problem. Interestingly, the proposed method performs consistently well on other scenarios,
e.g., labels are overlapped, which reduces the effort of identifying overlapped pre-training classes.
The main contributions of this work are summarized as follows.

• From the perspective of generalization analysis, this work explains the phenomenon that
training from scratch has a similar final performance as fine-tuning the pre-trained model in
some computer vision tasks, when the training data in the target domain is sufficient.

• We develop the generalization analysis when pre-training and target data are used in fine-
tuning simultaneously, under some mild assumptions. It demonstrates that the performance
on target data will likely be improved when the pre-training data is similar to the target data.

• With the insight of generalization analysis, we propose to select a subset of pre-training
data with better similarity to the target data to further boost the final performance. A novel
UOT-based algorithm is developed to handle target data from different scenarios.
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• The performance of the proposed fine-tuning process is evaluated on 8 benchmark data
sets for image classification tasks. When a self-supervised pre-trained model is used, our
method, UOT fine-tuning, surpasses the conventional fine-tuning pipeline by a large margin
of 2.93% averaged over all tasks, verifying the effectiveness of reusing pre-training data.

2 Related Work

Fine-tuning as a special case of transfer learning [10, 11, 12, 13] aims to improve the performance
on the target data by transferring the knowledge from a large-scale pre-training data to a target
domain. For example, supervised pre-trained models on ImageNet have been extensively used in
image classification [9], object detection [2, 14] and semantic segmentation [3, 15]. However, the
empirical study in [5] shows that the advantage of a supervised pre-trained model over random
initialization cannot be observed when the gap between pre-training and target task is large, or the
target task has sufficient training data and is trained for sufficient time. Later, [4] demonstrates
that self-supervised pre-training improves upon training from scratch in object detection and other
vision tasks with strong data augmentation, indicating that self-supervised pre-training learns more
general visual representations. Our work considers a general pre-training paradigm including both
supervised and self-supervised approaches, and explains why pre-trained models fail to significantly
outperform random initialization from the view of generalization theory. Different from existing
work that regularizes the fine-tuning optimization explicitly [16, 17], we propose to reuse pre-training
data in target training based on the theoretical findings.

There are several existing papers that explore the source data selection [18, 19, 20]. [18] improves
fine-tuning by borrowing data from a source domain which is similar to the target domain. The
difference between [18] and our work are two-fold: 1) our work proposes a novel pre-training and
fine-tuning pipeline while [18] is a joint training framework without pre-training; 2) our proposed
data selection is a global search method using deep features from the pre-training model while [18]
uses low-level features and retrieves similar images with local search. Our paper demonstrates the
weakness of local search compared to global search in our experiment. [19, 20] proposed similar
schemes that pre-train the model on the selected subset from the pre-training data according to a
domain similarity measure, but they do not use the selected data along with target data in the fine-
tuning but re-pre-train on the selected data for every target task, which is a fundamental difference
between their works and ours. It is not surprising that such a re-pre-training framework brings benefit
to a target task but it costs more computational time and resources than our fine-tuning framework.
Another type of works uses the relationship between source and target to improve fine-tuning [21, 22].
[21] exploits the relationship between source and target labels, and [22] trains a policy network to
control the gradient mask for backbone’s blocks. Our paper explicitly adds a selected portion of
pre-training data in fine-tuning and the selection strategy can handle self-supervised pre-training
since it does not need source labels. [23] proposes to optimize a weight for the target data samples
instead of selecting pre-training data for improving fine-tuning. Such target-weighting methods are
compatible with ours, which selects source data, and future work will consider their combination.

The similarity-based data selection scheme in this work is the one based on a variant of optimal
transport (OT) optimization. General OT is often used in computer vision to estimate or/and minimize
the distance between two probability measures, such as prediction probabilities in classification [24],
density maps in crowd counting [25] and the reconstruction loss in generative models [26, 27]. [28]
measures the distance between two data sets by using OT and label information. Our paper solves
an unbalanced optimal transport (UOT) problem between pre-training and target data to obtain a
similarity vector for pre-training data to select a portion of data close to the target task.

3 Main Results

3.1 Theoretical Understanding

Preliminary. The target problem of interest that we aim to optimize can be formulated as
min
θ∈Rd

F (θ) := E(x,y)∼P [f(θ;x, y)] , (1)

where θ is the model parameter to be learned; (x, y) is the input-label pair that follows a unknown
distribution P; E(x,y)∼P[·] is the expectation that takes over a random variable (x, y) while we use
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E[·] for the sake of simplicity when the randomness is obvious; f(·;x, y) is a loss function. Suppose
we have a set of training data {(x1, y1), . . . , (xn, yn)} drawn from P are given, where n is the sample
size. In practice, we want to solve the following empirical version of problem (1):

min
θ∈Rd

Fn(θ) :=
1

n

n∑
i=1

f(θ;xi, yi). (2)

Stochastic gradient descent (SGD) [29] is a very popular algorithm for solving problem (2) in many
computer vision tasks, whose updating is given by θt+1 = θt−η∇θf(θt;xit , yit), where t = 0, 1, . . . ,
η > 0 is the learning rate, ∇θf(θ;x, y) is the gradient of function f(θ;x, y) with respect to variable
θ. When the variable to be taken a gradient is obvious, we use ∇f(θ;x, y) for simplicity. We
use the excess risk (ER) as the performance measurement for a solution θ̂: F (θ̂) − F (θ∗), where
θ∗ ∈ argminθ∈Rd F (θ) is the optimal solution of (1) and θ̂ is the output of SGD.

In order to describe the pre-trained model, we denote by G(θ) := E(x′,y′)∼Q[g(θ;x
′, y′)] the objective

function that the pre-trained model aims to optimize. We also suppose that we have a set of training
data {(x′

1, y
′
1), . . . , (x

′
m, y′m)} drawn from Q. Usually, the sample size of pre-training data is larger

than that of target data, i.e., m ≫ n. For the sake of analysis, we let m be large enough and both the
pre-trained model and the target learning task share the same set of parameters. In order to ensure
that the model learned by optimizing G(θ) will be valuable to the optimization of F (θ), we assume
that the difference of their gradients is bounded. That is, there exists a constant ∆ > 0 such that
∥∇F (θ)−∇G(θ)∥ ≤ ∆,∀θ ∈ Rd.

Value of Pre-trained Model. To see the value of a pre-trained model, we present the excess risk
bounds of the pre-trained model θp and the final model θf after fine-tuning θp for the target task in
the following lemma.

Lemma 1 (Informal). We have the following performance guarantees for target task F (θ) in
expectation. (1) The pre-trained model θp provides F (θp)−F (θ∗) ≤ O(∆2). (2) The final model θf
after fine-tuning θp against a set of n training examples provides F (θf )− F (θ∗) ≤ O

(
log(n∆2)

n

)
.

First, the performance gap between pre-trained model θp and the optimal model θ∗ is bounded by
O(∆2), where ∆ describes the approximation accuracy when replacing ∇F (θ) with ∇G(θ). Second,
note that ∆ only appears in the logarithmic term, implying that the excess risk bound has a weak
dependency on the pre-trained model when n is large. That is to say, when n is lager, the pre-trained
model has a small effect on the final performance, which is consistent with the empirical results
found in [5].

Value of Pre-training Data. In reality, a target task often does not have enough data to fine-tune the
model for a long time, so the pre-trained models are still better than random initialization in many
vision tasks. Nevertheless, Lemma 1 reveals that even n is not large, the dependency of generalization
on a pre-trained model is potentially weak. This leads to a natural question: is it possible to design
a better fine-tuning process that can overcome the limitation of the existing one? To this end, we
develop a new approach for fine-tuning that aims to leverage the data used for the pre-trained model
during the phase of fine-tuning. In this way, we aim to solve the following problem during the
fine-tuning process:

αFn(θ) + (1− α)Hm(θ), (3)
where α ∈ (0, 1] is a constant, Fn(θ) is defined in (2), and Hm(θ) := 1

m

∑m
j=1 h(θ;x

′
j , y

′
j) where

h is a loss function related to target task and ξj := (x′
j , y

′
j) is drawn from Q. Note that the loss

function h can be same as the loss function of the target task. The solution is updated by SGD:
θt+1 = θt − η∇f̃(θt) where ∇f̃(θt) is the stochastic gradient related to (3). The theorem below
provides a performance guarantee for fine-tuning via (3).

Theorem 1 (Informal). We have the following performance guarantee for target task F (θ) in
expectation,

F (θf∗)− F (θ∗) ≤ O
(

α log(n∆2/α)
n + (1− α)δ2

)
, (4)

where δ2 := maxθt,ξit{E[∥∇F (θt)−∇h(θt; ξit)∥2]} and θf∗ is the final model for the target task.

When δ2 is small, by choosing appropriate α ∈ (0, 1], we may be able to further reduce the error
from F (θf∗). When δ2 is large, that is, when the second term of bound in (4) dominates the total
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error, then it would be worse than the result of standard fine-tuning a pre-trained model in Lemma 1.
Therefore, our goal is to select appropriate ξit , the training examples from pre-training data, such
that ∇h(θt; ξit) can better approximate ∇F (θt). These theoretical observations inspire us to design
a selection strategy for pre-training data, that is, to select images similar to those of target data from
pre-training data and use these selected images during fine-tuning.

3.2 The Proposed Data Selection Strategy

Theorem 1 shows that the benefit of a pre-trained model can be enhanced when pre-training data are
used during the fine-tuning process. This inspires us to propose data selection strategies and to choose
an appropriate portion of pre-training data. In experiments, we follow the standard pre-training
practice in computer vision to use a deep neural network pre-trained on ImageNet, and then select
data from ImageNet to help fine-tuning on target classification tasks. We summarize the proposed
pre-training data reuse strategies as follows.

Label-based Selection When the label information of pre-training data is available, and the
overlapped classes with target data are recognizable, one can simply select the overlapped classes and
use them during the fine-tuning. For instance, the bird images from ImageNet are all selected when
fine-tuning CUB. Unfortunately, this scheme heavily depends on the label match between pre-training
and target data, which may worsen the performance in some real-world applications without perfectly
matched classes.

Random Selection The second data selection scheme is to choose classes with uniform sampling,
referred to as random selection. This strategy can improve the performance of target tasks if
the domain gap δ2 between pre-training and target data is small, and keep the weights close to
initialization if the selected data are sufficiently large. The drawback of uniform selection is that the
domain gap δ2 is not considered in the data reusing process, so the performance heavily depends on
the inherent property of data sets.

Similarity-based Selection To reduce the domain gap, we propose the third data selection scheme,
an UOT-based method, to choose data classes from the pre-training set whose distributional distance
to the target data set is small. The UOT-selection method is able to handle pre-training data with and
without labels. When a supervised pre-trained model is used for fine-tuning, there are class labels for
pre-training images so the selection unit of UOT is class. When a self-supervised pre-trained model
is used and there are no labels for pre-training images, we index the pre-training data by clustering in
the feature space of the corresponding pre-trained backbone. Therefore, for unlabeled pre-training
data, the selection unit is cluster.

With the labels or cluster indices, each class/cluster is represented as the mean of deep features from
the pre-trained model, e.g., 512-dim features from the penultimate layer of a pre-trained ResNet18
model. Since the training set often has balanced classes, all classes or clusters are assigned with unit
weights for both pre-training and target set. So we have two density measures for the target set and
pre-training set, i.e. {(ai, w(f)

i = 1)}Kf

i=1 and {(bj , w
(g)
j = 1)}Kg

j=1, respectively. Denote the features

of target and pre-training data as v(f)
i and v

(g)
j , ai =

∑
ys=i v

(f)
s /n

(f)
i and bj =

∑
yt=j v

(g)
t /m

(g)
j ,

where n
(f)
i is the number of images in i-th class of target data and m

(g)
j is defined similarly for

pre-training data. In the general case where Kf ̸= Kg , the two measures have different total masses
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so we propose to compute the unbalanced OT distance between the two by a generalized Sinkhorn
iteration [30]. Specifically, the optimization objective is formulated as a UOT problem,

min
P∈R

Kg×Kf
+

⟨P,C⟩ − ϵh(P) + τ1KL(P1,w(g)) + τ2KL(PT1,w(f)), (5)

where Ci,j is the distance between ai and bj ; P is the transportation matrix solved by the generalized
Sinkhorn iteration; τ1 and τ2 determine the constraint on the reconstruction loss of pre-training and
target density measures; KL(·, ·) and h(·) are Kullback-Leibler divergence and entropy function.
Note that as a result of unbalanced total masses, we cannot perfectly reconstruct pre-training and
target measures at the same time. Using this property, we can create a similarity ranking effect in
the P1 vector by using a large value for τ2 but a small value for τ1. P1 is the density measure of
pre-training data and PT1 is the measure for target data. Since we want all classes of the target data
to be covered, a large τ2 is needed; while we need to select a subset of classes, τ1 should be small
to relax the constraint. Thus, a large [P1]j indicates a high similarity of class-j of pre-training data
to the target data. Finally by ranking the elements in P1 and selecting top-K classes, we obtain the
selected classes for a target data set. Fig. 2 visualizes the UOT selection and the similarity vector
given by UOT on the CUB data set.

3.3 Gradient Computation

We demonstrate how the gradient combination (3) is computed in the experiment of this work. In
the case where pre-training data has labels, we add two classification heads on top of the network
backbone. One classification head has Kf -dim output to predict the target data and the other has
Kg-dim output to predict the pre-training data. The optimization objective for the labeled case is

1

ñ

ñ∑
ti=1

f(θ;xti , yti) +
λ

m̃

m̃∑
si=1

h(θ;x′
si , y

′
si), (6)

where {xti , yti} are the target data, {x′
si , y

′
si} are the pre-training data and m̃, ñ are batch size. λ

is the weight for pre-training classification loss, which controls the weight α in (3). Although the
classification heads are different for pre-training and target data, we assume the optimization variables
θ in f and h are consistent since the output layers only have a small amount of parameters compared
to the backbone. In the case where pre-training data has no labels, the unlabeled data is used in a
semi-supervised way,

1

ñ

ñ∑
ti=1

f(θ;xti , yti) +
λ

m̃

m̃∑
si=1

h(θ; x̃′
si , p(yti |x

′
si)), (7)

where the unlabeled pre-training data is processed with weak and strong data augmentation [31]
respectively, and the probability prediction of weakly augmented data p(yti |x′

si) is taken as the soft
pseudo-label for the strongly augmented data x̃′

si . Note that there is only one classification head in
(7) and temperature or threshold is not used in the weak-strong training.

4 Experiments

This section presents the empirical analysis of reusing pre-training data in image classification tasks.
The experiment uses both supervised and self-supervised pre-trained models to fine-tune a variety
of image classification data sets. First, data reusing fine-tuning schemes consistently improves the
performance of vanilla fine-tuning, which corroborates our theoretical result. Second, the comparison
between different data selection strategies demonstrates that the UOT selection is advantageous
over random and greedy selection. Third, we simulate the situations where the training data are
scarce by sub-sampling the given training data and show that as the training data get insufficient,
the performance gain of the pre-training data reusing method will increase. Finally, some ablation
studies on experimental settings are given.

4.1 Experiment Setup

The empirical study is done on both supervised and self-supervised pre-trained models. For the
supervised training, we use the official ResNet18 [32] pre-trained on ImageNet. For the self-
supervised training, we use the official MoCo-v2 [33] ResNet50 pre-trained with 800 epochs. In
similarity-based selection, images are represented in the supervised pre-trained ResNet18 by 512-
dim features from the penultimate layer while in MoCo-v2 by 128-dim features from the final
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(a) Supervised Pre-Training Model
Method Dogs Cars CUB Pets SUN Aircraft DTD Caltech Avg.

Baseline Fine-Tune 82.65 85.87 75.49 91.40 58.03 77.62 70.64 90.11 78.98
Co-Tuning [21] 80.90 86.48 76.83 89.92 58.73 79.07 69.69 93.08 79.34

Data
Selection

Random 83.29 86.52 75.54 91.58 58.18 78.10 70.69 90.64 79.32
Greedy-OT 84.63 86.79 76.92 91.66 58.70 78.43 70.90 90.67 79.84

UOT 84.67 87.03 77.21 91.98 59.06 78.94 71.17 91.11 80.15

(b) Self-Supervised Pre-Training Model
Method Dogs Cars CUB Pets SUN Aircraft DTD Caltech Avg.

Baseline Fine-Tune 78.64 91.05 77.44 90.44 61.12 87.25 75.80 92.82 81.82
Data

Selection
w/ Labels

Random 79.87 90.85 78.82 91.48 62.42 88.60 77.34 93.26 82.83
Greedy-OT 79.43 90.89 78.63 91.27 62.27 89.40 76.81 93.36 82.76

UOT 88.14 90.89 80.98 93.05 64.76 89.28 77.45 93.45 84.75
Data

Selection
w/o Labels

Random 79.77 90.93 77.96 90.70 62.26 89.17 76.97 92.72 82.56
Greedy-OT 81.16 90.87 78.63 91.21 63.41 89.29 77.29 93.39 83.16

UOT 81.47 90.91 78.96 90.39 63.68 89.59 77.07 93.27 83.17

Table 1: Comparison of testing top-1 accuracy (%) on different data sets by fine-tuning the supervised
and self-supervised pre-trained model. The proposed data selection fine-tuning consistently improves
the vanilla fine-tuning, with UOT being the best method. A bold number denotes the top-1 accuracy
and an underlined number denotes second best accuracy.

FC layer. The pre-trained model is tested on 8 target image classification data sets, i.e. Stanford
dogs (Dogs) [34], Stanford cars (Cars) [35], Caltech-UCSD birds (CUB) [7], Oxford-IIIT Pet
(Pets) [36], SUN [37], FGVC-Aircraft (Aircraft) [38], Describable Textures data set (DTD) [39]
and Caltech101 (Caltech) [40]. During the fine-tuning process, both the backbone and randomly
initialized classification heads are updated using SGD with Nesterov Momentum. The training epochs
are fixed to be 100 in our experiment for sufficient training and the learning rate is divided by 10 at
60 and 80 epoch. Other hyperparameters like initial learning rate, weight decay and λ are determined
by grid search for all selection methods in the comparison (details in the Appendix). When there are
no labels in the pre-training data, K-means clustering [41] is used to estimate the cluster assignment
with 128-dim features as input and cosine similarity as distance. The cluster number is set as 2000
and we give an ablation study in Table 2 on the cluster number.

We test 3 data selection methods: random selection, greedy selection and UOT selection, and set the
number of selected classes to be 100 unless mentioned otherwise. Specifically, we use the OT-based
greedy algorithm [19] for comparison. The batch size for fine-tuning data is 256, and if pre-training
data are reused, the batch size keeps the same as target data which makes a total batch size of 512. In
random selection, we use the uniform selection over classes or clusters to be consistent with the other
data selection methods. In Greedy-OT, we use the same setting as in the original paper where Cij is
the l2 distance. In UOT, we set ϵ = 1.0, τ1 = 1.0 and τ2 = 100.0. The distance cost is based on the
cosine similarity Cij =

− cos(ai,bj)+1
ϵc

with ϵc = 0.01.

For the supervised pre-trained model, we also compare with Co-Tuning [21], a strong transfer learning
baseline. The experiment setting follows the original paper and we search the initial learning rate
from {1e-4, 3e-4, 1e-3, 3e-3, 1e-2} on a validation set and report the test accuracy trained on the
original training or train+val set. Note that Co-Tuning relies on the labels and the classification head
in pre-training so it is non-trivial to use Co-Tuning for a self-supervised pre-trained model. We only
compare with [21] since it is the most recent baseline which surpasses existing baselines on those
datasets we evaluate. [22] needs to train another policy network to help the adaptive fine-tuning,
which is more complex than ours. [19, 20] are pre-training methods that needs pre-training for every
new task. [18] does not consider the pre-training and fine-tuning pipeline and needs low-level features
to do data selection.

4.2 Comparison of Data Selection Strategies

Tab. 1 shows the comparison between the standard fine-tuning, Co-Tuning and 3 data reuse methods
on 8 image classification data sets, with supervised and self-supervised pre-trained model. In the
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Figure 3: (a) Accuracy of fine-tuning using UOT data selection with different numbers of selected
classes using the supervised pre-trained ResNet18. (a1) shows the performance on CUB and the blue
line is fine-tuning with all birds classes from ImageNet. The UOT selection achieves a comparable
performance to the label-based data selection. (a2) shows the increased performance of UOT selection
on Caltech as more data are reused in UOT, while the performance of random selection is consistently
worse than the UOT’s. (b) Accuracy and performance gap when sub-sampling training data using the
supervised pre-trained ResNet18. (b1) and (b2) show a decreasing trend of performance gain when
more training data are added on CUB and Caltech. The advantage of pre-training data reusing is
larger when training data are not sufficient.

K Dogs Cars CUB Pets SUN Aircraft DTD Caltech Avg.
1000 81.02 90.86 78.48 90.55 63.65 89.16 77.50 93.09 83.04
2000 81.47 90.91 78.96 90.39 63.68 89.59 77.07 93.27 83.17

Table 2: Ablation study on cluster number. The test accuracy of fine-tuning when different cluster
numbers are used in the K-means algorithm demonstrates that K=2000 gives better generalization
than K=1000.

labeled data, 100 classes of ImageNet data are reused. In the unlabeled data, 200 clusters are used to
keep the number of selected images about the same as that in labeled data selection.

The first observation is that, since the pre-training data are large enough to have similar images to
target ones, even random selection achieves better performance than the standard fine-tuning in most
data sets. Secondly, the benefit of data reuse is amplified by the similarity-based data selections, as
predicted by Theorem 1. Thirdly, UOT is better than Co-Tuning in 6 out of 8 data sets and its average
accuracy has a clear benefit over Co-Tuning, indicating that the effectiveness of Co-Tuning is not
robust to task variation. In addition, the proposed data selection is more versatile since it performs
well on the self-supervised model while Co-Tuning cannot handle the self-supervised model. Finally,
the comparison between Greedy-OT and UOT data selections demonstrates the advantage of the
global UOT in terms of the similarity measure. Fig. 3.a1 shows the performance of label-based
selection on CUB (blue line), since the birds classes happen to exist in ImageNet. It turns out the
accuracy of UOT selection method (77.21%) is comparable to the label-based selection’s (76.89%).
In addition, we also test the performance of label-based selection on Dogs (selecting 118 dog classes
of ImageNet), the performance of which (85.05%) is again comparable to UOT’s (84.67%). This
comparison demonstrates that the proposed UOT selection is generic yet effective.

The advantage of UOT is more evident in the self-supervised pre-training case than in the supervised
pre-training one. The most considerable improvement is achieved in Dogs, Birds and Pets data sets
because the animal-related classes are dominant in ImageNet (398 classes of birds, dogs, animals
and mammals) and self-supervised training learns good visual features without label information.
Once the label information is added to the fine-tuning process by data reuse, the model is taught to
recognize those familiar features and achieves giant improvements. Note that the only data on which
data reuse does not help is the Cars, indicating that the gap between ImageNet and Cars data is large
when measured by the self-supervised model. When image labels in self-supervised pre-training are
not available, the proposed data selection framework still outperforms the vanilla fine-tuning baseline
on most data sets. The benefit of UOT over greedy-OT is large on Dogs and CUB data sets, indicating
that UOT is still better at selecting similar images from ImageNet even when label information is
completely unknown.
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Figure 4: (a) Sensitivity of recall rate to ϵc. On the supervised pre-trained model, the recall rate is not
sensitive to ϵc; on the self-supervised model, when ϵc is small, the performance is stable. (b) The
similarity of selected ImageNet split to the downstream CUB data set versus downstream accuracy.

4.3 Simulation of Low-Data Regime and Long-Tail Label Distribution

To study the effect of data reusing in the scarce data scenario, we simulate low-data target tasks in this
experiment by sub-sampling CUB and Caltech training data. We select these two data sets because
they represent the fine-grained and general classification task, respectively. For each class of training
data we randomly sample 20%, 40%, 60% and 80% of images to get class-balanced training data.
Figure 3b shows that accuracy and performance gap between vanilla and data-reusing fine-tuning
when different amounts of training data are available. On both data sets, the performance gap is
increased as the training data size decreases, indicating that the UOT-selection data reusing scheme
helps more when the target data is insufficient. This experiment demonstrates that the proposed data
reusing paradigm is particularly effective when the target task does not have enough data, which
could be a typical case in real-world applications.

CUB Aircraft Caltech
Fine-Tuning 52.73 52.74 73.96

UOT 57.27 53.96 78.20

Table 3: The result of UOT-fine-tuning in data
sets with long-tail class distribution.

The long-tail class distribution is also a challenge
in real-world applications. We simulate long-tail
data sets with CUB, Aircraft and Caltech by sam-
pling images from classes with a Pareto distribution
[42] as in [43], where the number of images in the
largest class is 10 times that in the smallest class.
The results of fine-tuning a ResNet18 are shown
in the Table 3. The proposed method has a more
significant improvement when the target data is imbalanced compared with the original balanced
class data sets. The reason is that the selected pre-training data can be controlled to have a balanced
label distribution and the gradients of pre-training data have a regularization effect, so the model does
not easily overfit images in minor classes.

4.4 Ablation Study

Number of selected pre-training classes. We investigate the effect of selected class numbers
on the target classification accuracy. Figure 3a shows the performance of target tasks (CUB and
Caltech) when the number of selected classes ranges from 50 to 300 in UOT selection. The increased
pre-training data added in fine-tuning do not improve the performance of CUB, since there are 59
classes of birds in the ImageNet and more reused images enlarge the gap δ2. Surprisingly, we observe
that only using the bird images (blue line) is not the best strategy on CUB. It is because that there can
be a certain number of related classes in ImageNet, which will help the classification of bird images.
The result shows that even when labels of pre-training and target data are given and overlapped,
UOT selection can achieve better performance by including extra relevant classes from pre-training
data. On the general classification data set (Caltech), more reused pre-training data help gain the
performance improvement because the diverse data set needs a large number of images to have a
small domain gap. On both data sets, the UOT selection performs better than the random selection as
the number of selected classes changes.

Cluster number in K-means. The cluster assignments are crucial to the performance of similarity-
based selection, so we change the cluster number in the experiment and show the fine-tuning results
of 8 data sets in Table 2. On most data sets, K=2000 achieves better generalization than K=1000,
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indicating that fine-grained clustering helps the following data selection step. However, if we further
increase K, the clustering result will be quite noisy and extremely small or large clusters will be
found, which makes the fine-tuning result worse than K=2000.

Method Metric GOT-
l2

GOT-
cos

UOT-
l2

UOT-
cos

Sup. Rec. 86.44 94.92 94.92 98.31
Acc. 76.92 76.67 77.08 77.21

Self Sup. Rec. 16.95 38.98 16.95 93.22
Acc. 78.63 79.32 78.48 80.98

Table 4: Ablation study on distance. The UOT-
cos selection is better than Greedy-OT (GOT)
selection in terms of bird classes recall rate
(Rec.) and test accuracy of fine-tuning (Acc.).

Distance function and ϵc. To investigate the influ-
ence of different factors in the UOT selection, we
define a recall rate as a metric to make the compar-
ison. For a target data set whose classes happen to
exist in ImageNet, the similarity-based data selec-
tion is expected to choose those matched classes,
e.g., selecting all 59 birds classes from ImageNet
when fine-tuning on CUB. Thus, the recall rate on
CUB is defined as the ratio between the number of
bird classes in the top-100 similar vector or EMD
similarity and 59. With the performance metric, we
first compare UOT with Greedy-OT using l2 and
cosine distance in Table 4. With a supervised pre-trained model, Greedy-OT is only slightly worse
than UOT, while with a self-supervised model the weakness of Greedy-OT is amplified. It means
that Greedy-OT heavily relies on the label information in supervised training but UOT only needs
generic visual features to have a good similarity measure. In addition, the cosine distance is better
than the l2 distance, especially in the self-supervised model. The importance of cosine distance is due
to the cosine similarity loss used in MoCo training [33]. Finally, Fig. 4a shows the recall rate when
using different ϵc. The supervised model is not sensitive to the choice of ϵc but a small ϵc is crucial
to the good performance of OT-selection in the self-supervised model. Note that the recall rate of
Greedy-OT does not depend on ϵc so the performance is worse than UOT no matter what ϵc is used.

The impact of the domain gap. We split ImageNet into 10 subsets based on UOT score (higher
means higher similarity) to CUB data and reuse the 10 subsets in fine-tuning to see the results,
which are presented in Fig. 4.b1-2. With both supervised and self-supervised model, when the UOT
similarity score rapidly decreases, the performance of UOT-fine-tuning drops and is lower than the
fine-tuning baseline. This experiment indicates that the dissimilar data hurt the performance when
added to fine-tuning and highlights the importance of similarity-based data selection.

Subset of Pre-Training Data. In the case where the pre-training data is larger than the available
storage capacity, a subset of the pre-training data could be used. We subsample 50% images from
each class of ImageNet and use the 50% ImageNet data in the supervised ResNet18 fine-tuning. On
CUB and Caltech, the UOT fine-tuning achieves 77.03% and 91.00% accuracy respectively, which
only drop 0.18% and 0.11% compared with using the full ImageNet. The experiment indicates that
even with half of ImageNet, fine-tuning with UOT data selection is still quite effective.

5 Conclusion
This paper provides the generalization analysis of pre-trained models when fine-tuned on target tasks
by using excess risk bound, which suggests that the pre-trained model can have little positive influence
on learning from target data under certain conditions. It also shows that the performance on the target
data can be improved when similar data is selected from the pre-training data for fine-tuning. Inspired
by this result, a novel similarity-based selection algorithm is developed, which is evaluated on 8 data
sets and shown to be effective. Our future work will further explore the data reusing strategy in other
computer vision tasks. Broadly speaking, our research underpins the importance of pre-training data
in downstream applications, which is neglected by current research focusing on pre-trained models,
and thus has an impact in advocating the data-centric Artificial Intelligence (AI) [44]. One limitation
of the current work is that sometimes the pre-training data is private (e.g., JFT-3B [45]) and not
accessible. Given the power of pre-training data as unveiled by our work, we advocate that more
pre-training data should be open for the better use of pre-trained models.
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