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A Implementation Details

Our code is based on PyTorch [4]. The following are the implementation details of our experiments.
We have released the code for our method and that for all the baselines at https://github.com/
thuml/Debiased-Self-Training.

A.1 Architecture

The architectures of different classifier heads are as follows. For nonlinear heads, we adopt Dropout
[8] to alleviate over-fitting.

• Linear main head: Linear-Softmax;

• Nonlinear pseudo head: Linear-ReLU-Dropout-Linear-Softmax;

• Worst-case head: Linear-ReLU-Dropout-Linear-Softmax.

A.2 Hyperparameters

For experiments without pre-trained models, we use Wide ResNet-28-2 [14] for CIFAR-10 and SVHN,
WRN-28-8 for CIFAR-100, WRN-37-2 for STL-10 and adopt the same hyperparameters as FixMatch
[7]. Specifically, we use learning rate of 0.03, mini-batch size of 512 (64 for labeled data, 448 for
unlabeled data), weight decay in {0.0005, 0.001}, unlabeled loss weight λ = 1.0 and train for 1000k
iterations. For our method, we set the projection dimension of the pseudo head and worst-case head
to 2× nembedding, where nembedding denotes the dimension of backbone network output.

For experiments with pre-trained models, we use SGD with momentum of 0.9. We choose weight
decay in {0.0005, 0.001}, learning rates in {0.001, 0.003, 0.01, 0.03}. We train for 40k iterations
and use the cosine learning rate schedule. The mini-batch size is set to 64. Besides, we tune the
following algorithm-specific hyperparameters.

Π-Model. We search unlabeled loss weight λ in {0.1, 0.3, 1.0, 3.0}, warm-up iterations of unlabeled
loss in {5× 103, 104}.

Mean Teacher. We fix the exponential moving average hyperparameter α to 0.999. We search
unlabeled loss weight λ in {0.1, 0.3, 1.0, 3.0}, warm-up iterations of unlabeled loss in {5×103, 104}.

Pseudo Label. We search confidence threshold τ in {0.7, 0.8, 0.9, 0.95}, unlabeled loss weight λ in
{0.1, 0.3, 1.0, 3.0}.

FixMatch. The same as Pseudo Label.

UDA. We search temperature in {0.1, 0.5, 1.0, 2.0}, unlabeled loss weight λ in {0.1, 0.3, 1.0, 3.0}.
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Noisy Student. We search temperature in {0.1, 0.5, 1.0, 2.0}, unlabeled loss weight λ in
{0.1, 0.3, 1.0, 3.0}. We iterate 3 rounds, excluding the round that trains with only labeled data.
The final performance is reported.

Self-Tuning. We try queue size in {24, 32} and use temperature 0.07, projection dimension 1024,
same as the original paper [10].

FlexMatch. The same as Pseudo Label. Besides, we find it better to turn off threshold warm-up
when using pre-trained models.

DebiasMatch. We search confidence threshold τ in {0.7, 0.8, 0.9, 0.95}, unlabeled loss weight λ
in {0.1, 0.3, 1.0, 3.0}, debias factor in {0.1, 0.3, 1.0, 3.0} and fix momentum to 0.999. For a fair
comparison, we do not exploit additional supervision from pre-trained CLIP models [5].

DST. We set the confidence threshold to 0.7 by default. We fix the projection dimension of the
pseudo head and the worst-case head to 2048. The trade-off hyperparameter λ is set to 1.

A.3 DST as a general add-on to previous self-training methods
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Figure 1: Illustrations on how different Debiased self-training methods generate and utilize pseudo
labels.

In this section, we will illustrate how to incorporate DST into 4 typical self-training methods,
including FixMatch, FlexMatch, Mean Teacher, and Noisy Student. We will mainly focus on the
modification to the generation and utilization of pseudo labels, and omit the introduction of the
worst-case heads since they are the same across different self-training methods.

Debiased FixMatch. As shown in Figure 1(a), the pseudo labels on the unlabeled data are generated
by the main head h and utilized by the pseudo head hpseudo. The main head h is only trained on the
clean labeled data.

Debiased FlexMatch. The same as Debiased FixMatch. The learning status of each category is
estimated by the main head h.

Debiased Mean Teacher. As shown in Figure 1(b), the pseudo labels on the unlabeled data are
generated by the exponential moving average of the main head h and utilized by the pseudo head
hpseudo. The main head h is only trained on the clean labeled data.

Debiased Noisy Student. As shown in Figure 1(c), the pseudo labels on the unlabeled data are
generated by the head h of previous round T − 1 and utilized by the pseudo head hpseudo. The main
head h is only trained on the clean labeled data.

B More Experimental Results

B.1 Experiments on training stability

We further explore the training stability of FixMatch when using pre-trained models on various tasks.
Figure 2 illustrates several failure cases of FixMatch.
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(a) Aircraft (supervised pre-trained)
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(b) CUB (unsupervised pre-trained)
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Figure 2: Failure cases of FixMatch with confidence threshold 0.7 (ResNet50).

Figures 2(a) and 2(b) show when the performance of the pre-trained models declines, it cannot be
recovered later. Note that we try confidence threshold in {0.7, 0.8, 0.9, 0.95} and get similar results.

Figure 2(c) demonstrates a complete failure case of FixMatch. With unsupervised pre-trained models
and a confidence threshold of 0.7, there can be a lot of noise in pseudo labels and thus the performance
of FixMatch declines severely. Note this result is not the entry we report in Table 2 (threshold is set
to 0.9 for this dataset). Instead, we aim to show that DST improves the training stability when there
is much noise.

B.2 Experiments on performance balance between categories

Figures 3 and 4 plot the top-1 accuracy of each category on CIFAR-100 yielded by self-training on
400 labels and unlabeled data when using supervised pre-trained models or training from scratch,
respectively. The results are consistent with our previous analysis (Section 5.4) that DST improves
the performance of those poorly-behaved categories.
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Figure 3: Top-1 accuracy of each category on CIFAR-100 (ResNet50, supervised pre-trained).

0 20 40 60 80 1000
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

(a) FixMatch

0 20 40 60 80 1000
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

(b) DST

Figure 4: Top-1 accuracy of each category in on CIFAR-100 (Wide ResNet-28-8, train from scratch).
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B.3 Experiments with varying amounts of labeled data

Table 1 reports the performance of DST with 1000 labels on CIFAR-100 with different pre-trained
models. DST outperforms FlexMatch and DebiasMatch under both settings.

Table 1: Experiments with 10 labels per-class on CIFAR-100 (ResNet50).

Supervised Pre-Training Unsupervised Pre-Training

Baseline 61.5 56.2
Pseudo Label [3] 67.4 57.3
Π-Model [2] 63.3 55.5
Mean Teacher [9] 67.0 63.5
UDA [12] 65.1 67.5
FixMatch [7] 67.8 64.2
Self-Tuning [10] 66.0 60.2
FlexMatch [15] 71.2 71.1
DebiasMatch [11] 73.5 73.9
DST (FixMatch) 75.6 76.8

Figure 5 plots the accuracy of FixMatch and DST when the number of labeled samples per class
varies from 1 to 25 on CIFAR-100 with supervised pre-trained models. Experiments show that DST
is less sensitive to the amount of labeled data than FixMatch and yield consistent improvement.
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Figure 5: Ablation on the amount of labeled data on CIFAR-100 (ResNet50, supervised pre-trained).

B.4 Analysis on the behavior of pseudo labels

B.4.1 Using unsupervised pre-trained models

In this subsection, we explore the behavior of pseudo labels with unsupervised pre-trained models.
Concretely, we focus on the quantity, accuracy as well as class imbalance ratio I of pseudo labels.
Recall that I = maxcN(c)/minc′N(c′), where N(c) denotes the number of predictions that fall
into category c. Figure 6 shows the results on CIFAR-100 with 400 labels. We observe the same
phenomenon that DST effectively reduces the bias of pseudo labels, thereby improving the self-
training process.

B.4.2 Comparison with other methods

We consider two lines of work that promote the quality of pseudo labels by (1) using dynamic
threshold, including Dash [13] and FlexMatch [15]; (2) adopting multi-view training, including
Co-training [1] and Multi-task Tri-training [6]. Table 2 shows that DST outperforms baselines by
considerable margins. Figure 7 plots the quality of pseudo labels and reveals that our method can
better debias pseudo labeling and improve the quality of pseudo labels.

B.5 Ablation study on nonlinear main classifier head

Experiments suggest that using a nonlinear pseudo head improves performance. We further explore
how things are going for the main head. As shown in Table 3, using nonlinear main head or not
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Figure 6: Analysis on the behavior of pseudo labels on CIFAR-100 (ResNet50, unsupervised pre-
trained). (a) The quantity of pseudo labels above the confidence threshold. (b) The accuracy of
pseudo labels. (c) The class imbalance ratio I of pseudo labels.

Table 2: Comparison with other methods that improve the quality of pseudo labels (CIFAR-100,
ResNet50, supervised pre-trained).

Dynamic Thresholding Multi-head Training

Baseline FixMatch Dash FlexMatch Co-training MT Tri-training DST

48.2 53.1 55.4 63.4 54.4 54.4 70.4
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(a) Comparison with methods that adopt
dynamic threshold.
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(b) Comparison with methods that adopt
multi-view training.

Figure 7: Quality of pseudo labels (CIFAR-100, ResNet50, supervised pre-trained).

results in a similar performance on average. We conjecture this is because a nonlinear main head is
more likely to over-fit with few labeled samples.

Table 3: Ablation on nonlinear main head on CIFAR-100 (FixMatch, ResNet50, supervised pre-
trained).

Head Supervised Pre-Training Unsupervised Pre-Training
400 labels 1000 labels 400 labels 1000 labels

Linear 53.1 67.8 51.4 64.2
Nonlinear 54.1 67.2 50.4 64.0

C Broader Impact

First, our research helps improve the performance and training stability of various existing self-
training methods, especially when the labeled data is scarce. Second, our proposed method is simple
yet effective and thus can potentially reduce the labeling cost of many real-world machine learning
applications. Finally, our research helps reduce the bias of self-training models and improves their
performance balance.
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