
Supplementary Material

A Theoretical Proof

We provide the detailed theoretical proof for the lemmas proposed in the main manuscript. Define the
discrepancy g between the discriminative image and point cloud features as

g = P(F img
∗ |I, y; θT )− P(Fpts

∗ |P, y; θS ,KT ), (1)

Lemma 1: By the definition above, P(FKD|P, y; θS ,KT ) is bounded below by P(FKD|I, y; θT ) +
λ− g, where λ is

λ = P(F img
∗ |I, y; θT )− P(FKD|I, y; θT ). (2)

Proof of Lemma 1:

P(FKD|P, y; θS ,KT ) =P(FKD|P, y; θS ,KT )− P(Fpts
∗ |P, y; θS ,KT )

+P(Fpts
∗ |P, y; θS ,KT )− P(F img

∗ |I, y; θT )
+P(F img

∗ |I, y; θT )− P(FKD|I, y; θT ) + P(FKD|I, y; θT ).
(3)

For a successful distillation, the term P(FKD|P, y; θS ,KT ) − P(Fpts
∗ |P, y; θS ,KT ) should be

greater than or equal to 0, i.e., the distillated model outperforms the original point cloud network. By
the definition, we have P(FKD|P, y; θS ,KT ) ≥ P(FKD|I, y; θT ) + λ− g.

B Additional Experiments

B.1 Comparison with Different Normalization

As we mentioned in the manuscript, the discrepancy between two modalities make the KD problem
challenging, which is the initial motivation of our PointCMT. In this section, we analyze different
strategies that are used to eliminate the discrepancy. Specifically, we design two normalization:

Normalize-I: We assume the features from image and point cloud networks follow two Gaussian
distributions. We normalize the mean and standard deviation of the features from image network
and make it closer to the features from point cloud network. For every batch of paired image and
point cloud data, denote N as batch size, let {(Fpts

i ,F img
i )}Ni=1 be feature pairs from point cloud

and image networks. Let mean(Fpts), std(Fpts) be the mean and standard deviation of {Fpts
i }Ni=1,

and mean(F img) and std(F img) be the mean and standard deviation of {F img
i }Ni=1. We normalize

image features through:

F̂ img
i = ((F img

i − mean(F img))/std(F img)) ∗ std(Fpts) + mean(Fpts). (4)

Normalize-II: We regard features as vectors in a feature space, and normalize their norms into the
same scale. Let norm(Fpts) and norm(F img) be the mean of {||Fpts

i ||2}ni=1 and {||F img
i ||2}ni=1,

where || · ||2 denote 2-norm, we normalize image features through:

F̂ img
i = (F img

i /norm(F img)) ∗ norm(Fpts). (5)

Table 1: Comparison with different
normalization on ModelNet40.

Method ModelNet40
Baseline 93.4
Hinton et al. 93.1 (-0.3)
w/ Normalize-I 93.4 (+0.0)
w/ Normalize-II 93.5 (+0.1)
PointCMT (ours) 94.4 (+1.0)

During the experiment, we train PointNet++ with above
normalization through KD loss:

LKD = MSE(Fpts − Norm(F img)), (6)

where Norm(·) denotes the normalization operations men-
tioned above. As shown in Table 1, exploiting normaliza-
tion strategies can slightly improve the performance on
ModelNet40 and eliminate the negative transfer. Never-
theless, our PointCMT still achieves superior performance
upon such naive normalization.

B.2 Effect of Pre-trained Image Network
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Table 2: Results of using a image network
without pre-training on ModelNet40.

Method ModelNet40
Baseline 93.4
PointCMT w/o pre-train 94.2 (+0.8)
PointCMT 94.4 (+1.0)

In Table 2, we illustrate the results on ModelNet40
without pre-trained image feature extractor. As
shown in the table, when we train image feature
extractor from scratch, PointCMT still gains 94.2%
overall accuracy, i.e., with only 0.2% performance
drop. Moreover, the results on ScanObjectNN are
obtained without pre-trained image feature extrac-
tor, since the view-images used on this dataset are
from perspective projection.

B.3 Performance of Image Networks

In this section, we demonstrate the performance of image networks pre-trained in the Stage I. As
shown in Table 3, through exploiting rendered view-image from CAD models, the image network can
achieve very high overall accuracy of 97.0% on ModelNet40, boosting the PointNet++ via PointCMT
by a 1% performance gain. Only using projection in the image network can only obtain 93.8% on
ModelNet40. Nevertheless, it still increases the performance of PointNet++ by 0.6%. Moreover, we
find out that in the cross-modal KD scenario, the performance of the teacher will not always better
than the student. Still, PointCMT effectively learn the complementary information from the teacher,
and improve the performance of point cloud analysis approaches. For the ScanObjectNN dataset,
using additional color information makes image networks overfit on the OBJ_ONLY sub-set, and
thus hampers the performance.

Table 3: Results of image networks on ModelNet40 and ScanObjectNN datasets.
Image Networks ModelNet40 OBJ_ONLY PB_T50_RS
Rendered from CAD 97.0 - -
Gains on PointNet++ (+1.0) - -
Projection 93.8 89.0 80.8
Gains on PointNet++ (+0.6) (+4.3) (+3.9)
Projection w/ color - 87.5 -
Gains on PointNet++ - (+3.2) -

B.4 Training Speed

In this section, we demonstrate the training speed of our PointCMT. As shown in the Table 4, the
additional training stage of I (image encoder and image classifier) and II (CMPG) actually introduce
little extra cost in the entire training phrase since the small epoch numbers for stage I and few
parameters of CMPG. For the speed evaluation of the Stage III, since the image network has been
trained, we fixed pre-trained network and generate objects’ features offline, which can be directly
exploited in the Stage II and III without repeatedly forwarding the image network.

Table 4: The cost of each stage with the form of time for per sample (ms) and total epochs (h).
Stage I (Image Network) Stage II (CMPG) Stage III (PointNet++)

27.35ms / 4.36h 2.3ms / 0.46h 10.64ms / 36.38h

B.5 Part Segmentation

To illustrate the superiority of our PointCMT, we set two experiments for part segmentation on
ShapeNetPart dataset, as shown in Table 5. (a) PointNet++ with pre-trained encoder (trained from
scratch on ModelNet40); (b) PointNet++ with pre-trained encoder (trained with PointCMT on
ModelNet40). As shown in Table, utilizing pre-trained encoder trained with PointCMT effectively
improve the performance, especially for the more challenging metric of Class avg IoU. Here, Inctance
avg IoU and Class avg IoU denote the IoU averaged by all instances and each class, respectively.

Table 5: Results on ShapeNetPart with metrics of instance average IoU and class average IoU..
Method Inctance avg IoU Class avg IoU
Pre-trained PointNet++ w/o PointCMT 85.3 82.0
Pre-trained PointNet++ w/ PointCMT 85.6 (+0.3) 82.6 (+0.6)
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