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Abstract

We present a scalable approach for learning open-world object-goal navigation
(ObjectNav) – the task of asking a virtual robot (agent) to find any instance of
an object in an unexplored environment (e.g., “find a sink”). Our approach is
entirely zero-shot – i.e., it does not require ObjectNav rewards or demonstrations
of any kind. Instead, we train on the image-goal navigation (ImageNav) task, in
which agents find the location where a picture (i.e., goal image) was captured.
Specifically, we encode goal images into a multimodal, semantic embedding space
to enable training semantic-goal navigation (SemanticNav) agents at scale in
unannotated 3D environments (e.g., HM3D). After training, SemanticNav agents
can be instructed to find objects described in free-form natural language (e.g.,

“sink,” “bathroom sink,” etc.) by projecting language goals into the same multi-
modal, semantic embedding space. As a result, our approach enables open-world
ObjectNav. We extensively evaluate our agents on three ObjectNav datasets
(Gibson, HM3D, and MP3D) and observe absolute improvements in success of
4.2% - 20.0% over existing zero-shot methods. For reference, these gains are
similar or better than the 5% improvement in success between the Habitat 2020
and 2021 ObjectNav challenge winners. In an open-world setting, we discover
that our agents can generalize to compound instructions with a room explicitly
mentioned (e.g., “Find a kitchen sink”) and when the target room can be inferred
(e.g., “Find a sink and a stove”).

1 Introduction

Imagine asking a home assistant robot to find a “flat-head screwdriver” or the “medicine case near
the bathroom sink.” Building such assistive agents is a problem of deep scientific and societal value.

To study this problem systematically, the embodied AI community has rallied around a problem called
object-goal navigation ( ObjectNav) [1]. Given the name of an object (e.g., “chair”), ObjectNav
involves exploring a 3D environment to find any instance of the object. The last few years have
witnessed the development of new environments [2–6], annotated 3D scans [7–9], datasets of human
demonstrations [10], and approaches for ObjectNav [11–16], cumulatively leading to strong progress.
For instance, the entries in the annual Habitat challenge [17] have jumped from 6% success (DD-PPO
baseline in 2020) to 53% success (top entry in ongoing 2022 Habitat Challenge public leaderboard).

While this progress is exciting, we believe that a subtle but insidious assumption has snuck into this
line of work: the closed-world assumption. We started by discussing an open-world scenario where
a person may describe any object in language (e.g., “flat-head screwdriver”), but ObjectNav is
currently formulated over a closed predetermined vocabulary of object categories (“chair”, “bed”,
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Figure 1: We propose projecting navigation goals (from images or text) into a common, semantic
embedding space using a pre-trained vision and language model (CLIP). This allows agents trained
with image-goals to understand goals expressed in free-form natural language (e.g., “Find a bathroom
sink.”). Accordingly, our approach enables open-world object-goal navigation in a zero-shot manner –
i.e., without using ObjectNav rewards or demonstrations for training.

“sofa”, etc.), with approaches using pre-trained object detectors and segmenters for these categories [10–
13]. While this assumption may have been essential to get started on this problem, it is now important
to move beyond it and ask – how can embodied agents find objects in an open-world setting?

In this work, we develop an approach for ObjectNav that is both zero-shot, i.e., does not require
any ObjectNav rewards or demonstrations, and open-world, i.e., does not require committing to a
taxonomy of categories. Our key insight is that we can create a visiolinguistic embedding space to
decouple two problems – (1) describing and representing semantic goals (“chair”, “brown chair”,
picture of brown chair) from (2) learning to navigate to semantic goals.2

To represent semantic goals (1), we leverage recent advances in multimodal AI research on learning
a common embedding space for images and text using large collections of image-captions pairs.
Specifically, we use CLIP [19], a method for training dual vision and language encoders that produce
similar representations for paired data such as an image and its caption. As shown in Fig. 1, we use
CLIP to transform image-goals (e.g., a picture of the kitchen island) and object-goals (e.g., “bathroom
sink”) into semantic-goals representing navigation targets. Our main observation is that a semantic-
goal produced from an image (e.g., a picture of the bathroom sink) should be similar to semantic
goals produced from descriptions of the same target (e.g, “bathroom sink”). Thus, we hypothesize
that these modalities (images and language) can be used interchangeably for creating semantic goals.

Accordingly, for learning to navigate to semantic goals (2), we train agents using image-goals encoded
via CLIP’s image encoder. Then, we evaluate the learned navigation policy on ObjectNav, where
goals are specified in language (e.g., “chair”) and encoded via CLIP’s text encoder. As a result, our
agents perform ObjectNav without ever directly training for the task – i.e., in a zero-shot manner.

An important advantage of our approach is that it reduces the data labeling burden. Image-goals can be
procedurally generated by randomly sampling points in 3D environments. This is in stark contrast to
ObjectNav, which requires annotating 3D meshes [7–9] and potentially collecting large-scale human
demonstrations [10] for training. Secondly, the interface to our agents is a natural language description
– matching the grand vision that inspired the ObjectNav task. Through this interface we can refine

2Similar arguments have been made by Al-Halah et al. [18]. A detailed discussion is provided in Section 2.
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object-goals by, for instance, specifying object attributes (“brown chair”) or indicating which room
the object is in (“bathroom sink”) – which is not possible with traditional ObjectNav agents.

We perform large-scale experiments on three ObjectNav datasets – Gibson [4], MP3D [8], and
HM3D [20]. Our zero-shot agent (that has not seen a single 3D semantic annotation or ObjectNav
training episode) achieves a 31.3% success in Gibson environments, which is a 20.0% absolute
improvement over previous zero-shot results [18]. In MP3D, our agent achieves 15.3% success, a
4.2% absolute gain over existing zero-shot methods[21]. For reference, these gains are on par or
better than the 5% improvement in success between the Habitat 2020 and 2021 ObjectNav challenge
winners. On HM3D, our agent’s zero-shot SPL matches a state-of-the-art ObjectNav method [16]
that trains with direct supervision from 40k human demonstrations.

Additionally, we study two techniques that are used in our approach to improve zero-shot ObjectNav
performance. First, we find that pretraining the visual observation encoder has an outsized effect on
zero-shot transfer. Specifically, success on the ImageNav training task improves 4.5% - 5.8%, while
downstream success on zero-shot ObjectNav improves by 9.4% - 10.4%. Similarly, increasing the
number of training environments (from 72 to 800) leads to a small drop in ImageNav success, but
results in a substantial improvement of 6.6% in success on zero-shot ObjectNav.

Finally, we qualitatively experiment with an open-world setting and observe that our SemanticNav
agents can properly change behavior in response to instructions that include room information. For
instance, when finding a “bathroom sink” the agent does not enter the kitchen, and when looking
for a “kitchen sink” it does not enter bathrooms. Furthermore, we observe similar room awareness
patterns for instructions such as “Find a sink and a stove,” where the target room (“kitchen”) can be
inferred. Source code for reproducing our results will be publicly released.

2 Related Work

Our work builds on research studying image-text alignment techniques (e.g., CLIP [19]) and their
use in visual navigation. In this section, we discuss methods most related to our proposed approach.

Image-Text Alignment Models. Recent progress in vision-and-language pretraining has led to mod-
els such as CLIP [19], ALIGN [22], and BASIC [23] that can perform open-world image classification,
and achieve strong performance on standard computer vision benchmarks (e.g., ImageNet [24]).
These models learn visual representations by training on massive datasets of image-caption pairs
scraped from the web (e.g., the 400M pairs used for CLIP or 6.6B for BASIC). In this work, we take
advantage of the semantic representations learned by CLIP to project navigation goals (e.g., a picture
of a brown chair or “brown chair”) into a multimodal, semantic-goal embedding space.

CLIP for Visual Navigation. A straightforward approach for using CLIP in a visual navigation
agent is to process the agent’s observations and navigation instructions (e.g., “Find a chair”) with the
CLIP image and text encoders, then learn a navigation policy that operates on these embeddings. Such
a solution was explored in EmbCLIP [25] with promising results. However, this approach requires
ObjectNav rewards or demonstrations to supervise the navigation policy, which is difficult and costly
to collect at scale. As a result, existing training datasets tend to be small and agents generalize poorly
to new settings. For instance, EmbCLIP only achieves an 8% success rate in finding objects that
were not used in training. By contrast, we train using the image-goal navigation task, which does not
require annotated environments. Thus, we are able to scale training to 800 unannotated 3D scenes,
which substantially improves generalization (as demonstrated in Section 5).

Zero-Shot ObjectNav. Two recent works [18, 21] directly address our motivation (zero-shot
ObjectNav) and are most related. First, ZER [18] proposes a two-stage framework in which an
image-goal navigation (ImageNav) agent is first trained from scratch. Then, independent encoders
are trained to map from various modalities (including language) into the image-goal embedding
space. A key challenge with this approach is that image-goal embeddings may not capture semantic
information because semantic annotations are not used in ImageNav training. Instead, an ImageNav
agent trained from scratch may learn to pattern match visual observations and goal image embeddings.
By contrast, our approach reverses these two stages, with CLIP pretraining representing stage one.
Thus, our approach uses a goal embedding space that captures semantics by design. We empirically
demonstrate the benefits of our proposed approach in Section 5.

3



RGB
Observation

ImageNav
Goal

Semantic
Goal

ResNet-50 Policy
Network

SemanticNav
Agent

Semantic
Goal

ObjectNav
Goal

“sofa”
Training Evaluation

Actions

Figure 2: We tackle both ImageNav and ObjectNav via a common SemanticNav agent. This agent
accepts a semantic goal embedding (sg), which comes from either CLIP’s visual encoder (CLIPv)
in ImageNav or CLIP’s textual encoder (CLIPt) in ObjectNav. Our agent has a simple architecture:
RGB observations are encoded with a pretrained ResNet-50, and a recurrent policy network predicts
actions using encodings of the goal sg , observation, and the previous action at−1.

In concurrent work, CLIP-on-Wheels (CoW) [21] uses a gradient-based visualization technique
(GradCAM [26]) with CLIP to localize objects in the agent’s observations. This is combined with a
heuristic exploration policy to enable zero-shot object-goal navigation. In contrast, we demonstrate
that learning a navigation policy can substantially outperform the heuristic exploration approach
proposed in [21] without using explicit object localization techniques.

3 Preliminaries: Image-Text Alignment and Image-Goal Navigation

Image-Text Alignment Models. Multimodal alignment models aim to learn a mapping from
images v and text t into a shared embedding space such that representations for corresponding image-
text pairs (e.g., a picture and its caption) are similar. Recent image-text alignment models [19, 22, 23]
use a dual-encoder framework and optimize the InfoNCE [27] contrastive learning objective, which
maximizes cosine similarity between representations of matching image-text pairs and minimizes
similarity for non-matching pairs. In this work, we leverage CLIP [19], which was trained on 400M
image-text pairs that cover a wide range of visual concepts.

Image-Goal Navigation. In image-goal navigation (ImageNav) [28], agents explore an environ-
ment to find the position where a goal-image vg was captured. We consider a setting in which both
the goal-image and the agent’s observations consist of RGB images taken from the agent’s egocentric
point of view. An agent can select from four actions: MOVE_FORWARD by 0.25m, TURN_LEFT by 30◦,
TURN_RIGHT by 30◦, or STOP. The agent succeeds if it selects STOP within 1.0m of the goal.

An ImageNav episode is uniquely defined by a starting position and (reachable) goal viewpoint within
a 3D environment. Thus, ImageNav training data can be procedurally generated without annotating
the scene – i.e., the objects and rooms do not need to be labeled. As a result, the size of an ImageNav
dataset is only limited by the number of environments available for training. In this work, we use
ImageNav to train visual navigation agents at scale (in terms of the number of training environments).
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4 Approach

This section describes our framework for training visual navigation agents. We use CLIP [19] to
produce semantic goal embeddings of image-goals (e.g., a picture of the sink) and object-goals (e.g.,

“sink”). This allows training semantic-goal navigation agents at scale using image-goals in HM3D
environments [20], then deploying these agents for object-goal navigation in a zero-shot manner. In
other words, our agents execute object-goal navigation without ever directly training for the task.

4.1 Learning Semantic-Goal Navigation

As illustrated in Fig. 2 (top-left), given an image-goal vg, we use a CLIP visual encoder CLIPv to
generate a semantic goal embedding sgv = CLIPv(vg) that is used to guide navigation. Conceptually,
encoding image-goals with CLIP preserves semantic information about the goal, such as visual
concepts that might be described in image captions (e.g., “a sofa in a living room”). However,
semantic goal embeddings are less likely to include low-level features (e.g., the exact patterns in a
wood floor) that do not correlate with web-scraped captions. While removing low-level information
might make the navigation task more difficult, our goal is to learn a policy that transfers to ObjectNav
in which agents only receives high-level goals (e.g., “Find a sofa”). As an added benefit, generating
semantic goal embeddings as a pre-processing step substantially improves training time (by ∼3.5x).

Our agent architecture is shown in Fig. 2. At each timestep t, our agent receives an egocentric
RGB observation vt and a goal representation sgv . The observation is processed by a ResNet-50 [29]
encoder, which is pretrained on the Omnidata Starter Dataset (OSD) [30] using self-supervised
learning (DINO [31]) following the pretraining recipe presented in OVRL [16]. The output from the
ResNet-50 encoder is concatenated with the goal representation sgv and an embedding of the agent’s
previous action at−1 and then passed to the policy network composed of a two-layer LSTM. The
policy network outputs a distribution over the action space.

We train our SemanticNav agent with reinforcement learning (RL). During RL training, we use two
data augmentation techniques: color jitter and random translation (adapted from [16]). Specifically,
we train with DD-PPO [32] using a reward function proposed for ImageNav by Al-Halah et al. [18]:

rt = rsuccess + rangle-success −∆dtg −∆atg + rslack (1)

where rsuccess = 5 if STOP is called when the agent is within 1m of the goal position (and 0 otherwise),
rangle-success = 5 if STOP is called when the agent is within 1m of the goal position and the agent is
pointing within 25◦ of the goal heading – i.e., the direction the camera was pointing when the goal
image was collected – (and 0 otherwise), ∆dtg is the change in the agent’s distance-to-goal – i.e.,
the geodesic distance to the goal position, ∆atg is the change in the agent’s angle-to-goal – i.e., the
difference between the agent’s heading and the goal heading – but is set to 0 if the agent is greater
than 1m from the goal, and rslack = −0.01 to encourage efficient navigation. In general, this reward
function encourages both reaching the goal and looking towards the goal before calling STOP, which
matches the requirements of the downstream ObjectNav task.

4.2 Zero-Shot Object-Goal Navigation

Recall that in ObjectNav [1], agents are given a target category (e.g., “sofa” or “chair”) and must
locate any instance of that object (i.e., “any sofa” or “any chair”). Similar to ImageNav, ObjectNav
requires exploring new environments that the agent has never seen before. However, in ObjectNav,
the goal (e.g., “sofa”) provides a minimal amount of information about where the agent must go and
it requires recognizing any version of the goal object in the new scene.

To address this task, we transform object-goals og (e.g., “sofa”) into semantic goal embeddings using
the CLIP text encoder CLIPt, which results in the semantic goal sgo = CLIPt(og). CLIP aligns image
and text, thus the semantic goals from text sgo should be close (in terms of cosine similarity) to the
CLIP visual embeddings sgv used in training. To keep our approach simple and easily reproducible,
we do not use any prompt engineering (e.g., using a template such as “A photo of a <>”). Instead,
we simply use the object name (e.g., “sofa”) as the object-goal input og .
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5 Experimental Findings and Qualitative Results

This section studies the zero-shot ObjectNav performance of our proposed approach. First, we
evaluate our method in the traditional ObjectNav setting [1] where agents must find any instance
of the goal object (“Find a chair”). Then, we explore variations of ObjectNav in which additional
information, such as a room location (e.g., “bathroom sink”), is given to refine the task. These
experiments aim to demonstrate both the effectiveness and versatility of our approach.

5.1 Experimental Setup

Training Dataset. We generate a dataset for training our SemanticNav agent using the 800 training
environments from HM3D [20]. First, we sample 9k ImageNav episodes for each HM3D scan, split
equally between 3 difficulty levels corresponding with path length: EASY (1.5-3m), MEDIUM (3-
5m), and HARD (5-10m). We follow the episode generation approach from [33]. This results in
9k × 800 = 7.2M navigation episodes for training. Next, we pre-process the goal-images with the
ResNet-50 version of CLIP [19] to produce 1024 dimensional semantic goal vectors sgv for each
navigation episode. During pre-processing, we further augment the dataset by sampling goal-images
at four evenly-spaced heading angles to produce 36M total episodes for training. Sampling at multiple
angles approximates the randomized sampling used in [18].

Agent Configurations. Two different agent configurations are frequently used in prior work on
visual navigation. Configuration A is generally used for ImageNav and has an agent height of 1.5m,
radius of 0.1m, and a single 128×128 RGB sensor with a 90◦ horizontal field-of-view (HFOV) placed
1.25m from the ground. Configuration B is typically used for ObjectNav and approximately matches
a LoCoBot, with an agent height of 0.88m, radius of 0.18m, and a single 640×480 RGB sensor with
a 79◦ HFOV placed 0.88m from the ground. Both configurations use the aforementioned step size of
0.25m and left and right turning angle of 30◦.

Evaluation Datasets. We measure performance on one ImageNav and three ObjectNav datasets:

– ImageNav (Gibson) consists of 4,200 episodes from 14 Gibson [4] validation scenes. The dataset
was produced by Mezghani et al. [33] for agents with configuration A.

– ObjectNav (Gibson) was generated by Al-Halah et al. [18] for agents with configuration A. The
dataset consists of 1,000 episodes in 5 Gibson [4] validation scenes for 6 object categories.

– ObjectNav (HM3D), released with the Habitat 2022 challenge, consists of 2,000 episodes from 20
HM3D [20] validation scenes with objects from 6 categories, and uses agents with configuration B.

– ObjectNav (MP3D) released with the Habitat 2020 challenge, contains 2,195 episodes from 11
MP3D [8] validation scenes for 21 object categories, and requires agents with configuration B.

Due to the different agent configurations required by these evaluation datasets, we train agents with
both settings to make fair comparisons with prior work on zero-shot ObjectNav. For all experiments,
we report two standard metrics for visual navigation tasks: success rate (SR) and success rate weighted
by normalized inverse path length (SPL) [34].

Implementation Details. We generate a SemanticNav dataset for each agent configuration (A and
B). The CLIP ResNet-50 encoder processes 224 × 224 images. Accordingly, for configuration A, we
render 512 × 512 RGB frames, then resize to 224 × 224. For configuration B, we render at 640 ×
480, then resize and center crop. We train agents using PyTorch [35] and the Habitat simulator [2, 3].
Each training run was conducted on a single compute node with 8 NVIDIA A40 GPUs. We train
agents for 500M steps, requiring ∼1,704 GPU-hours to train two agents (one for each configuration).
Additional training hyperparamters are detailed in the Appendix. We report results using the best
checkpoint, selected based on ObjectNav validation success rate (SR). During evaluations we sample
actions from the agent’s output distribution. We report results averaged over three evaluation runs.

Baselines. We provide comparisons with the, to the best of our knowledge, only two existing
zero-shot methods for object-goal navigation (ObjectNav):

– Zero Experience Required (ZER) [18]: first trains an ImageNav agent composed of two ResNet-9
encoders for processing the goal-image and agent observations, and a policy network consisting of
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Table 1: Zero-shot ObjectNav performance on Gibson [4], HM3D [20], and MP3D [8] validation.
All methods use a single RGB sensor for agent observations except CoW [21], which also uses depth
observations and OVRL [16], which uses GPS+Compass for ObjectNav. Our approach (ZSON)
substantially improves on previous zero-shot methods and narrows the gap to SOTA fully-supervised
methods such as OVRL [16], which is not zero-shot and provided for reference. We report ZSON
results averaged over three evaluation trials. The standard deviation in ZSON ObjectNav SR is
0.02% in Gibson, 0.46% in HM3D, and 0.11% in MP3D. ∗indicates reproduced results

ImageNav
(Gibson)

ObjectNav
(Gibson)

Method SPL SR SPL SR

OVRL [16] 27.0% 54.2% - -

ZER [18] 21.6% 29.2% - 11.3%
ZSON (ours) 28.0% 36.9% 12.0% 31.3%

(a) Configuration A

ObjectNav
(HM3D)

ObjectNav
(MP3D)

Method SPL SR SPL SR

OVRL [16] 12.3%∗ 32.8%∗ 7.0% 25.3%

CoW [21] (w/depth) - - 6.3% 11.1%
ZSON (ours) 12.6% 25.5% 4.8% 15.3%

(b) Configuration B

a 2-layer GRU. After training the navigation policy, a 2-layer MLP is trained to map from a goal
object categories into the goal-image embedding space learned through ImageNav training. This
mapping is learned using an in-domain dataset containing 14K images with object category labels.

– CLIP on Wheels (CoW) [21]: builds an occupancy map by projecting depth observations, then
searches the environment with frontier-based exploration [36]. At each step, CoW calculates a 3D
saliency map using a depth and RGB observations and the goal object category via Grad-CAM [26],
a gradient-based visualization technique. When the 3D saliency exceeds a threshold the agent
navigates to that location and stops. As such, CoW does not require a learned navigation policy.

Fully-Supervised ObjectNav. To understand the gap to fully-supervised ObjectNav methods, we
compare with OVRL [16], a two-stage framework that achieves state-of-the-art ObjectNav results in
our single RGB camera setting. We highlight OVRL in blue to indicate the use of direct supervision.

5.2 Zero-Shot Object-Goal Navigation

In Table 1 we report zero-shot ObjectNav performance. We compare with ZER [18] in Table 1a
using agent configuration A. Notice that our agent is stronger than ZER on ImageNav, which is the
base pretraining task before ObjectNav can be studied. Specifically, we observe a 7.7% improvement
in ImageNav SR (29.2% → 36.9%). This improvement results from (1) learning to navigate to
semantic goal embeddings (as proposed in this work) instead of navigating to image-goal embeddings
that are learned from scratch (as done in ZER), (2) using more diverse training environments, and (3)
from using a pretrained visual encoder. We provide additional comparisons with ZER using the same
set of training environments and without using visual encoder pretraining in Section 5.3, where we
also observe improved performance. In Table 1a, we see even larger improvements in ObjectNav SR
of 20.0% (11.3% → 31.3%). These results indicate that our design decisions are particularly useful
for zero-shot ObjectNav.

In Table 1b we compare with CoW [21] using agent configuration B. In ObjectNav on the MP3D
validation set, we find that training a SemanticNav agent improves ObjectNav SR by 4.2% absolute
and 37.8% relative (11.1% → 15.3%). These results demonstrate that learning a navigation policy
improves zero-shot ObjectNav SR over the hand-designed exploration strategy and stopping criteria
proposed by CoW. Moreover, we expect further improvements in zero-shot ObjectNav performance
from scaling our approach (e.g., by collecting more training environments). Such scaling is simply
not possible with heuristic methods such as CoW because the navigation policy is not learned. The
SPL of our approach is 1.5% lower than CoW. However, unlike CoW, our agent navigates without
depth observations, which may reduce path efficiency. On HM3D we find that our agent achieves a
strong SR of 25.5% and SPL of 12.6%. Impressively, this zero-shot SPL matches OVRL [16], which
is directly trained on 40k human demonstrations [10] for the ObjectNav task with imitation learning.
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5.3 Comparison with ZER without Encoder Pretraining and Training Environment Diversity

In Table 2, we train our approach in Gibson environments (instead of HM3D) and do not use a
pretrained observation encoder. These settings match ZER [18], allowing for a direct comparison
between the two methods. We observe that our approach results in a 4.0% absolute and 35% relative
improvement in zero-shot ObjectNav success (11.3% → 15.3%). These results demonstrate that
learning to navigate to semantic-goal embeddings outperforms the inverse approach proposed by
ZER of first training for image-goal navigation, then learning a mapping from object categories into
the image-goal embedding space.

Table 2: Comparison with ZER [18] using a ResNet-9 and the Gibson dataset with our approach.
Learning SemanticNav (Ours) outperforms learning ImageNav then language grounding (ZER [18]).

ImageNav
(Gibson)

ObjectNav
(Gibson)

Method Visual
Encoder

Training
Dataset SPL SR SPL SR

ZER [18] ResNet-9 Gibson 21.6% 29.2% - 11.3%
Ours ResNet-9 Gibson 22.8% 33.3% 7.4% 15.3%

5.4 Additional Ablations

In Table 3, we study the impact of two key design decisions within our method: (1) the visual
observation encoder and (2) the number of training environments. While pretraining the visual
observation encoder is known to improve visual navigation task performance (demonstrated in [16]),
here we study the impacts on zero-shot transfer to ObjectNav. We find that OVRL pretraining
improves ImageNav success by 4.5% (rows 1 vs. 3) or 5.8% (rows 2 vs. 4) depending on the dataset
used for training. However, the impact on zero-shot ObjectNav performance is substantially larger.
Specifically, ObjectNav success improves by 9.4% (rows 1 vs. 3) and 10.4% (rows 2 vs. 4). These
results suggest that a strong visual encoder is often essential for zero-shot transfer to ObjectNav.

In rows 3 vs. 4, we switch the training dataset from the 72 Gibson [4] training environments (row 3)
to the 800 (unannotated) HM3D [20] training environments. Surprisingly, we observe a 0.9% drop in
ImageNav success, yet a 6.6% improvement in ObjectNav success (rows 3 vs. 4). A similar trend is
observed in rows 1 vs. 2. These trends indicate that training environment diversity is particularly
useful for zero-shot ObjectNav.

Table 3: Ablations of the visual encoder and dataset used for training our SemanticNav agents.

ImageNav
(Gibson)

ObjectNav
(Gibson)

# Visual
Encoder

Training
Dataset SPL SR SPL SR

1 ResNet-9 from scratch Gibson 22.8% 33.3% 7.4% 15.3%
2 ResNet-9 from scratch HM3D 23.4% 31.1% 9.5% 20.9%

3 OVRL (ResNet-50, pretrained) Gibson 27.6% 37.8% 10.0% 24.7%
4 OVRL (ResNet-50, pretrained) HM3D 28.0% 36.9% 12.0% 31.3%

5.5 Qualitative Analysis

In Fig. 3, we present qualitative examples of our agent navigating to more complex object descriptions
(e.g., “Find a bathroom sink”). In each trial, the agent starts at the same position and heading (next
to the front door looking into the house). The only thing that changes about the initial conditions
is the instructions given to the agent (“Find a...” “...bathroom sink”, “...kitchen sink”, “...sink and
a toilet”, or “...sink and a stove”). Since the agent’s policy is stochastic, we show 5 sampled rollouts
and highlight the first run in bold colors.
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…kitchen sink.”

…sink and a stove.”

…bathroom sink.”

…sink and a toilet.”

Instruction: “Find a…

Start Bathroom Kitchen

Figure 3: Qualitative examples for navigating to complex object descriptions. For each trail, the
agent is spawned at the start position looking into the house (i.e., to the right on the maps) and given
one of four instructions. Each instruction is run five times with the path for the first trail highlighted in
bold colors. Our agent appropriately navigates to the correct rooms, demonstrating an understanding
of both explicit (“Find a kitchen sink”) and implicit (“Find a sink and a stove”) room information.

We find that given room information such as “bathroom” or “kitchen”, the agent appropriately finds
a “sink” in the corresponding rooms in the house. Furthermore, in these examples the agent does
not enter the “kitchen” when prompted to look for a “bathroom sink,” and vice-versa. In these long
trajectories (ranging from 88 to 225 steps), we observe more exploration in the living room and direct
navigation when target rooms are visible. We qualitatively observe interesting learned behaviors – for
instance, the agent often performs a 360◦ turn before navigating, possibly to survey the environment.

Next, we experiment with variations in which room information can be inferred from the instruction,
but is not explicit. We use “sink and a toilet” to indicate “bathroom” and “sink and a stove” for

“kitchen”. In these examples, we discover that our agent still navigates to the correct rooms, suggesting
that it learns some priors of indoor spaces, such as that a “stove” is often found within a “kitchen.”

6 Discussion

We present a zero-shot method for learning open-world object-goal navigation (ObjectNav). Our ap-
proach involves projecting image-goals into a semantic-goal embedding space using an image-and-text
alignment model (CLIP). This creates a semantic-goal navigation task that does not require annotated
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3D environments or collecting human demonstrations. Thus, our method is easy to scale. We discover
that SemanticNav agents outperform previous zero-shot ObjectNav methods, and we identify two
factors that have a strong impact on navigation success – pretraining the visual encoder and training in
a diverse set of environments. In an open-world setting, we observe navigation patterns that suggest
that SemanticNav agents can understand complex instructions, such as “Find a sink and a stove.”

Limitations and Impact. SemanticNav agents appear to learn useful priors of indoor environments
such as which room contains a “stove.” However, agents may struggle in scenes where a navigation
target is in an unusual location (e.g., a stove in a bedroom). Biases in the 3D environments used to
train such agents might exaggerate these issues and affect deployments in non-traditional settings.
Thus, interventions to mitigate this problem should be considered. Future work might explore how to
use the natural language interface to SemanticNav agents to guide exploration in such scenarios.
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