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Abstract

Whereas diverse variations of diffusion models exist, extending the linear diffusion
into a nonlinear diffusion process is investigated by very few works. The nonlin-
earity effect has been hardly understood, but intuitively, there would be promising
diffusion patterns to efficiently train the generative distribution towards the data
distribution. This paper introduces a data-adaptive nonlinear diffusion process
for score-based diffusion models. The proposed Implicit Nonlinear Diffusion
Model (INDM) learns by combining a normalizing flow and a diffusion process.
Specifically, INDM implicitly constructs a nonlinear diffusion on the data space by
leveraging a linear diffusion on the latent space through a flow network. This flow
network is key to forming a nonlinear diffusion, as the nonlinearity depends on
the flow network. This flexible nonlinearity improves the learning curve of INDM
to nearly Maximum Likelihood Estimation (MLE) against the non-MLE curve
of DDPM++, which turns out to be an inflexible version of INDM with the flow
fixed as an identity mapping. Also, the discretization of INDM shows the sampling
robustness. In experiments, INDM achieves the state-of-the-art FID of 1.75 on
CelebA. We release our code at https://github.com/byeonghu-na/INDM.

1 Introduction

Diffusion models have recently achieved success on the task of sample generation, and some works
[1, 2] claim state-of-the-art performance over Generative Adversarial Networks (GAN) [3]. This
success is highlighted particularly in likelihood-based models, including normalizing flows [4],
autoregressive models [5], and Variational Auto-Encoders (VAE) [6]. Moreover, this success is
noteworthy because it is achieved merely using linear diffusion processes, such as Variance Exploding
(VE) Stochastic Differential Equation (SDE) [7], and Variance Preserving (VP) SDE [8].

This paper extends linear diffusions of VE/VP SDEs to a data-adaptive trainable nonlinear diffusion.
To motivate the extension, though there are structural similarities between diffusion models and
VAEs, the inference part of a linear diffusion process has not been trained while its counterpart of
VAE (the encoder) has been trained. We introduce Implicit Nonlinear Diffusion Models (INDM) to
train its forward SDE, the inference part in diffusion models. INDM constructs the nonlinearity of
the data diffusion by transforming a linear latent diffusion back to the data space.

We implement the transformation between the data and latent spaces with a normalizing flow. The
invertibility of the flow mapping is key to learning a nonlinear inference part. Invertibility is necessary
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Figure 1: Examples of linear (top row) and nonlinear (middle/bottom rows) diffusion processes.

for constructing the nonlinearity, and we clarify this by comparing INDM with LSGM [9], a latent
diffusion model with VAE. Altogether, INDM provides the following advantages over the existing
models.

• INDM extends the scope of diffusion models from linear SDEs to implicit nonlinear SDEs.

• INDM learns not only drift but volatility coefficients of the forward (inference) SDE.

• INDM trains its network with Maximum Likelihood Estimation (MLE).

• INDM is robust on the sampling discretization.

2 Preliminary

A diffusion model is constructed with bidirectional forward and reverse stochastic processes.

Forward and Reverse Diffusions A forward diffusion process diffuses an input data variable,
x0 ∼ pr, to a noise variable, and the corresponding reverse diffusion process [10] of this forward
diffusion denoises a noise variable to regenerate the input variable. The forward diffusion is fully
described by an SDE of dxt = f(xt, t) dt + G(xt, t) dwt, and the corresponding reverse SDE
becomes dxt =

[
f(xt, t) − div(GGT )(xt, t) − (GGT )(xt, t)∇xt log pt(xt)

]
dt̄ + G(xt, t) dw̄t.

Here, wt ∈ Rd is an abstraction of a random walk process with independent increments, where d is
the data dimension, and dw̄t is the standard Wiener processes with backwards in time.

Generative Diffusion Having that the drift (f ∈ Rd) and the volatility (G ∈ Rd×d) terms are given a-
priori, diffusion models [1] estimate the data score,∇xt log pt(xt), with the score network, sθ(xt, t).
By plugging the score network in the data score, we obtain another diffusion process, called the
generative SDE, described by dxθt =

[
f(xθt , t)− div(GGT )(xθt , t)− (GGT )(xθt , t)sθ(xθt , t)

]
dt̄+

G(xθt , t) dw̄t. Starting from a prior distribution of xθT ∼ π and solving the SDE time backwards,
Song et al. [1] construct the generative stochastic process of {xθt }Tt=0 that perfectly reconstructs the
reverse process of {xt}Tt=0 under two conditions: 1) sθ(xt, t) = ∇xt log pt(xt) and 2) xT ∼ π. We
define a generative distribution, pθ, as the distribution of xθ0 .

Score Estimation The diffusion model estimates the data score with the score network by min-
imizing the denoising score loss [1], given by L({xt}Tt=0, λ;θ) =

∫ T
0
λ(t)Ex0,xt [‖sθ(xt, t) −

∇xt log p0t(xt|x0)‖22] dt, where p0t(xt|x0) is a transition probability of xt given x0; and λ is
the weighting function that determines the level of contribution for each diffusion time. When
G(xt, t) = g(t), Song et al. [11], Huang et al. [12] proved that this loss with the likelihood weighting
(λ = g2) turns out to be a variational bound of the negative log-likelihood: Ex0 [− log pθ(x0)] ≤
L({xt}Tt=0, g

2;θ)− ExT [log π(xT )], up to a constant, see Appendix A.1 for a detailed discussion.

Choice of Drift (f ) and Volatility (G) Terms The original diffusion model strictly limits the scope
of diffusion process to be a family of linear diffusions that f is a linear function of xt and G is
an identity matrix multiplied by a t-function. For instance, VESDE [1, 7] satisfies f ≡ 0 with
G =

√
dσ2(t)/dtI and VPSDE [1, 8] satisfies f = − 1

2β(t)xt ∝ xt with G =
√
β(t)I. Few

concurrent works have extended linear diffusions to nonlinear diffusions by 1) applyng a latent
diffusion using VAE in LSGM [9], 2) applying a flow network to nonlinearize the drift term in
DiffFlow [13], and 3) reformulating the diffusion model into a Schrodinger Bridge Problem (SBP)
[14–16]. We further analyze these approaches in Section 5.
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Figure 3: INDM attains a ladder structure between the data space and the latent space. The latent
vector is visualized by normalizing the latent value, see Appendix F.5.2 for further visualization.

3 Motivation of Nonlinear Diffusion Process

Figure 1 illustrates various diffusion processes on a spiral toy dataset. In the top row, the diffusion
path of VPSDE keeps its overall structure of the initial data manifold during the data deformation
procedure to N (0, I). The drift vector field illustrated in Figure 2-(a) as black arrows presents that
VPSDE linearly deforms its data distribution.

(a) Linear f ∝ xt (b) Nonlinear f (c) Nonlinear G

Figure 2: Vector fields on various SDEs at t = 0.

Unlike the linear diffusion, the middle row of
Figure 1 with a nonlinear drift shows that the
data is not linearly deformed to N (0, I). Fig-
ure 2-(b) illustrates the corresponding vector
field, in which two distinctive components (or-
ange/blue) are forced to separate each other.
The nonlinearity of the drift term represented
as rotating black arrows is the source of such
nonlinear deformation at the intermediate steps,
x0.2 ∼ x0.6. When it comes to the volatility term, the last row of Figure 1 presents the process with
nonlinear G. Figure 2-(c) illustrates the covariance matrices of the perturbation distribution at t = 0
with linear and nonlinear volatility terms, where the perturbation distribution induced by the volatility
term is N (0,G(xt, t)G

T (xt, t))
1. It shows the non-diagonal and data-dependent covariances of

GGT in red ellipses of a nonlinear volatility term, and the isotropic blue circles of linear diffusions.

4 Implicit Nonlinear Diffusion Model

There are two ways to nonlinearize the drift and volatility coefficients in SDE: explicit and implicit
parametrizations. While explicit is a straightforward way to model the nonlinearity, it becomes
impractical particularly in the training procedure. Concretely, in each of the training iteration, the
denoising loss L({xt}Tt=0, λ;θ) requires 1) the perturbed samples xt from p0t(xt|x0) and 2) the
calculation of∇ log p0t(xt|x0), and these two steps require long execution time because the transition
probability p0t(xt|x0) is intractable for nonlinear diffusions in general. Therefore, we parametrize fφ
and Gφ implicitly for fast and tractable optimization. As visualized in Figure 3, we impose a linear
diffusion model on the latent space, and connect this latent variable with the data variable through a
normalizing flow. The nonlinear diffusion on the data space, then, is induced from the latent diffusion
leveraged to the data space.

4.1 Data and Latent Diffusion Processes

Latent Diffusion Processes Let us define zφ0 to be a transformed latent variable zφ0 = hφ(x0), where
hφ is a transformation of the normalizing flow. Then, a forward linear diffusion

dzφt = −1

2
β(t)zφt dt+ g(t) dwt,(Latent Forward SDE)

1The covariance is d
dt
Ext+dt|xt [(xt+dt − xt − f dt)(xt+dt − xt − f dt)T ] = G(xt, t)G

T (xt, t).
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starting at zφ0 = hφ(x0) with x0 ∼ pr, describes the forward diffusion process on the latent
space (blue diffusion path in Figure 3). The corresponding reverse latent diffusion is given by
dzφt = [− 1

2β(t)zφt − g2(t)∇zφ
t

log pφt (zφt )] dt̄+ g(t) dw̄t, where pφt is the probability of zφt .

Forward Data Diffusion We have not defined the data diffusion process yet. We build the data
diffusion from the latent diffusion and the normalizing flow. From the invertibility, we define
random variables on the data space by transforming the latent linear diffusion back to the data space:
xφt := h−1

φ (zφt ) for any t ∈ [0, T ]. Then, from the Ito’s formula [17], the process {xφt }Tt=0 follows

dxφt = fφ(xφt , t) dt+ Gφ(xφt , t) dwt,(Data Forward SDE)

starting with xφ0 = h−1
φ (zφ0 ). From xφ0 = h−1

φ (hφ(x0)) = x0 ∼ pr, we call this process by induced
diffusion that permeates the data variable on the data space. We emphasize that this induced diffusion
collapses to a linear diffusion if hφid = id. See Appendix A.2 for details on drift and volatility terms.

Generative Data Diffusion A diffusion model estimates the forward latent score sφ(z, t) =

∇ log pφt (z) with the score network, sθ(z, t), to mimic the forward linear diffusion on the latent
space. Then, the generative SDE on the latent space becomes

dzθt =

[
− 1

2
β(t)zθt − g2(t)sθ(zθt , t)

]
dt̄+ g(t) dw̄t(Latent Gen. SDE)

with a starting variable zθT ∼ π. Thus, the process {xφ,θt }Tt=0 of xφ,θt := h−1
φ (zθt ) becomes a

generative data diffusion (purple path in Figure 3) with SDE of

dxφ,θt =
[
fφ − div(GφGT

φ)− (GφGT
φ∇hφ)sθ

(
hφ(xφ,θt ), t

)]
dt̄+ Gφ dw̄t.(Data Gen. SDE)

4.2 Model Training and Sampling

Likelihood Training Theorem 1 estimates Negative Evidence Lower Bound (NELBO) of Negaitve
Log-Likelihood (NLL). For the notational simplicity, we define the targetted score function by

sφ(zφt , t) := ∇ log pφt (zφt ).(Target of Score Estimation)

Also, suppose L
(
{zφt }Tt=0, g

2;θ
)

= 1
2

∫ T
0
g2(t)Ezφ

0 ,z
φ
t

[
‖sθ(zφt , t)−∇ log p0t(z

φ
t |z

φ
0 )‖22

]
dt, where

p0t(z
φ
t |z

φ
0 ) is the transition probability of the latent forward diffusion. In Theorem 1, we drop the

constant terms that do not hurt the essence of the theorem to keep the simplicity. See full details and
the proof in Appendix G.
Theorem 1. Suppose that pφ,θ is the likelihood of a generative random variable xφ,θ0 . Then, the
negative log-likelihood is upper bounded by

Ex0

[
− log pφ,θ(x0)

]
≤ L

(
{xt}Tt=0, g

2; {φ,θ}
)
,

where

L
(
{xt}Tt=0, g

2; {φ,θ}
)

=
1

2

∫ T

0

g2(t)Ezφ
t

[
‖sθ(zφt , t)− sφ(zφt , t)‖22

]
dt+DKL(pφT ‖π) (1)

= −Ex0

[
log
∣∣det

(
∇hφ(x0)

)∣∣]+ L
(
{zφt }Tt=0, g

2;θ
)
− Ezφ

T

[
log π(zφT )

]
. (2)

Eq. (1) is the KL divergence DKL(µφ‖νφ,θ), where µφ and νφ,θ are the path measures of the
forward and generative diffusions on the data space. Eq. (1) explains the reasoning of why sφ is the
target of the score estimation. However, the KL divergence is intractable, and Theorem 1 provides an
equivalent tractable loss by Eq. (2), the summation of the flow loss with the denoising loss.

Algorithm 1 describes the line-by-line algorithm of INDM training. We obtain the flow loss by
taking a flow evaluation. Afterward, we compute the denoising loss. We train the flow with Eq. (2).
However, we train the score with L

(
{xt}Tt=0, λ; {φ,θ}

)
with various λ settings for a better Fréchet

Inception Distance (FID) [18].

Latent Sampling While either of red or purple path in Figure 3 could synthesize the samples,
we choose the red path for the fast sampling (because the red path feed-forwards the flow only
once). Starting from a pure noise zθT ∼ π, we denoise zθT to zθ0 by solving the generative process
backward on the latent space. Then, we transform the fully denoised latent zθ0 to the data space
xφ,θ0 = h−1

φ (zθ0).
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Table 1: Comparison of INDM with previous works. N is the number of random variables.

Model
Nonlinear
Diffusion

Implemented
Data Diffusion

Latent
Diffusion

Nonlinear
f -Modeling

Nonlinear
G-Modeling

Explicit f&G

Derived
Training

Complexity
Sampling

Cost

DDPM++ 7 Continuous 7 7 7 3 O(1) ↓
LSGM 7 7 Continuous 7 7 7 O(1) ↓
SBP 4 Discrete 7 Explicit 7 3 O(N) ↓
DiffFlow 3 Discrete 7 Explicit 7 3 O(N) ↑
INDM 3 Continuous Continuous Implicit Implicit 3 O(1) ↓

5 Related Work
Algorithm 1 Implicit Nonlinear Diffusion Model

1: repeat
2: Get latent with flow by zφ0 = hφ(x0) for x0 ∼ pr
3: Compute −Ex0

[
log
∣∣det

(
∇hφ(x0)

)∣∣]
4: Get diffused latents {zφt }Tt=0 with a linear SDE
5: Compute L

(
{zφt }Tt=0, g

2;θ
)
− Ezφ

T

[
log π(zφT )

]
6: Compute flow loss Lf = L

(
{xt}Tt=0, g

2; {φ,θ}
)

7: Update φ← φ− η ∂Lf∂φ

8: Compute L
(
{zφt }Tt=0, λ;θ

)
− Ezφ

T

[
log π(zφT )

]
9: Compute score loss Ls = L

(
{xt}Tt=0, λ; {φ,θ}

)
10: Update θ ← θ − η ∂Ls∂θ
11: until converged

In this section, we compare INDM with
previous works, and summarize our ar-
guments in Table 1.

LSGM Vahdat et al. [9] put a linear dif-
fusion on the latent space like INDM
but uses an auto-encoder structure.
From this modeling choice, LSGM can-
not be categorized as a nonlinear diffu-
sion model in a strict sense. Concretely,
recall that a diffusion process is (mathe-
matically) defined as a sequence of ran-
dom variables connected via a Markov
chain. From this definition, one needs
to satisfy two requirements to call it a
diffusion process: 1) there must be multiple (possibly infinite) numbers of random variables; 2)
the random variables should be connected via a Markov chain. Unlike INDM, LSGM cannot build
forward data variables from the forward latent variables because there is no exact inverse function of
the encoder map, as long as the data dimension differs to the latent dimension (Lemma 3 of Appendix
D.1). This leads that LSGM has no forward data diffusion process. From this point, analyzing the
data nonlinearity becomes infeasible in LSGM.

Moreover, LSGM has a pair of key differences in its training. First, the latent dimension of LSGM
is 40,080, which is 15× higher dimension than the data dimension (3,072) on CIFAR-10 [19]. In
contrast, INDM always keeps its latent dimension by the data dimension. See Table 9 to compare the
latent dimensions of INDM with LSGM on benchmark datasets. Furthermore, LSGM is repeatedly
reported [9, 20] for its training instability on the best FID setting of λ = σ2 (i.e., Lsimple [8]).
Meanwhile, INDM is consistently stable for any of training configurations, see Table 8.

DiffFlow Zhang and Chen [13] explicitly model the drift term fφ as a flow network, so the forward
diffusion becomes dxt = fφ dt + g dwt. However, there are differences between DiffFlow and
INDM: 1) DiffFlow does not nonlinearize the volatility; 2) DiffFlow is too slow for its explicit
parametrization (Table 18); 3) the flexibility of fφ is too restricted; 4) DiffFlow has a larger loss
variance (Table 10). See Appendix D.2 for the full details of our arguments. Focusing on the slow
training, observe that the denoising loss Ex0,x

φ
t

[‖sθ(xφt , t)−∇ log p0t(x
φ
t |x0)‖22] requires a pair of

heavy computations: (A) sampling from xφt , and (B) computation of ∇ log p0t(x
φ
t |x0). Intractable

transition probability p0t(x
φ
t |x0) is the major bottleneck of the slow training.

To overcome the bottleneck, DiffFlow discretizes the continuous diffusion with N variables of a
discrete diffusion and uses the DDPM-style loss [8], which does not need to calculate the transition
probability. Under the discretization, however, the forward sampling of xφt takes O(N) flow evalua-
tions for every network update. This sampling issue is an inevitable fundamental problem when we
parametrize the coefficients explicitly. Having that the flow evaluation is generally more expensive
than score evaluation given the same number of parameters, a fast sampling is achievable only if
we reduce N . However, it hurts the flexibility of a diffusion process, so DiffFlow suffers from the
trade-off between training speed and model flexibility. On the other hand, the training of INDM is
invariant of N , and INDM is free from such a trade-off. Analogously, DiffFlow generates a sample
with the purple path in Figure 3, so it takes O(N) flow evaluations, contrastive to INDM with a single
flow evaluation in its sampling with the red path.
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SBP De Bortoli et al. [15] learn the diffusion process with a problem of minρθ∈P(pr,π)DKL(ρθ‖µ),
where P(pr, π) is the collection of path measure with pr and π as its marginal distributions at t = 0
and t = T , respectively. It is a bi-constrained optimization problem as any path measure on the
search space that should satisfy boundary conditions at both t = 0 and t = T . µ is the reference
measure of a linear diffusion dxt = f(xt, t) dt+g(t)wt; and the forward and reverse SDEs of ρθ are
dxt = [f(xt, t)+g2(t)∇ log Ψ(xt, t)] dt+g(t) dwt and dxt = [f(xt, t)−g2(t)∇ log Ψ̂(xt, t)] dt̄+

g(t) dw̄t, respectively, where (Ψ, Ψ̂) is the solution of a coupled PDE, called Hopf-Cole transform
[21]. Solving this coupled PDE is intractable, so the estimation target of SBP is∇ log Ψ and∇ log Ψ̂.
As f and g are assumed to be linear functions, the nonlinearity of SBP is fully determined by (Ψ, Ψ̂).
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Figure 4: Norm Ratio of SBP.

Analogous to DiffFlow, sampling from xt in SBP needs a long
time. Few works [15, 16] detour this training issue using the ex-
perience replay memory. Aside from the training time, the KL
minimization puts the global optimal nonlinear diffusion ρθ∗ near a
neighborhood of the linear diffusion µ. In other words, the op-
timal ρθ∗ is the closest path measure on P(pr, π) to µ, so the
inferred nonlinear diffusion would be the most linear diffusion
on the space of P(pr, π). For the demonstration, we illustrate
‖g2(t)∇ log Ψ(xt, t)∆t‖2/‖g(t)∆wt‖2 in Figure 4. We used the released checkpoint of SB-FBSDE
[16], an algorithm for solving SBP, trained with VESDE on CIFAR-10. As f ≡ 0 in VESDE, this
norm ratio measures how much nonlinearity is counted on a diffusion trajectory compared to the
linear effect. Figure 4 shows that the ratio approaches zero except at the small range around t ≈ 0,
meaning that the nonlinear effect is virtually ignorable than the linear effect. Therefore, Figure 4
implies that the diffusion process is nearly linear in most of the diffusion time. We give a detailed
discussion of SBP in Appendix D.3.

6 Discussion

This section investigates characteristics of INDM. We show that INDM training is faster and nearly
MLE in Section 6.1, and INDM sampling is robust on discretization step sizes in Section 6.2.

6.1 Benefit of INDM in Training

Having that DDPM++ is a collapsed INDM with a fixed identity transformation hφid = id, the
difference lies in whether to trainφ or not. This trainable nonlinearity provides the better optimization
of INDM, as evidenced in Figure 5-(a), experimented on CIFAR-10 using VPSDE. It shows a pair
of critical characteristics of INDM training: 1) it is faster than DDPM++ training, and 2) it is
asymptotically an MLE training. For the training speed, recall that the regression target of the score
estimation is sφ, and this target is fixed in DDPM++ while keep moving in INDM. The target is
constantly updated through the direction of sθ in Eq. (1) by optimizing ‖sφ−sθ‖22. This bidirectional
attraction between sθ and sφ is what flow learning does in the optimization.

For the MLE training, as the flow training is intricately entangled with the score training, we analyze
INDM training for a specific class of score networks. First, we define Ssol (Definition 1 in Appendix
B) to be the class of forward score functions of a linear diffusion with some initial distribution. Then,
it turns out that it is the whole class of zero variational gap (=NLL-NELBO).

Theorem 2. Gap(µφ,νφ,θ) := DKL(µφ‖νφ,θ)−DKL(pr‖pφ,θ) = 0 if and only if sθ ∈ Ssol.

Song et al. [11] partially reveal the connection between the gap with Ssol, by proving the if part
of Theorem 2, in Theorem 2 of Song et al. [11] (see Lemma 2 in Appendix B). We completely
characterize this connection by proving the only-if part in Theorem 2. Surprisingly, the variational
gap is irrelevant to the flow parameters, and the MLE training of INDM implies that the score network
is nearby Ssol throughout the training. Combining Theorem 2 with the global optimality analysis
raises a qualitative discrepancy in the optimization of DDPM++ and INDM by Theorem 3.

Theorem 3. For any fixed sθ ∈ Ssol, if φ∗ ∈ arg minφDKL(µφ‖νφ,θ), then sφ∗(z, t) =

∇ log pφ
∗

t (z) = sθ(z, t), and DKL(µφ∗‖νφ∗,θ) = DKL(pr‖pφ∗,θ) = Gap(µφ∗ ,νφ∗,θ) = 0.
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Figure 5: Comparison of INDM with baseline models, experimented on CIFAR-10.

Theorem 3 implies that there exists an optimal flow that the forward and generative SDEs on the
latent space coincide, for any score network in Ssol, if the flow is flexible enough. Therefore, INDM
attains infinitely many (= |Ssol|) global optimums in its optimization space. On the other hand,
DDPM++ has only a unique optimal score network, i.e., sθ∗ = sφid . Thus, Theorem 3 potentially
explains the faster convergence of INDM. We give a detailed analysis in Appendix B.

6.2 Benefit of INDM in Sampling

Figure 5-(b,c) equally illustrate that INDM is more robust on the discretization step sizes in FID than
DDPM++/NCSN++. To analyze the sample quality with respect to discretizations, recall that the
Euler-Maruyama discretization of the generative SDE (or called the reverse diffusion sampler, or
simply the predictor [1]) iteratively updates the sample z̃k with

z̃tk−1
= z̃tk + γk

(
1

2
β(tk)z̃tk + g2(tk)sθ(z̃tk , tk)

)
+ g(tk)

√
γkε,

until time reaches to zero, where γk = tk − tk−1 is the step size of the discretized sampler and
ε ∼ N (0, I). The sampling error is the distributional discrepancy between the sample distribution of
h−1
φ (z̃0) and the data distribution. Theorem 4 decomposes the sampling error with three factors: 1)

the prior error Epri, 2) the discretization error Edis, and 3) the score error Eest. Note that Theorem 4
is a straightforward application of the analysis done by De Bortoli et al. [15] and Guth et al. [22]. We
omit regularity conditions to avoid unnecessary complications; see Appendix C.1.
Theorem 4 (De Bortoli et al. [15] and Guth et al. [22]). Assume that 1) supz,t ‖sθ∗(z, t) −
∇ log pφt (z)‖ ≤ M , 2) supz,t ‖∇2 log pφt (z)‖ ≤ K, and 3) supz,t ‖∂t∇ log pφt (z)‖/‖z‖ ≤ Le−αt,
for some K,L,M,α > 0. Then

‖pr − (h−1
φ )# ◦ pθ0,N‖TV ≤ Epri(φ) + Edis(φ) + Eest(φ,θ) + o(

√
δ + e−T ),

whereEpri(φ) =
√

2e−TDKL(pφT ‖π)1/2,Edis(φ) = 6
√
δ(1+E[‖z‖4]1/4)(1+K+L(1+1/

√
2α)),

and Eest(φ,θ) = 2TM2 with δ = max γk
2/min γk.
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Figure 6: Sensitivity analysis
on scaled-up scenario.

There are a pair of implications from Theorem 4.
X Epri(φ) and Eest(φ,θ) are independent of the discretiza-

tion steps.

X Edis(φ)/
√
δ is the discretization sensitivity, entirely deter-

mined by the latent distribution’s smoothness.
To the deep understanding of the second implication, let us assume
hφa(x) = ax for some scalar a > 1, then the sensitivity is anti-
proportional to a with the identical discretizations, i.e., Edis(φa) ≈
1
aEdis(φid). With a smaller sensitivity of φa, there is more room to
reduce the number of discretization steps for φa. Figure 6 empirically supports the theory, showing
that the sampler (at the large tolerance with 10−2) becomes more robust as a increases, on CIFAR-10.

Before we derive a concrete result from the implication, observe that the flow hφ is maximizing
det(∇hφ) in Eq. (2). To understand the effect of flow training on the discretization sensitivity, let us
restrict the hypothesis class of the transformation to be linear mappings of hφa(x) = ax. Then, as
the determinant increases by a, the trained diffusion model would be insensitive to the discretizations.
Now, for the general case, Figure 7-(a,b) illustrate ‖∇2 log pφt (z)‖ and ‖∂t∇ log pφt (z)‖/‖z‖ on
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(a) ‖∇2 log pφt (z)‖ (b) ‖∂t∇ log pφt (z)‖/‖z‖
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Figure 7: (a,b) Comparison of INDM with DDPM++ for K,L, α. (c) Cosine similarity of forward
diffusion trajectories on CIFAR-10.

CIFAR-10, respectively. Also, E[‖z‖4]1/4 of INDM is slightly larger (1.3x) than DDPM++. There-
fore, with these observations combined, we conclude that INDM is less sensitive to the discretization
steps than DDPM++, from its loss design.

Table 2: Aver-
age L2

2 Norm.

Manifold Norm

Data 776
Latent 5,385
Prior 3,072

Second, the robustness could originate from the geometry of the diffusion trajectory.
The forward solution of VPSDE is xt = µ(t)x0 +

√
1− µ2(t)ε with µ(t) =

e−
1
2

∫ t
0
β(s) ds, where the first term is a contraction mapping and the second term is

the random perturbation. The contraction mapping points toward the origin, but the
overall vector field of the diffusion path points outward because the prior manifold
lies outside the data manifold, as shown in Table 2. This contrastive force leads
the drift and volatility coefficients works in repulsive and raises a highly nonlinear
diffusion trajectory in DDPM++, see Figure 11 for a toy illustration. On the other hand, the flow
mapping of INDM pushes the latent manifold outside the prior manifold, and the drift and volatility
coefficients act coherently. Hence, INDM has the relatively linear diffusion path; see Figures 12,
13, and 14 for a quick intuition. Figure 7-(c) measures the cosine similarity of the ODE’s diffusion
trajectory with the straight line connecting the initial-final points of each trajectory. Figure 7-(c)
implies that DDPM++ is under an inefficient nonlinear trajectory that reverts backward near the end
of the trajectory, as in Figure 11. In contrast, INDM trajectory is relatively efficient and linear (Figure
15), which yields robust sampling by discretization steps; see Appendix C.2 for details.

7 Experiments

This section quantitatively analyzes suggested INDM on CIFAR-10 and CelebA 64×64. Throughout
the experiments, we use NCSN++ with VESDE and DDPM++ with VPSDE [1] as the backbones of
diffusion models, and a ResNet-based flow model [23, 24] as the backbone of the flow model. See
Appendix F for experimental details. We experiment with a pair of weighting functions for the score
training. One is the likelihood weighting [11] with λ(t) = g2(t), and we denote INDM (NLL) for
this weighing choice. The other is the variance weighting [8] λ(t) = σ2(t) with an emphasis on FID,
and we denote INDM (FID) for this weighting choice.

We use either the Predictor-Corrector (PC) sampler [1] or a numerical ODE solver (RK45 [25]) of
the probability flow ODE [1]. For a better FID, we find the optimal signal-to-noise value (Table
14), sampling temperature (Table 15), and stopping time (Table 16). Moreover, sampling from zφT
rather than π improves FID because Epri(φ) collapses to zero in Theorem 4, see Appendix F.2.2.
We compute NLL/NELBO for performances of density estimation with Bits Per Dimension (BPD).
We compute NLL with the uniform dequantization, instead of the variational dequantization [26]
because it requires training an auxiliary network [11] only for the evaluation after the model training.

7.1 Correction on Likelihood Evaluation

A continuous diffusion model truncates the time horizon from [0, T ] to [ε, T ] to avoid training
instability [27]. In the model evaluation, this positive truncation could potentially be the primary
source of poor evaluation (Figure 1-(c) of Kim et al. [27]), so we fix ε = 10−5 as default in our
training and evaluation. In the model evaluation, as the score network is untrained on [0, ε), we
calculate NLL by the Right-Hand-Side (RHS) of Eq. (3),

NLL = Ex0 [− log pm0 (x0)] ≤ Ex0,xε

[
− log pmε (xε) + log

pmε0(x0|xε)
p0ε(xε|x0)

]
. (3)
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Table 4: Performance comparison to linear/nonlinear diffusion models on CIFAR-10. We report the
performance of linear diffusions by training our PyTorch implementation based on Song et al. [1, 11]
with identical hyperparameters and score networks on both linear/nonlinear diffusions to quantify the
effect of nonlinearity in a fair setting. Boldface numbers represent the best performance in a column.

SDE Model
Nonlinear Data

Diffusion # Params
NLL (↓) NELBO (↓) Gap (↓) FID (↓)

after
correction

before
correction

w/ residual w/o residual (=NELBO-NLL) ODE PC(after) (before) after before

VE NCSN++ (FID) 7 63M 4.86 3.66 4.89 4.45 0.03 0.79 - 2.38
INDM (FID) 3 76M 3.22 3.13 3.28 3.24 0.06 0.11 - 2.29

VP

DDPM++ (FID) 7 62M 3.21 3.16 3.34 3.32 0.13 0.16 3.90 2.89
INDM (FID) 3 75M 3.17 3.11 3.23 3.18 0.06 0.07 3.61 2.90

DDPM++ (NLL) 7 62M 3.03 2.97 3.13 3.11 0.10 0.14 6.70 5.17
INDM (NLL) 3 75M 2.98 2.95 2.98 2.97 0.00 0.02 6.01 5.30

Table 5: Performance comparison on CIFAR-10.
SDE Type Model # Params NLL FID

Linear

NCSN++ (FID) [1] 108M 4.85 2.20
DDPM++ (FID) [1] 108M 3.19 2.64
DDPM++ (NLL) [1] 108M 3.01 4.88
VDM [28] - 2.65 7.41
CLD-SGM [20] 108M 3.31 2.25

Nonlinear

SBP SB-FBSDE [16] 102M 2.98 3.18

VAE
-based

LSGM (FID) [9] 476M 3.45 2.10
LSGM (NLL) [9] 269M 2.97 6.15
LSGM (NLL) [9] 506M 2.87 6.89
LSGM (balanced) [9] 109M 2.96 4.60
LSGM (balanced) [9] 476M 2.98 2.17

Flow
-based

DiffFlow (FID) [13] ≈36M 3.04 14.14

INDM (FID) 118M 3.09 2.28
INDM (NLL) 121M 2.97 4.79
INDM (NLL) + ST 75M 3.01 3.25

Table 6: Performance comparison on CelebA
64× 64.

Model NLL NELBO Gap FID

UNCSN++ [27] 1.93 - - 1.92
DDGM [29] - - - 2.92
Efficient-VDVAE [30] - 1.83 - -
CR-NVAE [31] - 1.86 - -
DenseFlow-74-10 [4] 1.99 - - -
StyleFormer [32] - - - 3.66

NCSN++ (VE, FID) 3.41 3.42 0.01 3.95
INDM (VE, FID) 2.31 2.33 0.02 2.54

DDPM++ (VP, FID) 2.14 2.21 0.07 2.32
INDM (VP, FID) 2.27 2.31 0.04 1.75

DDPM++ (VP, NLL) 2.00 2.09 0.09 3.95
INDM (VP, NLL) 2.05 2.05 0.00 3.06

Here, pm0 and pmε are the model probability distributions at t = 0 and t = ε, respectively; and
pmε0(·|xε) is the model’s reconstruction probability of x0 given xε. RHS of Eq. (3) is a generic
formula to compute NLL in continuous diffusion models, including DDPM++, LSGM, and INDM.
Previous continuous models [1, 11, 9] have approximated Ex0 [− log pm0 (x0)] by Ex0 [− log pmε (x0)].

There are two significant differences between our and the previous calculation: 1) the input of pmε
is replaced with xε from x0 (Table 11); 2) the residual term of log

pmε0(x0|xε)
p0ε(xε|x0) is added. With this

modification, our NLL differs from the previous NLL of Ex0 [− log pmε (x0)] by about 0.03-0.06
in VPSDE, see Table 4. We report both previous/corrected ways in Table 4 and report corrected
NLL/NELBO as default; see Appendix E for theoretical justification of our NLL/NELBO corrections.

7.2 Quantitative Results on Image Generation

Table 3: Effect of Pre-
training.

Model NLL FID

DDPM++ 3.03 6.70
INDM (w/ pre) 2.98 6.01
INDM (w/o pre) 2.98 8.49

FID Boost with Pre-training Training INDM from scratch improves
NLL with the sacrifice of FID compared to DDPM++ in Table 3. There-
fore, we pre-train the score network by DDPM++ as default. This pre-
training is intended to search the data nonlinearity near well-trained linear
diffusions. Table 3 shows that training INDM after 500k of pre-training
steps performs better than DDPM++ on both NLL and FID. Appendix
F.3 conducts the ablation study of pre-training steps.

Effect of Flow Training Table 4 investigates how the flow training affects to performances, under the
various linear diffusions and weighting functions. It compares the pre-trained NCSN++/DDPM++
with INDM, of which these pre-trained models initialize the score network of INDM. Experiments in
Table 4 presents that INDM improves NELBO in any setting, and minimizes the variational gap to
zero if we train the score network with the likelihood weighting.

SOTA on CelebA Tables 5 and 6 compare INDM to baseline models. With the emphasis on FID,
LSGM is the State-Of-The-Art (SOTA) model on CIFAR-10, but INDM-118M (FID) is on par with
LSGM-476M (FID). Moreover, we use Soft Truncation [27] to compare with LSGM (balanced).
Soft Truncation softens the smallest diffusion time as a random variable in the training stage to
boost sample performance by improving the score accuracy, particularly on large diffusion time. In
the inference stage, Soft Truncation uses the fixed smallest diffusion time (ε). INDM (NLL) + ST
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Figure 8: INDM enables to learn a diffusion bridge between two distinctive data distributions.

outperforms LSGM-109M (balanced) in terms of FID with comparable NLL. Also, INDM-121M
(NLL) outperforms LSGM-269M (NLL) in FID with identical NLLs. We achieve SOTA FID of 1.75
on CelebA in Table 6. See Appendix F.8 for an extended comparison and Appendix F.9 for samples.

7.3 Application Task: Dataset Interpolation

The linear SDEs fixedly perturb data variables, so such SDEs should have the end distribution pT (xT )
as an easy-to-compute distribution. With the nonlinear extension, a complex diffusion process exists
to transport p(1)

r to another arbitrary p(2)
r . However, a common practice of diffusion models constrains

only the starting variable by xφ0 ∼ p
(1)
r , so the ending variable of xφT is free to deviate from p

(2)
r .

Previous works have tackled this data interpolation task by using a conditional diffusion model [33]
or a couple of jointly trained source-and-target diffusion models [34] on paired datasets. Among
unconditional diffusion models using unpaired datasets, SBP [15] is a natural approach for the task
by imposing bi-constraints with P(pr, π) replaced by P(p

(1)
r , p

(2)
r ).

Time 𝑡𝑡 = 0.0 Time 𝑡𝑡 = 0.5 Time 𝑡𝑡 = 1.0

INDM

LSGM

Figure 9: Image-to-image translation from EM-
NIST letters dataset to MNIST digits dataset.

INDM can alternatively train the nonlinear dif-
fusion from p

(1)
r to p(2)

r with unpaired datasets.
We train the score and flow networks with a loss

DKL(µφ‖νφ,θ)︸ ︷︷ ︸
INDM NELBO

+DKL(p(2)
r ‖pφ)︸ ︷︷ ︸

Interpolation Loss

,

where pφ is the probability distribution of xφT ,
which is calculated by a single feed-forward
computation of the flow network, see Algorithm
2 in Appendix F.2.3. The additional interpolation loss forces the diffusion bridge {xφt }Tt=0 to ahead
towards p(2)

r by minimizing the KL divergence between xφT ∼ pφ and p(2)
r . As the destined variable of

the bridge becomes xφT = h−1
φ (zT ) ≈ h−1

φ (π), the flow network is what constructs the interpolated
bridge between a couple of data variables, see Figures 8 and 9. Particularly, Figure 9 shows that
LSGM fails to interpolate a letter to a digit, and we attribute this failure to the non-existence of
a diffusion bridge in LSGM. Also, INDM models p(1)

r with pφ,θ and p(2)
r with pφ, so we could

compute NLL of each dataset separately: 1.10 BPD for MNIST and 1.56 BPD for EMNIST. In
contrast, SBP cannot separately estimate densities on each dataset. We emphasize that no additional
neural network is needed for the interpolation task with INDM.

8 Conclusion

This paper expands the linear diffusion to trainable nonlinear diffusion by combining an invertible
transformation and a diffusion model, where the nonlinear diffusion learns the forward diffusion out
of variational family of inference measures. A limitation of INDM lies in the training/evaluation time.
Potential risk from this work is the negative use of deep generative models, such as deepfake images.
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