
Maximum Likelihood Training of
Implicit Nonlinear Diffusion Models

Dongjun Kim∗
KAIST

dongjoun57@kaist.ac.kr

Byeonghu Na∗
KAIST

wp03052@kaist.ac.kr

Se Jung Kwon
NAVER CLOVA

Dongsoo Lee
NAVER CLOVA

Wanmo Kang
KAIST

Il-Chul Moon
KAIST / Summary.AI

Abstract

Whereas diverse variations of diffusion models exist, extending the linear diffusion
into a nonlinear diffusion process is investigated by very few works. The nonlin-
earity effect has been hardly understood, but intuitively, there would be promising
diffusion patterns to efficiently train the generative distribution towards the data
distribution. This paper introduces a data-adaptive nonlinear diffusion process
for score-based diffusion models. The proposed Implicit Nonlinear Diffusion
Model (INDM) learns by combining a normalizing flow and a diffusion process.
Specifically, INDM implicitly constructs a nonlinear diffusion on the data space by
leveraging a linear diffusion on the latent space through a flow network. This flow
network is key to forming a nonlinear diffusion, as the nonlinearity depends on
the flow network. This flexible nonlinearity improves the learning curve of INDM
to nearly Maximum Likelihood Estimation (MLE) against the non-MLE curve
of DDPM++, which turns out to be an inflexible version of INDM with the flow
fixed as an identity mapping. Also, the discretization of INDM shows the sampling
robustness. In experiments, INDM achieves the state-of-the-art FID of 1.75 on
CelebA. We release our code at https://github.com/byeonghu-na/INDM.

1 Introduction

Diffusion models have recently achieved success on the task of sample generation, and some works
[1, 2] claim state-of-the-art performance over Generative Adversarial Networks (GAN) [3]. This
success is highlighted particularly in likelihood-based models, including normalizing flows [4],
autoregressive models [5], and Variational Auto-Encoders (VAE) [6]. Moreover, this success is
noteworthy because it is achieved merely using linear diffusion processes, such as Variance Exploding
(VE) Stochastic Differential Equation (SDE) [7], and Variance Preserving (VP) SDE [8].

This paper extends linear diffusions of VE/VP SDEs to a data-adaptive trainable nonlinear diffusion.
To motivate the extension, though there are structural similarities between diffusion models and
VAEs, the inference part of a linear diffusion process has not been trained while its counterpart of
VAE (the encoder) has been trained. We introduce Implicit Nonlinear Diffusion Models (INDM) to
train its forward SDE, the inference part in diffusion models. INDM constructs the nonlinearity of
the data diffusion by transforming a linear latent diffusion back to the data space.

We implement the transformation between the data and latent spaces with a normalizing flow. The
invertibility of the flow mapping is key to learning a nonlinear inference part. Invertibility is necessary

*Equal contribution

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/byeonghu-na/INDM

Figure 1: Examples of linear (top row) and nonlinear (middle/bottom rows) diffusion processes.

for constructing the nonlinearity, and we clarify this by comparing INDM with LSGM [9], a latent
diffusion model with VAE. Altogether, INDM provides the following advantages over the existing
models.

• INDM extends the scope of diffusion models from linear SDEs to implicit nonlinear SDEs.

• INDM learns not only drift but volatility coefficients of the forward (inference) SDE.

• INDM trains its network with Maximum Likelihood Estimation (MLE).

• INDM is robust on the sampling discretization.

2 Preliminary

A diffusion model is constructed with bidirectional forward and reverse stochastic processes.

Forward and Reverse Diffusions A forward diffusion process diffuses an input data variable,
x0 ∼ pr, to a noise variable, and the corresponding reverse diffusion process [10] of this forward
diffusion denoises a noise variable to regenerate the input variable. The forward diffusion is fully
described by an SDE of dxt = f(xt, t) dt + G(xt, t) dwt, and the corresponding reverse SDE
becomes dxt =

[
f(xt, t) − div(GGT)(xt, t) − (GGT)(xt, t)∇xt log pt(xt)

]
dt̄ + G(xt, t) dw̄t.

Here, wt ∈ Rd is an abstraction of a random walk process with independent increments, where d is
the data dimension, and dw̄t is the standard Wiener processes with backwards in time.

Generative Diffusion Having that the drift (f ∈ Rd) and the volatility (G ∈ Rd×d) terms are given a-
priori, diffusion models [1] estimate the data score,∇xt log pt(xt), with the score network, sθ(xt, t).
By plugging the score network in the data score, we obtain another diffusion process, called the
generative SDE, described by dxθt =

[
f(xθt , t)− div(GGT)(xθt , t)− (GGT)(xθt , t)sθ(xθt , t)

]
dt̄+

G(xθt , t) dw̄t. Starting from a prior distribution of xθT ∼ π and solving the SDE time backwards,
Song et al. [1] construct the generative stochastic process of {xθt }Tt=0 that perfectly reconstructs the
reverse process of {xt}Tt=0 under two conditions: 1) sθ(xt, t) = ∇xt log pt(xt) and 2) xT ∼ π. We
define a generative distribution, pθ, as the distribution of xθ0 .

Score Estimation The diffusion model estimates the data score with the score network by min-
imizing the denoising score loss [1], given by L({xt}Tt=0, λ;θ) =

∫ T
0
λ(t)Ex0,xt [‖sθ(xt, t) −

∇xt log p0t(xt|x0)‖22] dt, where p0t(xt|x0) is a transition probability of xt given x0; and λ is
the weighting function that determines the level of contribution for each diffusion time. When
G(xt, t) = g(t), Song et al. [11], Huang et al. [12] proved that this loss with the likelihood weighting
(λ = g2) turns out to be a variational bound of the negative log-likelihood: Ex0 [− log pθ(x0)] ≤
L({xt}Tt=0, g

2;θ)− ExT [log π(xT)], up to a constant, see Appendix A.1 for a detailed discussion.

Choice of Drift (f) and Volatility (G) Terms The original diffusion model strictly limits the scope
of diffusion process to be a family of linear diffusions that f is a linear function of xt and G is
an identity matrix multiplied by a t-function. For instance, VESDE [1, 7] satisfies f ≡ 0 with
G =

√
dσ2(t)/dtI and VPSDE [1, 8] satisfies f = − 1

2β(t)xt ∝ xt with G =
√
β(t)I. Few

concurrent works have extended linear diffusions to nonlinear diffusions by 1) applyng a latent
diffusion using VAE in LSGM [9], 2) applying a flow network to nonlinearize the drift term in
DiffFlow [13], and 3) reformulating the diffusion model into a Schrodinger Bridge Problem (SBP)
[14–16]. We further analyze these approaches in Section 5.

2

𝑥𝑥0 𝑥𝑥0
𝜙𝜙,𝜃𝜃𝑥𝑥𝑇𝑇

𝜙𝜙

𝑧𝑧0
𝜙𝜙 𝑧𝑧0𝜃𝜃𝑧𝑧𝑇𝑇

𝜙𝜙

Nonlinear Forward Path (data → noise)

≈ 𝜋𝜋

Nonlinear Generative Path (noise → data)

Linear Forward Path (latent → noise) Linear Generative Path (noise → latent)

Invertible Path
(data → latent)

Invertible Path
(latent → data)

Figure 3: INDM attains a ladder structure between the data space and the latent space. The latent
vector is visualized by normalizing the latent value, see Appendix F.5.2 for further visualization.

3 Motivation of Nonlinear Diffusion Process

Figure 1 illustrates various diffusion processes on a spiral toy dataset. In the top row, the diffusion
path of VPSDE keeps its overall structure of the initial data manifold during the data deformation
procedure to N (0, I). The drift vector field illustrated in Figure 2-(a) as black arrows presents that
VPSDE linearly deforms its data distribution.

(a) Linear f ∝ xt (b) Nonlinear f (c) Nonlinear G

Figure 2: Vector fields on various SDEs at t = 0.

Unlike the linear diffusion, the middle row of
Figure 1 with a nonlinear drift shows that the
data is not linearly deformed to N (0, I). Fig-
ure 2-(b) illustrates the corresponding vector
field, in which two distinctive components (or-
ange/blue) are forced to separate each other.
The nonlinearity of the drift term represented
as rotating black arrows is the source of such
nonlinear deformation at the intermediate steps,
x0.2 ∼ x0.6. When it comes to the volatility term, the last row of Figure 1 presents the process with
nonlinear G. Figure 2-(c) illustrates the covariance matrices of the perturbation distribution at t = 0
with linear and nonlinear volatility terms, where the perturbation distribution induced by the volatility
term is N (0,G(xt, t)G

T (xt, t))
1. It shows the non-diagonal and data-dependent covariances of

GGT in red ellipses of a nonlinear volatility term, and the isotropic blue circles of linear diffusions.

4 Implicit Nonlinear Diffusion Model

There are two ways to nonlinearize the drift and volatility coefficients in SDE: explicit and implicit
parametrizations. While explicit is a straightforward way to model the nonlinearity, it becomes
impractical particularly in the training procedure. Concretely, in each of the training iteration, the
denoising loss L({xt}Tt=0, λ;θ) requires 1) the perturbed samples xt from p0t(xt|x0) and 2) the
calculation of∇ log p0t(xt|x0), and these two steps require long execution time because the transition
probability p0t(xt|x0) is intractable for nonlinear diffusions in general. Therefore, we parametrize fφ
and Gφ implicitly for fast and tractable optimization. As visualized in Figure 3, we impose a linear
diffusion model on the latent space, and connect this latent variable with the data variable through a
normalizing flow. The nonlinear diffusion on the data space, then, is induced from the latent diffusion
leveraged to the data space.

4.1 Data and Latent Diffusion Processes

Latent Diffusion Processes Let us define zφ0 to be a transformed latent variable zφ0 = hφ(x0), where
hφ is a transformation of the normalizing flow. Then, a forward linear diffusion

dzφt = −1

2
β(t)zφt dt+ g(t) dwt,(Latent Forward SDE)

1The covariance is d
dt
Ext+dt|xt [(xt+dt − xt − f dt)(xt+dt − xt − f dt)T] = G(xt, t)G

T (xt, t).

3

starting at zφ0 = hφ(x0) with x0 ∼ pr, describes the forward diffusion process on the latent
space (blue diffusion path in Figure 3). The corresponding reverse latent diffusion is given by
dzφt = [− 1

2β(t)zφt − g2(t)∇zφ
t

log pφt (zφt)] dt̄+ g(t) dw̄t, where pφt is the probability of zφt .

Forward Data Diffusion We have not defined the data diffusion process yet. We build the data
diffusion from the latent diffusion and the normalizing flow. From the invertibility, we define
random variables on the data space by transforming the latent linear diffusion back to the data space:
xφt := h−1

φ (zφt) for any t ∈ [0, T]. Then, from the Ito’s formula [17], the process {xφt }Tt=0 follows

dxφt = fφ(xφt , t) dt+ Gφ(xφt , t) dwt,(Data Forward SDE)

starting with xφ0 = h−1
φ (zφ0). From xφ0 = h−1

φ (hφ(x0)) = x0 ∼ pr, we call this process by induced
diffusion that permeates the data variable on the data space. We emphasize that this induced diffusion
collapses to a linear diffusion if hφid = id. See Appendix A.2 for details on drift and volatility terms.

Generative Data Diffusion A diffusion model estimates the forward latent score sφ(z, t) =

∇ log pφt (z) with the score network, sθ(z, t), to mimic the forward linear diffusion on the latent
space. Then, the generative SDE on the latent space becomes

dzθt =

[
− 1

2
β(t)zθt − g2(t)sθ(zθt , t)

]
dt̄+ g(t) dw̄t(Latent Gen. SDE)

with a starting variable zθT ∼ π. Thus, the process {xφ,θt }Tt=0 of xφ,θt := h−1
φ (zθt) becomes a

generative data diffusion (purple path in Figure 3) with SDE of

dxφ,θt =
[
fφ − div(GφGT

φ)− (GφGT
φ∇hφ)sθ

(
hφ(xφ,θt), t

)]
dt̄+ Gφ dw̄t.(Data Gen. SDE)

4.2 Model Training and Sampling

Likelihood Training Theorem 1 estimates Negative Evidence Lower Bound (NELBO) of Negaitve
Log-Likelihood (NLL). For the notational simplicity, we define the targetted score function by

sφ(zφt , t) := ∇ log pφt (zφt).(Target of Score Estimation)

Also, suppose L
(
{zφt }Tt=0, g

2;θ
)

= 1
2

∫ T
0
g2(t)Ezφ

0 ,z
φ
t

[
‖sθ(zφt , t)−∇ log p0t(z

φ
t |z

φ
0)‖22

]
dt, where

p0t(z
φ
t |z

φ
0) is the transition probability of the latent forward diffusion. In Theorem 1, we drop the

constant terms that do not hurt the essence of the theorem to keep the simplicity. See full details and
the proof in Appendix G.
Theorem 1. Suppose that pφ,θ is the likelihood of a generative random variable xφ,θ0 . Then, the
negative log-likelihood is upper bounded by

Ex0

[
− log pφ,θ(x0)

]
≤ L

(
{xt}Tt=0, g

2; {φ,θ}
)
,

where

L
(
{xt}Tt=0, g

2; {φ,θ}
)

=
1

2

∫ T

0

g2(t)Ezφ
t

[
‖sθ(zφt , t)− sφ(zφt , t)‖22

]
dt+DKL(pφT ‖π) (1)

= −Ex0

[
log
∣∣det

(
∇hφ(x0)

)∣∣]+ L
(
{zφt }Tt=0, g

2;θ
)
− Ezφ

T

[
log π(zφT)

]
. (2)

Eq. (1) is the KL divergence DKL(µφ‖νφ,θ), where µφ and νφ,θ are the path measures of the
forward and generative diffusions on the data space. Eq. (1) explains the reasoning of why sφ is the
target of the score estimation. However, the KL divergence is intractable, and Theorem 1 provides an
equivalent tractable loss by Eq. (2), the summation of the flow loss with the denoising loss.

Algorithm 1 describes the line-by-line algorithm of INDM training. We obtain the flow loss by
taking a flow evaluation. Afterward, we compute the denoising loss. We train the flow with Eq. (2).
However, we train the score with L

(
{xt}Tt=0, λ; {φ,θ}

)
with various λ settings for a better Fréchet

Inception Distance (FID) [18].

Latent Sampling While either of red or purple path in Figure 3 could synthesize the samples,
we choose the red path for the fast sampling (because the red path feed-forwards the flow only
once). Starting from a pure noise zθT ∼ π, we denoise zθT to zθ0 by solving the generative process
backward on the latent space. Then, we transform the fully denoised latent zθ0 to the data space
xφ,θ0 = h−1

φ (zθ0).

4

Table 1: Comparison of INDM with previous works. N is the number of random variables.

Model
Nonlinear
Diffusion

Implemented
Data Diffusion

Latent
Diffusion

Nonlinear
f -Modeling

Nonlinear
G-Modeling

Explicit f&G

Derived
Training

Complexity
Sampling

Cost

DDPM++ 7 Continuous 7 7 7 3 O(1) ↓
LSGM 7 7 Continuous 7 7 7 O(1) ↓
SBP 4 Discrete 7 Explicit 7 3 O(N) ↓
DiffFlow 3 Discrete 7 Explicit 7 3 O(N) ↑
INDM 3 Continuous Continuous Implicit Implicit 3 O(1) ↓

5 Related Work
Algorithm 1 Implicit Nonlinear Diffusion Model

1: repeat
2: Get latent with flow by zφ0 = hφ(x0) for x0 ∼ pr
3: Compute −Ex0

[
log
∣∣det

(
∇hφ(x0)

)∣∣]
4: Get diffused latents {zφt }Tt=0 with a linear SDE
5: Compute L

(
{zφt }Tt=0, g

2;θ
)
− Ezφ

T

[
log π(zφT)

]
6: Compute flow loss Lf = L

(
{xt}Tt=0, g

2; {φ,θ}
)

7: Update φ← φ− η ∂Lf∂φ

8: Compute L
(
{zφt }Tt=0, λ;θ

)
− Ezφ

T

[
log π(zφT)

]
9: Compute score loss Ls = L

(
{xt}Tt=0, λ; {φ,θ}

)
10: Update θ ← θ − η ∂Ls∂θ
11: until converged

In this section, we compare INDM with
previous works, and summarize our ar-
guments in Table 1.

LSGM Vahdat et al. [9] put a linear dif-
fusion on the latent space like INDM
but uses an auto-encoder structure.
From this modeling choice, LSGM can-
not be categorized as a nonlinear diffu-
sion model in a strict sense. Concretely,
recall that a diffusion process is (mathe-
matically) defined as a sequence of ran-
dom variables connected via a Markov
chain. From this definition, one needs
to satisfy two requirements to call it a
diffusion process: 1) there must be multiple (possibly infinite) numbers of random variables; 2)
the random variables should be connected via a Markov chain. Unlike INDM, LSGM cannot build
forward data variables from the forward latent variables because there is no exact inverse function of
the encoder map, as long as the data dimension differs to the latent dimension (Lemma 3 of Appendix
D.1). This leads that LSGM has no forward data diffusion process. From this point, analyzing the
data nonlinearity becomes infeasible in LSGM.

Moreover, LSGM has a pair of key differences in its training. First, the latent dimension of LSGM
is 40,080, which is 15× higher dimension than the data dimension (3,072) on CIFAR-10 [19]. In
contrast, INDM always keeps its latent dimension by the data dimension. See Table 9 to compare the
latent dimensions of INDM with LSGM on benchmark datasets. Furthermore, LSGM is repeatedly
reported [9, 20] for its training instability on the best FID setting of λ = σ2 (i.e., Lsimple [8]).
Meanwhile, INDM is consistently stable for any of training configurations, see Table 8.

DiffFlow Zhang and Chen [13] explicitly model the drift term fφ as a flow network, so the forward
diffusion becomes dxt = fφ dt + g dwt. However, there are differences between DiffFlow and
INDM: 1) DiffFlow does not nonlinearize the volatility; 2) DiffFlow is too slow for its explicit
parametrization (Table 18); 3) the flexibility of fφ is too restricted; 4) DiffFlow has a larger loss
variance (Table 10). See Appendix D.2 for the full details of our arguments. Focusing on the slow
training, observe that the denoising loss Ex0,x

φ
t

[‖sθ(xφt , t)−∇ log p0t(x
φ
t |x0)‖22] requires a pair of

heavy computations: (A) sampling from xφt , and (B) computation of ∇ log p0t(x
φ
t |x0). Intractable

transition probability p0t(x
φ
t |x0) is the major bottleneck of the slow training.

To overcome the bottleneck, DiffFlow discretizes the continuous diffusion with N variables of a
discrete diffusion and uses the DDPM-style loss [8], which does not need to calculate the transition
probability. Under the discretization, however, the forward sampling of xφt takes O(N) flow evalua-
tions for every network update. This sampling issue is an inevitable fundamental problem when we
parametrize the coefficients explicitly. Having that the flow evaluation is generally more expensive
than score evaluation given the same number of parameters, a fast sampling is achievable only if
we reduce N . However, it hurts the flexibility of a diffusion process, so DiffFlow suffers from the
trade-off between training speed and model flexibility. On the other hand, the training of INDM is
invariant of N , and INDM is free from such a trade-off. Analogously, DiffFlow generates a sample
with the purple path in Figure 3, so it takes O(N) flow evaluations, contrastive to INDM with a single
flow evaluation in its sampling with the red path.

5

SBP De Bortoli et al. [15] learn the diffusion process with a problem of minρθ∈P(pr,π)DKL(ρθ‖µ),
where P(pr, π) is the collection of path measure with pr and π as its marginal distributions at t = 0
and t = T , respectively. It is a bi-constrained optimization problem as any path measure on the
search space that should satisfy boundary conditions at both t = 0 and t = T . µ is the reference
measure of a linear diffusion dxt = f(xt, t) dt+g(t)wt; and the forward and reverse SDEs of ρθ are
dxt = [f(xt, t)+g2(t)∇ log Ψ(xt, t)] dt+g(t) dwt and dxt = [f(xt, t)−g2(t)∇ log Ψ̂(xt, t)] dt̄+

g(t) dw̄t, respectively, where (Ψ, Ψ̂) is the solution of a coupled PDE, called Hopf-Cole transform
[21]. Solving this coupled PDE is intractable, so the estimation target of SBP is∇ log Ψ and∇ log Ψ̂.
As f and g are assumed to be linear functions, the nonlinearity of SBP is fully determined by (Ψ, Ψ̂).

0.0 0.2 0.4 0.6 0.8 1.0

Diffusion Time

0.00

0.01

0.02

0.03

0.04

0.05

0.06

N
or

m
 R

at
io

Figure 4: Norm Ratio of SBP.

Analogous to DiffFlow, sampling from xt in SBP needs a long
time. Few works [15, 16] detour this training issue using the ex-
perience replay memory. Aside from the training time, the KL
minimization puts the global optimal nonlinear diffusion ρθ∗ near a
neighborhood of the linear diffusion µ. In other words, the op-
timal ρθ∗ is the closest path measure on P(pr, π) to µ, so the
inferred nonlinear diffusion would be the most linear diffusion
on the space of P(pr, π). For the demonstration, we illustrate
‖g2(t)∇ log Ψ(xt, t)∆t‖2/‖g(t)∆wt‖2 in Figure 4. We used the released checkpoint of SB-FBSDE
[16], an algorithm for solving SBP, trained with VESDE on CIFAR-10. As f ≡ 0 in VESDE, this
norm ratio measures how much nonlinearity is counted on a diffusion trajectory compared to the
linear effect. Figure 4 shows that the ratio approaches zero except at the small range around t ≈ 0,
meaning that the nonlinear effect is virtually ignorable than the linear effect. Therefore, Figure 4
implies that the diffusion process is nearly linear in most of the diffusion time. We give a detailed
discussion of SBP in Appendix D.3.

6 Discussion

This section investigates characteristics of INDM. We show that INDM training is faster and nearly
MLE in Section 6.1, and INDM sampling is robust on discretization step sizes in Section 6.2.

6.1 Benefit of INDM in Training

Having that DDPM++ is a collapsed INDM with a fixed identity transformation hφid = id, the
difference lies in whether to trainφ or not. This trainable nonlinearity provides the better optimization
of INDM, as evidenced in Figure 5-(a), experimented on CIFAR-10 using VPSDE. It shows a pair
of critical characteristics of INDM training: 1) it is faster than DDPM++ training, and 2) it is
asymptotically an MLE training. For the training speed, recall that the regression target of the score
estimation is sφ, and this target is fixed in DDPM++ while keep moving in INDM. The target is
constantly updated through the direction of sθ in Eq. (1) by optimizing ‖sφ−sθ‖22. This bidirectional
attraction between sθ and sφ is what flow learning does in the optimization.

For the MLE training, as the flow training is intricately entangled with the score training, we analyze
INDM training for a specific class of score networks. First, we define Ssol (Definition 1 in Appendix
B) to be the class of forward score functions of a linear diffusion with some initial distribution. Then,
it turns out that it is the whole class of zero variational gap (=NLL-NELBO).

Theorem 2. Gap(µφ,νφ,θ) := DKL(µφ‖νφ,θ)−DKL(pr‖pφ,θ) = 0 if and only if sθ ∈ Ssol.

Song et al. [11] partially reveal the connection between the gap with Ssol, by proving the if part
of Theorem 2, in Theorem 2 of Song et al. [11] (see Lemma 2 in Appendix B). We completely
characterize this connection by proving the only-if part in Theorem 2. Surprisingly, the variational
gap is irrelevant to the flow parameters, and the MLE training of INDM implies that the score network
is nearby Ssol throughout the training. Combining Theorem 2 with the global optimality analysis
raises a qualitative discrepancy in the optimization of DDPM++ and INDM by Theorem 3.

Theorem 3. For any fixed sθ ∈ Ssol, if φ∗ ∈ arg minφDKL(µφ‖νφ,θ), then sφ∗(z, t) =

∇ log pφ
∗

t (z) = sθ(z, t), and DKL(µφ∗‖νφ∗,θ) = DKL(pr‖pφ∗,θ) = Gap(µφ∗ ,νφ∗,θ) = 0.

6

3.0 3.1 3.2 3.3 3.4

NLL (Test)

3.0

3.1

3.2

3.3

3.4

N
E

L
B

O
(T

es
t)

10k Steps

100k Steps

500k Steps

INDM

DDPM++

NLL=NELBO

(a) Training Curve

10
5

10
4

10
3

10
2

10
1

Tolerance of RK45 ODE Solver

20

40

60

80

100

120

140

160

N
FE

 (d
ot

te
d

lin
e)

10

20

30

40

50

60

FI
D

 (s
ol

id
 li

ne
)

INDM
DDPM++
LSGM

(b) FID by Tolerance

200 400 600 800 1000

Discretization
1

2

3

4

5

6

7

8

9

10

FI
D

INDM
NCSN++

(c) FID by Discretization

Figure 5: Comparison of INDM with baseline models, experimented on CIFAR-10.

Theorem 3 implies that there exists an optimal flow that the forward and generative SDEs on the
latent space coincide, for any score network in Ssol, if the flow is flexible enough. Therefore, INDM
attains infinitely many (= |Ssol|) global optimums in its optimization space. On the other hand,
DDPM++ has only a unique optimal score network, i.e., sθ∗ = sφid . Thus, Theorem 3 potentially
explains the faster convergence of INDM. We give a detailed analysis in Appendix B.

6.2 Benefit of INDM in Sampling

Figure 5-(b,c) equally illustrate that INDM is more robust on the discretization step sizes in FID than
DDPM++/NCSN++. To analyze the sample quality with respect to discretizations, recall that the
Euler-Maruyama discretization of the generative SDE (or called the reverse diffusion sampler, or
simply the predictor [1]) iteratively updates the sample z̃k with

z̃tk−1
= z̃tk + γk

(
1

2
β(tk)z̃tk + g2(tk)sθ(z̃tk , tk)

)
+ g(tk)

√
γkε,

until time reaches to zero, where γk = tk − tk−1 is the step size of the discretized sampler and
ε ∼ N (0, I). The sampling error is the distributional discrepancy between the sample distribution of
h−1
φ (z̃0) and the data distribution. Theorem 4 decomposes the sampling error with three factors: 1)

the prior error Epri, 2) the discretization error Edis, and 3) the score error Eest. Note that Theorem 4
is a straightforward application of the analysis done by De Bortoli et al. [15] and Guth et al. [22]. We
omit regularity conditions to avoid unnecessary complications; see Appendix C.1.
Theorem 4 (De Bortoli et al. [15] and Guth et al. [22]). Assume that 1) supz,t ‖sθ∗(z, t) −
∇ log pφt (z)‖ ≤ M , 2) supz,t ‖∇2 log pφt (z)‖ ≤ K, and 3) supz,t ‖∂t∇ log pφt (z)‖/‖z‖ ≤ Le−αt,
for some K,L,M,α > 0. Then

‖pr − (h−1
φ)# ◦ pθ0,N‖TV ≤ Epri(φ) + Edis(φ) + Eest(φ,θ) + o(

√
δ + e−T),

whereEpri(φ) =
√

2e−TDKL(pφT ‖π)1/2,Edis(φ) = 6
√
δ(1+E[‖z‖4]1/4)(1+K+L(1+1/

√
2α)),

and Eest(φ,θ) = 2TM2 with δ = max γk
2/min γk.

10
5

10
4

10
3

10
2

Tolerance of RK45 ODE Solver

5

10

15

20

25

30

35

FI
D

DDPM++ (1×)
DDPM++ (2×)
DDPM++ (5×)
DDPM++ (10×)
DDPM++ (20×)
INDM

Figure 6: Sensitivity analysis
on scaled-up scenario.

There are a pair of implications from Theorem 4.
X Epri(φ) and Eest(φ,θ) are independent of the discretiza-

tion steps.

X Edis(φ)/
√
δ is the discretization sensitivity, entirely deter-

mined by the latent distribution’s smoothness.
To the deep understanding of the second implication, let us assume
hφa(x) = ax for some scalar a > 1, then the sensitivity is anti-
proportional to a with the identical discretizations, i.e., Edis(φa) ≈
1
aEdis(φid). With a smaller sensitivity of φa, there is more room to
reduce the number of discretization steps for φa. Figure 6 empirically supports the theory, showing
that the sampler (at the large tolerance with 10−2) becomes more robust as a increases, on CIFAR-10.

Before we derive a concrete result from the implication, observe that the flow hφ is maximizing
det(∇hφ) in Eq. (2). To understand the effect of flow training on the discretization sensitivity, let us
restrict the hypothesis class of the transformation to be linear mappings of hφa(x) = ax. Then, as
the determinant increases by a, the trained diffusion model would be insensitive to the discretizations.
Now, for the general case, Figure 7-(a,b) illustrate ‖∇2 log pφt (z)‖ and ‖∂t∇ log pφt (z)‖/‖z‖ on

7

(a) ‖∇2 log pφt (z)‖ (b) ‖∂t∇ log pφt (z)‖/‖z‖

0.0 0.2 0.4 0.6 0.8 1.0

Diffusion Time

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
os

in
e

Si
m

ila
rit

y

INDM
DDPM++

(c) Cosine Similarity

Figure 7: (a,b) Comparison of INDM with DDPM++ for K,L, α. (c) Cosine similarity of forward
diffusion trajectories on CIFAR-10.

CIFAR-10, respectively. Also, E[‖z‖4]1/4 of INDM is slightly larger (1.3x) than DDPM++. There-
fore, with these observations combined, we conclude that INDM is less sensitive to the discretization
steps than DDPM++, from its loss design.

Table 2: Aver-
age L2

2 Norm.

Manifold Norm

Data 776
Latent 5,385
Prior 3,072

Second, the robustness could originate from the geometry of the diffusion trajectory.
The forward solution of VPSDE is xt = µ(t)x0 +

√
1− µ2(t)ε with µ(t) =

e−
1
2

∫ t
0
β(s) ds, where the first term is a contraction mapping and the second term is

the random perturbation. The contraction mapping points toward the origin, but the
overall vector field of the diffusion path points outward because the prior manifold
lies outside the data manifold, as shown in Table 2. This contrastive force leads
the drift and volatility coefficients works in repulsive and raises a highly nonlinear
diffusion trajectory in DDPM++, see Figure 11 for a toy illustration. On the other hand, the flow
mapping of INDM pushes the latent manifold outside the prior manifold, and the drift and volatility
coefficients act coherently. Hence, INDM has the relatively linear diffusion path; see Figures 12,
13, and 14 for a quick intuition. Figure 7-(c) measures the cosine similarity of the ODE’s diffusion
trajectory with the straight line connecting the initial-final points of each trajectory. Figure 7-(c)
implies that DDPM++ is under an inefficient nonlinear trajectory that reverts backward near the end
of the trajectory, as in Figure 11. In contrast, INDM trajectory is relatively efficient and linear (Figure
15), which yields robust sampling by discretization steps; see Appendix C.2 for details.

7 Experiments

This section quantitatively analyzes suggested INDM on CIFAR-10 and CelebA 64×64. Throughout
the experiments, we use NCSN++ with VESDE and DDPM++ with VPSDE [1] as the backbones of
diffusion models, and a ResNet-based flow model [23, 24] as the backbone of the flow model. See
Appendix F for experimental details. We experiment with a pair of weighting functions for the score
training. One is the likelihood weighting [11] with λ(t) = g2(t), and we denote INDM (NLL) for
this weighing choice. The other is the variance weighting [8] λ(t) = σ2(t) with an emphasis on FID,
and we denote INDM (FID) for this weighting choice.

We use either the Predictor-Corrector (PC) sampler [1] or a numerical ODE solver (RK45 [25]) of
the probability flow ODE [1]. For a better FID, we find the optimal signal-to-noise value (Table
14), sampling temperature (Table 15), and stopping time (Table 16). Moreover, sampling from zφT
rather than π improves FID because Epri(φ) collapses to zero in Theorem 4, see Appendix F.2.2.
We compute NLL/NELBO for performances of density estimation with Bits Per Dimension (BPD).
We compute NLL with the uniform dequantization, instead of the variational dequantization [26]
because it requires training an auxiliary network [11] only for the evaluation after the model training.

7.1 Correction on Likelihood Evaluation

A continuous diffusion model truncates the time horizon from [0, T] to [ε, T] to avoid training
instability [27]. In the model evaluation, this positive truncation could potentially be the primary
source of poor evaluation (Figure 1-(c) of Kim et al. [27]), so we fix ε = 10−5 as default in our
training and evaluation. In the model evaluation, as the score network is untrained on [0, ε), we
calculate NLL by the Right-Hand-Side (RHS) of Eq. (3),

NLL = Ex0 [− log pm0 (x0)] ≤ Ex0,xε

[
− log pmε (xε) + log

pmε0(x0|xε)
p0ε(xε|x0)

]
. (3)

8

Table 4: Performance comparison to linear/nonlinear diffusion models on CIFAR-10. We report the
performance of linear diffusions by training our PyTorch implementation based on Song et al. [1, 11]
with identical hyperparameters and score networks on both linear/nonlinear diffusions to quantify the
effect of nonlinearity in a fair setting. Boldface numbers represent the best performance in a column.

SDE Model
Nonlinear Data

Diffusion # Params
NLL (↓) NELBO (↓) Gap (↓) FID (↓)

after
correction

before
correction

w/ residual w/o residual (=NELBO-NLL) ODE PC(after) (before) after before

VE NCSN++ (FID) 7 63M 4.86 3.66 4.89 4.45 0.03 0.79 - 2.38
INDM (FID) 3 76M 3.22 3.13 3.28 3.24 0.06 0.11 - 2.29

VP

DDPM++ (FID) 7 62M 3.21 3.16 3.34 3.32 0.13 0.16 3.90 2.89
INDM (FID) 3 75M 3.17 3.11 3.23 3.18 0.06 0.07 3.61 2.90

DDPM++ (NLL) 7 62M 3.03 2.97 3.13 3.11 0.10 0.14 6.70 5.17
INDM (NLL) 3 75M 2.98 2.95 2.98 2.97 0.00 0.02 6.01 5.30

Table 5: Performance comparison on CIFAR-10.
SDE Type Model # Params NLL FID

Linear

NCSN++ (FID) [1] 108M 4.85 2.20
DDPM++ (FID) [1] 108M 3.19 2.64
DDPM++ (NLL) [1] 108M 3.01 4.88
VDM [28] - 2.65 7.41
CLD-SGM [20] 108M 3.31 2.25

Nonlinear

SBP SB-FBSDE [16] 102M 2.98 3.18

VAE
-based

LSGM (FID) [9] 476M 3.45 2.10
LSGM (NLL) [9] 269M 2.97 6.15
LSGM (NLL) [9] 506M 2.87 6.89
LSGM (balanced) [9] 109M 2.96 4.60
LSGM (balanced) [9] 476M 2.98 2.17

Flow
-based

DiffFlow (FID) [13] ≈36M 3.04 14.14

INDM (FID) 118M 3.09 2.28
INDM (NLL) 121M 2.97 4.79
INDM (NLL) + ST 75M 3.01 3.25

Table 6: Performance comparison on CelebA
64× 64.

Model NLL NELBO Gap FID

UNCSN++ [27] 1.93 - - 1.92
DDGM [29] - - - 2.92
Efficient-VDVAE [30] - 1.83 - -
CR-NVAE [31] - 1.86 - -
DenseFlow-74-10 [4] 1.99 - - -
StyleFormer [32] - - - 3.66

NCSN++ (VE, FID) 3.41 3.42 0.01 3.95
INDM (VE, FID) 2.31 2.33 0.02 2.54

DDPM++ (VP, FID) 2.14 2.21 0.07 2.32
INDM (VP, FID) 2.27 2.31 0.04 1.75

DDPM++ (VP, NLL) 2.00 2.09 0.09 3.95
INDM (VP, NLL) 2.05 2.05 0.00 3.06

Here, pm0 and pmε are the model probability distributions at t = 0 and t = ε, respectively; and
pmε0(·|xε) is the model’s reconstruction probability of x0 given xε. RHS of Eq. (3) is a generic
formula to compute NLL in continuous diffusion models, including DDPM++, LSGM, and INDM.
Previous continuous models [1, 11, 9] have approximated Ex0 [− log pm0 (x0)] by Ex0 [− log pmε (x0)].

There are two significant differences between our and the previous calculation: 1) the input of pmε
is replaced with xε from x0 (Table 11); 2) the residual term of log

pmε0(x0|xε)
p0ε(xε|x0) is added. With this

modification, our NLL differs from the previous NLL of Ex0 [− log pmε (x0)] by about 0.03-0.06
in VPSDE, see Table 4. We report both previous/corrected ways in Table 4 and report corrected
NLL/NELBO as default; see Appendix E for theoretical justification of our NLL/NELBO corrections.

7.2 Quantitative Results on Image Generation

Table 3: Effect of Pre-
training.

Model NLL FID

DDPM++ 3.03 6.70
INDM (w/ pre) 2.98 6.01
INDM (w/o pre) 2.98 8.49

FID Boost with Pre-training Training INDM from scratch improves
NLL with the sacrifice of FID compared to DDPM++ in Table 3. There-
fore, we pre-train the score network by DDPM++ as default. This pre-
training is intended to search the data nonlinearity near well-trained linear
diffusions. Table 3 shows that training INDM after 500k of pre-training
steps performs better than DDPM++ on both NLL and FID. Appendix
F.3 conducts the ablation study of pre-training steps.

Effect of Flow Training Table 4 investigates how the flow training affects to performances, under the
various linear diffusions and weighting functions. It compares the pre-trained NCSN++/DDPM++
with INDM, of which these pre-trained models initialize the score network of INDM. Experiments in
Table 4 presents that INDM improves NELBO in any setting, and minimizes the variational gap to
zero if we train the score network with the likelihood weighting.

SOTA on CelebA Tables 5 and 6 compare INDM to baseline models. With the emphasis on FID,
LSGM is the State-Of-The-Art (SOTA) model on CIFAR-10, but INDM-118M (FID) is on par with
LSGM-476M (FID). Moreover, we use Soft Truncation [27] to compare with LSGM (balanced).
Soft Truncation softens the smallest diffusion time as a random variable in the training stage to
boost sample performance by improving the score accuracy, particularly on large diffusion time. In
the inference stage, Soft Truncation uses the fixed smallest diffusion time (ε). INDM (NLL) + ST

9

Figure 8: INDM enables to learn a diffusion bridge between two distinctive data distributions.

outperforms LSGM-109M (balanced) in terms of FID with comparable NLL. Also, INDM-121M
(NLL) outperforms LSGM-269M (NLL) in FID with identical NLLs. We achieve SOTA FID of 1.75
on CelebA in Table 6. See Appendix F.8 for an extended comparison and Appendix F.9 for samples.

7.3 Application Task: Dataset Interpolation

The linear SDEs fixedly perturb data variables, so such SDEs should have the end distribution pT (xT)
as an easy-to-compute distribution. With the nonlinear extension, a complex diffusion process exists
to transport p(1)

r to another arbitrary p(2)
r . However, a common practice of diffusion models constrains

only the starting variable by xφ0 ∼ p
(1)
r , so the ending variable of xφT is free to deviate from p

(2)
r .

Previous works have tackled this data interpolation task by using a conditional diffusion model [33]
or a couple of jointly trained source-and-target diffusion models [34] on paired datasets. Among
unconditional diffusion models using unpaired datasets, SBP [15] is a natural approach for the task
by imposing bi-constraints with P(pr, π) replaced by P(p

(1)
r , p

(2)
r).

Time 𝑡𝑡 = 0.0 Time 𝑡𝑡 = 0.5 Time 𝑡𝑡 = 1.0

INDM

LSGM

Figure 9: Image-to-image translation from EM-
NIST letters dataset to MNIST digits dataset.

INDM can alternatively train the nonlinear dif-
fusion from p

(1)
r to p(2)

r with unpaired datasets.
We train the score and flow networks with a loss

DKL(µφ‖νφ,θ)︸ ︷︷ ︸
INDM NELBO

+DKL(p(2)
r ‖pφ)︸ ︷︷ ︸

Interpolation Loss

,

where pφ is the probability distribution of xφT ,
which is calculated by a single feed-forward
computation of the flow network, see Algorithm
2 in Appendix F.2.3. The additional interpolation loss forces the diffusion bridge {xφt }Tt=0 to ahead
towards p(2)

r by minimizing the KL divergence between xφT ∼ pφ and p(2)
r . As the destined variable of

the bridge becomes xφT = h−1
φ (zT) ≈ h−1

φ (π), the flow network is what constructs the interpolated
bridge between a couple of data variables, see Figures 8 and 9. Particularly, Figure 9 shows that
LSGM fails to interpolate a letter to a digit, and we attribute this failure to the non-existence of
a diffusion bridge in LSGM. Also, INDM models p(1)

r with pφ,θ and p(2)
r with pφ, so we could

compute NLL of each dataset separately: 1.10 BPD for MNIST and 1.56 BPD for EMNIST. In
contrast, SBP cannot separately estimate densities on each dataset. We emphasize that no additional
neural network is needed for the interpolation task with INDM.

8 Conclusion

This paper expands the linear diffusion to trainable nonlinear diffusion by combining an invertible
transformation and a diffusion model, where the nonlinear diffusion learns the forward diffusion out
of variational family of inference measures. A limitation of INDM lies in the training/evaluation time.
Potential risk from this work is the negative use of deep generative models, such as deepfake images.

Acknowledgements

This research was supported by AI Technology Development for Commonsense Extraction, Rea-
soning, and Inference from Heterogeneous Data(IITP) funded by the Ministry of Science and
ICT(2022-0-00077). Also, this work was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government(MSIT) (NRF-2019R1A5A1028324).

10

References
[1] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and

Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2020.

[2] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in Neural Information Processing Systems, 34, 2021.

[3] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4401–4410, 2019.

[4] Matej Grcić, Ivan Grubišić, and Siniša Šegvić. Densely connected normalizing flows. Advances
in Neural Information Processing Systems, 34, 2021.

[5] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku,
and Dustin Tran. Image transformer. In International Conference on Machine Learning, pages
4055–4064. PMLR, 2018.

[6] Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. Advances in
Neural Information Processing Systems, 33:19667–19679, 2020.

[7] Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
Advances in neural information processing systems, 33:12438–12448, 2020.

[8] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–6851, 2020.

[9] Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
Advances in Neural Information Processing Systems, 34, 2021.

[10] Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

[11] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of
score-based diffusion models. Advances in Neural Information Processing Systems, 34, 2021.

[12] Chin-Wei Huang, Jae Hyun Lim, and Aaron C Courville. A variational perspective on diffusion-
based generative models and score matching. Advances in Neural Information Processing
Systems, 34, 2021.

[13] Qinsheng Zhang and Yongxin Chen. Diffusion normalizing flow. Advances in Neural Informa-
tion Processing Systems, 34, 2021.

[14] Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, and Neil Lawrence. Solving schrödinger
bridges via maximum likelihood. Entropy, 23(9):1134, 2021.

[15] Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling. Advances in Neural Information
Processing Systems, 34, 2021.

[16] Tianrong Chen, Guan-Horng Liu, and Evangelos Theodorou. Likelihood training of schrödinger
bridge using forward-backward SDEs theory. In International Conference on Learning Repre-
sentations, 2022.

[17] Bernt Oksendal. Stochastic differential equations: an introduction with applications. Springer
Science & Business Media, 2013.

[18] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

[19] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

11

[20] Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-based generative modeling with
critically-damped langevin diffusion. In International Conference on Learning Representations,
2022.

[21] Flavien Léger and Wuchen Li. Hopf–cole transformation via generalized schrödinger bridge
problem. Journal of Differential Equations, 274:788–827, 2021.

[22] Florentin Guth, Simon Coste, Valentin De Bortoli, and Stephane Mallat. Wavelet score-based
generative modeling. Advances in Neural Information Processing Systems, 35, 2022.

[23] Ricky TQ Chen, Jens Behrmann, David K Duvenaud, and Jörn-Henrik Jacobsen. Residual
flows for invertible generative modeling. Advances in Neural Information Processing Systems,
32, 2019.

[24] Xuezhe Ma, Xiang Kong, Shanghang Zhang, and Eduard H Hovy. Decoupling global and
local representations via invertible generative flows. In International Conference on Learning
Representations, 2021.

[25] John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae. Journal of
computational and applied mathematics, 6(1):19–26, 1980.

[26] Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++: Improving
flow-based generative models with variational dequantization and architecture design. In
International Conference on Machine Learning, pages 2722–2730. PMLR, 2019.

[27] Dongjun Kim, Seungjae Shin, Kyungwoo Song, Wanmo Kang, and Il-Chul Moon. Soft
truncation: A universal training technique of score-based diffusion model for high precision
score estimation. In International Conference on Machine Learning, pages 11201–11228.
PMLR, 2022.

[28] Diederik P Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models.
In Advances in Neural Information Processing Systems, 2021.

[29] Eliya Nachmani, Robin San Roman, and Lior Wolf. Non gaussian denoising diffusion models.
arXiv preprint arXiv:2106.07582, 2021.

[30] Louay Hazami, Rayhane Mama, and Ragavan Thurairatnam. Efficient-vdvae: Less is more.
arXiv preprint arXiv:2203.13751, 2022.

[31] Samarth Sinha and Adji Bousso Dieng. Consistency regularization for variational auto-encoders.
Advances in Neural Information Processing Systems, 34, 2021.

[32] Jeeseung Park and Younggeun Kim. Styleformer: Transformer based generative adversarial
networks with style vector. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8983–8992, 2022.

[33] Chitwan Saharia, William Chan, Huiwen Chang, Chris A. Lee, Jonathan Ho, Tim Salimans,
David J. Fleet, and Mohammad Norouzi. Palette: Image-to-image diffusion models. In NeurIPS
2021 Workshop on Deep Generative Models and Downstream Applications, 2021.

[34] Hiroshi Sasaki, Chris G Willcocks, and Toby P Breckon. Unit-ddpm: Unpaired image translation
with denoising diffusion probabilistic models. arXiv preprint arXiv:2104.05358, 2021.

[35] Simo Särkkä and Arno Solin. Applied stochastic differential equations, volume 10. Cambridge
University Press, 2019.

[36] John Duchi. Lecture notes for statistics 311/electrical engineering 377. URL: https://stanford.
edu/class/stats311/Lectures/full_notes. pdf. Last visited on, 2:23, 2016.

[37] Haim Avron and Sivan Toledo. Randomized algorithms for estimating the trace of an implicit
symmetric positive semi-definite matrix. Journal of the ACM (JACM), 58(2):1–34, 2011.

[38] Walter Rudin et al. Principles of mathematical analysis, volume 3. McGraw-hill New York,
1964.

12

[39] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International conference on machine learning, pages 1530–1538. PMLR, 2015.

[40] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders.
2020.

[41] Erhard Glötzl and Oliver Richters. Helmholtz decomposition and rotation potentials in n-
dimensional cartesian coordinates. arXiv preprint arXiv:2012.13157, 2020.

[42] Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable
approach to density and score estimation. In Uncertainty in Artificial Intelligence, pages
574–584. PMLR, 2020.

[43] Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059–
1076, 1989.

[44] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9
(3):90–95, 2007. doi: 10.1109/MCSE.2007.55.

[45] Avrim Blum, John Hopcroft, and Ravindran Kannan. Foundations of data science. Cambridge
University Press, 2020.

[46] Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon,
Stanislas Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo
Gautheron, Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko,
Antoine Rolet, Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander
Tong, and Titouan Vayer. Pot: Python optimal transport. Journal of Machine Learning Research,
22(78):1–8, 2021.

[47] Valentin Khrulkov and Ivan Oseledets. Understanding ddpm latent codes through optimal
transport. arXiv preprint arXiv:2202.07477, 2022.

[48] Glen E Bredon. Topology and geometry, volume 139. Springer Science & Business Media,
2013.

[49] Desmond J Higham. An algorithmic introduction to numerical simulation of stochastic differen-
tial equations. SIAM review, 43(3):525–546, 2001.

[50] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and
Yann LeCun, editors, 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014.

[51] Yongxin Chen, Tryphon T Georgiou, and Michele Pavon. On the relation between optimal
transport and schrödinger bridges: A stochastic control viewpoint. Journal of Optimization
Theory and Applications, 169(2):671–691, 2016.

[52] Ludger Ruschendorf. Convergence of the iterative proportional fitting procedure. The Annals of
Statistics, pages 1160–1174, 1995.

[53] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let
networks learn high frequency functions in low dimensional domains. Advances in Neural
Information Processing Systems, 33:7537–7547, 2020.

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[55] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing and
computer-assisted intervention, pages 234–241. Springer, 2015.

[56] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
Advances in neural information processing systems, 31, 2018.

13

[57] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448–456. PMLR, 2015.

[58] Cheng Lu, Jianfei Chen, Chongxuan Li, Qiuhao Wang, and Jun Zhu. Implicit normalizing flows.
In International Conference on Learning Representations, 2021.

[59] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017.

[60] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic
models. In International Conference on Machine Learning, pages 8162–8171. PMLR, 2021.

[61] Lawrence F Shampine. Some practical runge-kutta formulas. Mathematics of computation, 46
(173):135–150, 1986.

[62] Alexia Jolicoeur-Martineau, Rémi Piché-Taillefer, Ioannis Mitliagkas, and Remi Tachet des
Combes. Adversarial score matching and improved sampling for image generation. In Interna-
tional Conference on Learning Representations, 2020.

[63] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in Neural Information Processing Systems, 32, 2019.

[64] Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On aliased resizing and surprising subtleties
in gan evaluation, 2022.

[65] Jean-David Benamou and Yann Brenier. A computational fluid mechanics solution to the
monge-kantorovich mass transfer problem. Numerische Mathematik, 84(3):375–393, 2000.

[66] Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

[67] Bharath K Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf, and Gert RG
Lanckriet. Hilbert space embeddings and metrics on probability measures. The Journal of
Machine Learning Research, 11:1517–1561, 2010.

[68] Lawrence C Evans. Partial differential equations. Graduate studies in mathematics, 19(2),
1998.

[69] Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis.
arXiv preprint arXiv:2208.05314, 2022.

[70] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila.
Training generative adversarial networks with limited data. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing
Systems, volume 33, pages 12104–12114. Curran Associates, Inc., 2020.

[71] Abdul Fatir Ansari, Ming Liang Ang, and Harold Soh. Refining deep generative models via
discriminator gradient flow. In International Conference on Learning Representations, 2020.

[72] Yifan Jiang, Shiyu Chang, and Zhangyang Wang. Transgan: Two pure transformers can make
one strong gan, and that can scale up. Advances in Neural Information Processing Systems, 34,
2021.

[73] Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
In International Conference on Machine Learning, pages 1747–1756. PMLR, 2016.

[74] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with
sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

[75] Jianfei Chen, Cheng Lu, Biqi Chenli, Jun Zhu, and Tian Tian. Vflow: More expressive
generative flows with variational data augmentation. In International Conference on Machine
Learning, pages 1660–1669. PMLR, 2020.

[76] Rewon Child. Very deep vaes generalize autoregressive models and can outperform them on
images. In International Conference on Learning Representations, 2020.

14

[77] Ali Razavi, Aaron van den Oord, Ben Poole, and Oriol Vinyals. Preventing posterior collapse
with delta-vaes. In International Conference on Learning Representations, 2018.

[78] Gaurav Parmar, Dacheng Li, Kwonjoon Lee, and Zhuowen Tu. Dual contradistinctive generative
autoencoder. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 823–832, 2021.

[79] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
International Conference on Learning Representations, 2020.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] We have reflected the contribution of this work claimed
in the abstract and introduction in the main sections.

(b) Did you describe the limitations of your work? [Yes] See Section 7 and 8.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 8.
(d) Have you read the ethics review guidelines and ensured that your paper conforms

to them? [Yes] I have read the ethics review guidelines and ensured that our paper
conforms to them.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Appendix

B, C, and G.
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix G.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] We have
released our code and instructions at https://github.com/byeonghu-na/INDM.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix F.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Figures 4, 7-(c), and 19 report the error bars.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix F.4.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Appendix F.
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL?

[Yes] We have released the asset on CelebA pool-3 features at https://github.com/
byeonghu-na/INDM.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] Our asset is a representative asset in the field of diffusion models.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15

https://github.com/byeonghu-na/INDM
https://github.com/byeonghu-na/INDM
https://github.com/byeonghu-na/INDM

	Introduction
	Preliminary
	Motivation of Nonlinear Diffusion Process
	Implicit Nonlinear Diffusion Model
	Data and Latent Diffusion Processes
	Model Training and Sampling

	Related Work
	Discussion
	Benefit of INDM in Training
	Benefit of INDM in Sampling

	Experiments
	Correction on Likelihood Evaluation
	Quantitative Results on Image Generation
	Application Task: Dataset Interpolation

	Conclusion
	Derivations
	Derivation of Variational Bound for Nonlinear Diffusion
	Derivation of Nonlinear Drift and Volatility Terms for INDM

	Details on Section 6.1
	Restricting Search Space of TEXT into TEXT

	Details on Section 6.2
	Full Statement of Theorem 4
	Geometric Interpretation of Latent Diffusion

	Related Work
	Latent Score-based Generative Model (LSGM)
	Diffusion Normalizing Flow (DiffFlow)
	Schrödinger Bridge Problem (SBP)

	Correction of Density Estimation Metrics of Diffusion Models with Time Truncation
	Equivalent Reverse SDEs
	Log-Likelihood for Diffusion Models with Time Truncation
	NELBO Correction
	NLL Correction
	Calculating the Residual Term

	Experimental Details and Additional Results
	Model Architecture
	Experimental details
	Variance Reduction
	Sampling Tricks to Improve FID
	Interpolation Task

	Effect of Pre-training
	Training Time
	Visualization of Latent
	Visualization of 2d Latent Manifold
	Visualization of High-dimensional Latent Vector on Benchmark Datasets

	Nonlinear Diffusion Coefficient
	Relative Energy
	Full Quantitative Tables
	Random samples

	Proofs of Theorems and Propositions

