
Provably expressive temporal graph networks

Amauri H. Souza1, Diego Mesquita2, Samuel Kaski1,3, Vikas Garg1,4

1Aalto University 2Getulio Vargas Foundation 3University of Manchester 4YaiYai Ltd
{amauri.souza, samuel.kaski}@aalto.fi, diego.mesquita@fgv.br, vgarg@csail.mit.edu

Abstract

Temporal graph networks (TGNs) have gained prominence as models for embed-
ding dynamic interactions, but little is known about their theoretical underpinnings.
We establish fundamental results about the representational power and limits of the
two main categories of TGNs: those that aggregate temporal walks (WA-TGNs),
and those that augment local message passing with recurrent memory modules
(MP-TGNs). Specifically, novel constructions reveal the inadequacy of MP-TGNs
and WA-TGNs, proving that neither category subsumes the other. We extend the
1-WL (Weisfeiler-Leman) test to temporal graphs, and show that the most powerful
MP-TGNs should use injective updates, as in this case they become as expressive
as the temporal WL. Also, we show that sufficiently deep MP-TGNs cannot benefit
from memory, and MP/WA-TGNs fail to compute graph properties such as girth.

These theoretical insights lead us to PINT — a novel architecture that leverages
injective temporal message passing and relative positional features. Importantly,
PINT is provably more expressive than both MP-TGNs and WA-TGNs. PINT
significantly outperforms existing TGNs on several real-world benchmarks.

1 Introduction
Graph neural networks (GNNs) [11, 30, 36, 39] have recently led to breakthroughs in many applica-
tions [7, 28, 31] by resorting to message passing between neighboring nodes in input graphs. While
message passing imposes an important inductive bias, it does not account for the dynamic nature of
interactions in time-evolving graphs arising from many real-world domains such as social networks
and bioinformatics [16, 40]. In several scenarios, these temporal graphs are only given as a sequence
of timestamped events. Recently, temporal graph nets (TGNs) [16, 27, 32, 38, 42] have emerged as a
prominent learning framework for temporal graphs and have become particularly popular due to their
outstanding predictive performance. Aiming at capturing meaningful structural and temporal patterns,
TGNs combine a variety of building blocks, such as self-attention [33, 34], time encoders [15, 41],
recurrent models [5, 13], and message passing [10].

Unraveling the learning capabilities of (temporal) graph networks is imperative to understanding
their strengths and pitfalls, and designing better, more nuanced models that are both theoretically
well-grounded and practically efficacious. For instance, the enhanced expressivity of higher-order
GNNs has roots in the inadequacy of standard message-passing GNNs to separate graphs that are
indistinguishable by the Weisfeiler-Leman isomorphism test, known as 1-WL test or color refinement
algorithm [21, 22, 29, 37, 43]. Similarly, many other notable advances on GNNs were made possible
by untangling their ability to generalize [9, 17, 35], extrapolate [45], compute graph properties [4, 6, 9],
and express Boolean classifiers [1]; by uncovering their connections to distributed algorithms [19, 29],
graph kernels [8], dynamic programming [44], diffusion processes [3], graphical models [46], and
combinatorial optimization [2]; and by analyzing their discriminative power [20, 23]. In stark contrast,
the theoretical foundations of TGNs remain largely unexplored. For instance, unresolved questions
include: How does the expressive power of existing TGNs compare? When do TGNs fail? Can we
improve the expressiveness of TGNs? What are the limits on the power of TGNs?
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Figure 1: Schematic diagram and summary of our contributions.

We establish a series of results to address these fundamental questions. We begin by showing that
discrete-time dynamic graphs (DTDGs) can always be converted to continuous-time analogues
(CTDGs) without loss of information, so we can focus on analyzing the ability of TGNs to distinguish
nodes/links of CTDGs. We consider a general framework for message-passing TGNs (MP-TGNs)
[27] that subsumes a wide variety of methods [e.g., 16, 32, 42]. We prove that equipping MP-TGNs
with injective aggregation and update functions leads to the class of most expressive anonymous
MP-TGNs (i.e., those that do not leverage node ids). Extending the color-refinement algorithm to
temporal settings, we show that these most powerful MP-TGNs are as expressive as the temporal
WL method. Notably, existing MP-TGNs do not enforce injectivity. We also delineate the role of
memory in MP-TGNs: nodes in a network with only a few layers of message passing fail to aggregate
information from a sufficiently wide receptive field (i.e., from distant nodes), so memory serves
to offset this highly local view with additional global information. In contrast, sufficiently deep
architectures obviate the need for memory modules.

Different from MP-TGNs, walk-aggregating TGNs (WA-TGNs) such as CAW [38] obtain represen-
tations from anonymized temporal walks. We provide constructions that expose shortcomings of
each framework, establishing that WA-TGNs can distinguish links in cases where MP-TGNs fail and
vice-versa. Consequently, neither class is more expressive than the other. Additionally, we show that
MP-TGNs and CAWs cannot decide temporal graph properties such as diameter, girth, or number of
cycles. Strikingly, our analysis unravels the subtle relationship between the walk computations in
CAWs and the MP steps in MP-TGNs.

Equipped with these theoretical insights, we propose PINT (short for position-encoding injective
temporal graph net), founded on a new temporal layer that leverages the strengths of both MP-TGNs
and WA-TGNs. Like the most expressive MP-TGNs, PINT defines injective message passing and
update steps. PINT also augments memory states with novel relative positional features, and these
features can replicate all the discriminative benefits available to WA-TGNs. Interestingly, the time
complexity of computing our positional features is less severe than the sampling overhead in CAW,
thus PINT can often be trained faster than CAW. Importantly, we establish that PINT is provably
more expressive than CAW as well as MP-TGNs.

Our contributions are three-fold:

• a rigorous theoretical foundation for TGNs is laid - elucidating the role of memory, benefits
of injective message passing, limits of existing TGN models, temporal extension of the
1-WL test and its implications, impossibility results about temporal graph properties, and
the relationship between main classes of TGNs — as summarized in Figure 1;

• explicit injective temporal functions are introduced, and a novel method for temporal graphs
is proposed that is provably more expressive than state-of-the-art TGNs;

• extensive empirical investigations underscore practical benefits of this work. The proposed
method is either competitive or significantly better than existing models on several real
benchmarks for dynamic link prediction, in transductive as well as inductive settings.
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2 Preliminaries
We denote a static graph G as a tuple (V,E,X , E), where V = {1, 2, . . . , n} denotes the set of
nodes and E ✓ V ⇥ V the set of edges. Each node u 2 V has a feature vector xu 2 X and each
edge (u, v) 2 E has a feature vector euv 2 E , where X and E are countable sets of features.

Dynamic graphs can be roughly split according to their discrete- or continuous-time nature [14].
A discrete-time dynamic graph (DTDG) is of a sequence of graph snapshots (G1, G2, . . . ) usually
sampled at regular intervals, each snapshot being a static graph Gt = (Vt, Et,Xt, Et).

A continuous-time dynamic graph (CTDG) evolves with node- and edge-level events, such as addition
and deletion. We represent a CTDG as a sequence of time-stamped multi-graphs (G(t0),G(t1), . . . )
such that tk < tk+1, and G(tk+1) results from updating G(tk) with all events at time tk+1. We assume
no event occurs between tk and tk+1. We denote an interaction (i.e., edge addition event) between
nodes u and v at time t as a tuple (u, v, t) associated with a feature vector euv(t). Unless otherwise
stated, interactions correspond to undirected edges, i.e., (u, v, t) is a shorthand for ({u, v}, t).

Noting that CTDGs allow for finer (irregular) temporal resolution, we now formalize the intuition that
DTDGs can be reduced to and thus analyzed as CTDGs, but the converse may need extra assumptions.

Proposition 1 (Relationship between DTDG and CTDG). For any DTDG we can build a CTDG with
the same sets of node and edge features that contains the same information, i.e., we can reconstruct
the original DTDG from the converted CTDG. The converse holds if the CTDG timestamps form a
subset of a uniformly spaced countable set.

Following the usual practice [16, 38, 42], we focus on CTDGs with edge addition events (see
Appendix E for a discussion on deletion). Thus, we can represent temporal graphs as sets G(t) =
{(uk, vk, tk) | tk < t}. We also assume each distinct node v in G(t) has an initial feature vector xv .

Message-passing temporal graph nets (MP-TGNs). Rossi et al. [27] introduced MP-TGN as a
general representation learning framework for temporal graphs. The goal is to encode the graph
dynamics into node embeddings, capturing information that is relevant for the task at hand. To
achieve this, MP-TGNs rely on three main ingredients: memory, aggregation, and update. Memory
comprises a set of vectors that summarizes the history of each node, and is updated using a recurrent
model whenever an event occurs. The aggregation and update components resemble those in message-
passing GNNs, where the embedding of each node is refined using messages from its neighbors.

We define the temporal neighbohood of node v at time t as N (v, t) = {(u, euv(t0), t0) | 9(u, v, t0) 2
G(t)}, i.e., the set of neighbor/feature/timestamp triplets from all interactions of node v prior to t.
MP-TGNs compute the temporal representation h

(`)
v (t) of v at layer ` by recursively applying

h̃
(`)
v (t) = AGG(`)({{(h(`�1)

u (t), t� t
0
, e) | (u, e, t0) 2 N (v, t)}}) (1)

h
(`)
v (t) = UPDATE(`)

⇣
h
(`�1)
v (t), h̃(`)

v (t)
⌘
, (2)

where {{·}} denotes multisets, h(0)
v (t) = sv(t) is the state of v at time t, and AGG(`) and UPDATE(`)

are arbitrary parameterized functions. The memory block updates the states as events occur. Let
J (v, t) be the set of events involving v at time t. The state of v is updated due to J (v, t) as

mv(t) = MEMAGG({{[sv(t), su(t), t� tv, evu(t)] | (v, u, t) 2 J (v, t)}}) (3)
sv(t

+) = MEMUPDATE(sv(t),mv(t)), (4)

where sv(0) = xv (initial node features), sv(t+) denotes the updated state of v due to events at time
t, and tv denotes the time of the last update to v. MEMAGG combines information from simultaneous
events involving node v and MEMUPDATE usually implements a gated recurrent unit (GRU) [5].
Notably, some MP-TGNs do not use memory, or equivalently, they employ identity memory, i.e.,
sv(t) = xv for all t. We refer to Appendix A for further details.

Causal Anonymous Walks (CAWs). Wang et al. [38] proposed CAW as an approach for link
prediction on temporal graphs. To predict if an event (u, v, t) occurs, CAW first obtains sets Su and Sv

of temporal walks starting at nodes u and v at time t. An (L� 1)-length temporal walk is represented
as W = ((w1, t1), (w2, t2), . . . , (wL, tL)), with t1 > t2 > · · · > tL and (wi�1, wi, ti) 2 G(t)
8i > 1. Note that when predicting (u, v, t), we have walks starting at time t1 = t. Then, CAW
anonymizes walks replacing each node w with a set ICAW(w;Su, Sv) = {g(w;Su), g(w;Sv)} of two
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feature vectors. The `-th entry of g(w;Su) stores how many times w appears at the `-th position in a
walk of Su, i.e. g(w, Su)[`] = |{W 2 Su : (w, t`) = W`}| where W` is `-th pair of W .

To encode a walk W with respect to the sets Su and Sv, CAW applies ENC(W ;Su, Sv) =
RNN([f1(ICAW(wi;Su, Sv))kf2(ti�1 � ti)]Li=1) where f1 is a permutation-invariant function, f2 is
a time encoder, and t0 = t1 = t. Finally, CAW combines the embeddings of each walk in Su [ Sv

using mean-pooling or self-attention to obtain the representation for the event (u, v, t).

In practice, TGNs often rely on sampling schemes for computational reasons. However we are
concerned with the expressiveness of TGNs, so our analysis assumes complete structural information,
i.e., Su is the set of all temporal walks from u and MP-TGNs combine information from all neighbors.

3 The representational power and limits of TGNs
We now study the expressiveness of TGNs on node/edge-level prediction. We also establish connec-
tions to a variant of the WL test and show limits of specific TGN models. Proofs are in Appendix B.

3.1 Distinguishing nodes with MP-TGNs
We analyze MP-TGNs w.r.t. their ability to map different nodes to different locations in the embedding
space. In particular, we say that an L-layer MP-TGN distinguishes two nodes u, v of a temporal
graph at time t, if the last layer embeddings of u and v are different, i.e., h(L)

u (t) 6= h
(L)
v (t).

We can describe the MP computations of a node v at time t via its temporal computation tree (TCT)
Tv(t). Tv(t) has v as its root and height equal to the number of MP-TGN layers L. We will keep
the dependence on depth L implicit for notational simplicity. For each element (u, e, t0) 2 N (v, t)
associated with v, we have a node, say i, in the next layer of the TCT linked to the root by an edge
annotated with (e, t0). The remaining TCT layers are built recursively using the same mechanism.
We denote by ]

t
v the (possibly many-to-one) operator that maps nodes in Tv(t) back to nodes in G(t),

e.g., ]tvi = u. Each node i in Tv(t) has a state vector si = s]tvi(t). To get the embedding of the root
v, information is propagated bottom-up, i.e., starting from the leaves all the way up to the root —
each node aggregates the message from the layer below and updates its representation along the way.
Whenever clear from context, we denote ]

t
v simply as ] for a cleaner notation.

We study the expressive power of MP-TGNs through the lens of functions on multisets adapted to
temporal settings, i.e., comprising triplets of node states, edge features, and timestamps. Intuitively,
injective functions ‘preserve’ the information as it is propagated, so should be essential for maximally
expressive MP-TGNs. We formalize this idea in Lemma 1 and Proposition 2 via Definition 1.

Definition 1 (Isomorphic TCTs). Two TCTs Tz(t) and Tz0(t) at time t are isomorphic if there is a
bijection f : V (Tz(t)) ! V (Tz0(t)) between the nodes of the trees such that the following holds:

(u, v, t0) 2 E(Tz(t)) () (f(u), f(v), t0) 2 E(Tz0(t))

8(u, v, t0) 2 E(Tz(t)) : euv(t0) = ef(u)f(v)(t
0) and 8u 2 V (Tz(t)) : su = sf(u) and ku = kf(u)

Here, ku denotes the level (depth) of node u in the tree. The root node has level 0, and for a node u

with level ku, the children of u have level ku + 1.

Lemma 1. If an MP-TGN Q with L layers distinguishes two nodes u, v of a dynamic graph G(t),
then the L-depth TCTs Tu(t) and Tv(t) are not isomorphic.

For non-isomorphic TCTs, Proposition 2 shows that improving MP-TGNs with injective message
passing layers suffices to achieve node distinguishability, extending results from static GNNs [43].

Proposition 2 (MP-TGNs with injective message passing). If the L-depth TCTs of two nodes u, v of
a temporal graph G(t) at time t are not isomorphic, then an MP-TGN Q with L layers and injective
aggregation and update functions at each layer is able to distinguish nodes u and v.

So far, we have considered TCTs with general memory modules, i.e., nodes are annotated with
memory states. However, an important question remains: How does the expressive power of MP-
TGNs change as a function of the memory? Naturally, different implementation of memory modules
can determine whether the TCTs of two nodes are isomorphic or not. Thus, most expressive MP-
TGNs should also employ injective memory aggregation/update. However, Proposition 3 shows that
adding GRU-based memory does not increase the expressiveness of suitably deep MP-TGNs.
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Figure 2: Limitations of TGNs. [Left] Temporal graph with nodes u, v that TGN-Att/TGAT cannot
distinguish. Colors are node features, edge features are identical, and t3 > t2 > t1. [Center] TCTs
of u and v are non-isomorphic. However, the attention layers of TGAT/TGN-Att compute weighted
averages over a same multiset of values, returning identical messages for u and v. [Right] MP-TGNs
fail to distinguish the events (u, v, t3) and (v, z, t3) as TCTs of z and u are isomorphic. Meanwhile,
CAW cannot separate (u, z, t3) and (u0

, z, t3): the 3-depth TCTs of u and u
0 are not isomorphic, but

the temporal walks from u and u
0 have length 1, keeping CAW from capturing structural differences.

Proposition 3 (The role of memory). Let Q[M ]
L denote the class of MP-TGNs with recurrent memory

and L layers. Similarly, we denote by QL the family of memoryless MP-TGNs with L layers. Let �
be the temporal diameter of G(t) (see Definition B2). Then, it holds that:

1. If L < �: Q[M ]
L is strictly more powerful than QL in distinguishing nodes of G(t);

2. For any L : QL+� is at least as powerful as Q[M ]
L in distinguishing nodes of G(t).

The MP-TGN framework is rather general and subsumes many modern methods for temporal graphs
[e.g., 16, 32, 42]. We now analyze the theoretical limitations of two concrete instances of MP-TGNs:
TGAT [42] and TGN-Att [27]. Remarkably, these models are among the best-performing MP-TGNs.
Nonetheless, we can show that there are nodes of very simple temporal graphs that TGAT and
TGN-Att cannot distinguish (see Figure 2). We formalize this in Proposition 4 by establishing that
there are cases in which TGNs with injective layers can succeed, but TGAT and TGN-Att cannot.

Proposition 4 (Limitations of TGAT/TGN-Att). There exist temporal graphs containing nodes u, v
that have non-isomorphic TCTs, yet no TGAT nor TGN-Att with mean memory aggregator (i.e., using
MEAN as MEMAGG) can distinguish u and v.

This limitation stems from the fact that the attention mechanism employed by TGAT and TGN-Att is
proportion invariant [26]. The memory module of TGN-Att cannot counteract this limitation due to
its mean-based aggregation scheme. We provide more details in Appendix B.6.

3.2 Predicting temporal links
Models for dynamic graphs are usually trained and evaluated on temporal link prediction [18], which
consists in predicting whether an event would occur at a given time. To predict an event between
nodes u and v at t, MP-TGNs combine the node embeddings h

(L)
u (t) and h

(L)
v (t), and push the

resulting vector through an MLP. On the other hand, CAW is originally designed for link prediction
tasks and directly computes edge embeddings, bypasssing the computation of node representations.

We can extend the notion of node distinguishability to edges/events. We say that a model distinguishes
two synchronous events � = (u, v, t) and �

0 = (u0
, v

0
, t) of a temporal graph if it assigns different

edge embeddings h� 6= h�0 for � and �
0. Proposition 5 asserts that CAWs are not strictly more

expressive than MP-TGNs, and vice-versa. Intuitively, CAW’s advantage over MP-TGNs lies in its
ability to exploit node identities and capture correlation between walks. However, CAW imposes
temporal constraints on random walks, i.e., walks have timestamps in decreasing order, which can
limit its ability to distinguish events. Figure 2(Right) sketches constructions for Proposition 5.

Proposition 5 (Limitations of MP-TGNs and CAW). There exist distinct synchronous events of a
temporal graph that CAW can distinguish but MP-TGNs with injective layers cannot, and vice-versa.

3.3 Connections with the WL test
The Weisfeiler-Leman test (1-WL) has been used as a key tool to analyze the expressive power of
GNNs. We now study the power of MP-TGNs under a temporally-extended version of 1-WL, and
prove negative results regarding whether TGNs can recognize properties of temporal graphs.

Temporal WL test. We can extend the WL test for temporal settings in a straightforward manner by
exploiting the equivalence between temporal graphs and multi-graphs with timestamped edges [24].
In particular, the temporal variant of 1-WL assigns colors for all nodes in an input dynamic graph
G(t) by applying the following iterative procedure:
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Initialization: The colors of all nodes in G(t) are initialized using the initial node features: 8v 2

V (G(t)), c0(v) = xv . If node features are not available, all nodes receive identical colors;
Refinement: At step `, the colors of all nodes are refined using a hash (injective) function: for all

v 2 V (G(t)), we apply c
`+1(v) = HASH(c`(v), {{(c`(u), euv(t0), t0) : (u, v, t0) 2 G(t)}});

Termination: The test is carried out for two temporal graphs at time t in parallel and stops when
the multisets of corresponding colors diverge, returning non-isomorphic. If the algorithm
runs until the number of different colors stops increasing, the test is deemed inconclusive.

We note that the temporal WL test trivially reduces to the standard 1-WL test if all timestamps and
edge features are identical. The resemblance between MP-TGNs and GNNs and their corresponding
WL tests suggests that the power of MP-TGNs is bounded by the temporal WL test. Proposition 6
conveys that MP-TGNs with injective layers are as powerful as the temporal WL test.

Proposition 6. Assume finite spaces of initial node features X , edge features E , and timestamps T .
Let the number of events of any temporal graph be bounded by a fixed constant. Then, there is an
MP-TGN with suitable parameters using injective aggregation/update functions that outputs different
representations for two temporal graphs if and only if the temporal-WL test outputs ‘non-isomorphic’.

A natural consequence of the limited power of MP-TGNs is that even the most powerful MP-TGNs
fail to distinguish relevant graph properties, and the same applies to CAWs (see Proposition 7).

Proposition 7. There exist non-isomorphic temporal graphs differing in properties such as diameter,
girth, and total number of cycles, which cannot be differentiated by MP-TGNs and CAWs.

Figure 3: Examples of temporal graphs for which
MP-TGNs cannot distinguish the diameter, girth,
and number of cycles.

Figure 3 provides a construction for Proposition 7.
The temporal graphs G(t) and G

0(t) differ in diameter
(1 vs. 3), girth (3 vs. 6), and number of cycles (2
vs. 1). By inspecting the TCTs, one can observe that,
for any node in G(t), there is a corresponding one
in G

0(t) whose TCTs are isomorphic, e.g., Tu1(t) ⇠=
Tu0

1
(t) for t > t3. As a result, the multisets of node

embeddings for these temporal graphs are identical.
We provide more details and a construction - where CAW fails to decide properties - in the Appendix.

4 Position-encoding injective temporal graph net
We now leverage insights from our analysis in Section 3 to build more powerful TGNs. First, we
discuss how to build injective aggregation and update functions in the temporal setting. Second, we
propose an efficient scheme to compute positional features based on counts from TCTs. In addition,
we show that the proposed method, called position-encoding injective temporal graph net (PINT), is
more powerful than both WA-TGNs and MP-TGNs in distinguishing events in temporal graphs.

Injective temporal aggregation. An important design principle in TGNs is to prioritize (give higher
importance to) events based on recency [38, 42]. Proposition 8 introduces an injective aggregation
scheme that captures this principle using linearly exponential time decay.

Proposition 8 (Injective function on temporal neighborhood). Let X and E be countable, and T

countable and bounded. There exists a function f and scalars ↵ and � such that
P

i f(xi, ei)↵��ti

is unique on any multiset M = {{(xi, ei, ti)}} ✓ X ⇥ E ⇥ T with |M | < N , where N is a constant.

Leveraging Proposition 8 and the approximation capabilities of multi-layer perceptrons (MLPs), we
propose position-encoding injective temporal graph net (PINT). In particular, PINT computes the
embedding of node v at time t and layer ` using the following message passing steps:

h̃
(`)
v (t) =

X

(u,e,t0)2N (v,t)

MLP(`)agg

⇣
h
(`�1)
u (t) k e

⌘
↵
��(t�t0) (5)

h
(`)
v (t) = MLP

(`)
upd

⇣
h
(`�1)
v (t) k h̃(`)

v (t)
⌘

(6)

where k denotes concatenation, h(0)
v = sv(t), ↵ and � are scalar (hyper-)parameters, and MLP(`)

agg

and MLP(`)
upd denote the nonlinear transformations of the aggregation and update steps, respectively.

We note that to guarantee that the MLPs in PINT implement injective aggregation/update, we must
further assume that the edge and node features (states) take values in a finite support. In addition,
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Figure 5: PINT. Following the MP-TGN protocol, PINT updates memory states as events unroll.
Meanwhile, we use Eqs. (7-11) to update positional features. To extract the embedding for node v,
we build its TCT, annotate nodes with memory + positional features, and run (injective) MP.

we highlight that there may exist many other ways to achieve injective temporal MP — we have
presented a solution that captures the ‘recency’ inductive bias of real-world temporal networks.

Relative positional features. To boost the power of PINT, we propose augmenting memory states
with relative positional features. These features count how many temporal walks of a given length
exist between two nodes, or equivalently, how many times nodes appear at different levels of TCTs.

Formally, let P be the d ⇥ d matrix obtained by padding a (d � 1)-dimensional identity matrix
with zeros on its top row and its rightmost column. Also, let r(t)j!u 2 Nd denote the positional
feature vector of node j relative to u’s TCT at time t. For each event (u, v, t), with u and
v not participating in other events at t, we recursively update the positional feature vectors as

V
(0)
i = {i} 8i (7)

r
(0)
i!j =

(
[1, 0, . . . , 0]> if i = j

[0, 0, . . . , 0]> if i 6= j
(8)

V
(t+)
u = V

(t+)
v = V

(t)
v [ V

(t)
u (9)

r
(t+)
i!v = P r

(t)
i!u + r

(t)
i!v 8i 2 V

(t)
u (10)

r
(t+)
j!u = P r

(t)
j!v + r

(t)
j!u 8j 2 V

(t)
v (11)

where we use t
+ to denote values “right after” t. The set Vi keeps track of the nodes for which

we need to update positional features when i participates in an interaction. For simplicity, we have
assumed that there are no other events involving u or v at time t. Appendix B.10 provides equations
for the general case where nodes can participate in multiple events at the same timestamp.

Figure 4: The effect of (u, v, t) on the
monotone TCT of v. Also, note how the
positional features of a node i, relative
to v, can be incrementally updated.

The value r
(t)
i!v[k] (the k-th component of r(t)i!v) corresponds

to how many different ways we can get from v to i in k steps
through temporal walks. Additionally, we provide in Lemma 2
an interpretation of relative positional features in terms of the so-
called monotone TCTs (Definition 2). In this regard, Figure 4
shows how the TCT of v evolves due to an event (u, v, t) and
provides an intuition about the updates in Eqs. 10-11. The
procedure amounts to appending the monotone TCT of u to the
first level of the monotone TCT of v.

Definition 2. The monotone TCT of a node u at time t, denoted
by T̃u(t), is the maximal subtree of the TCT of u s.t. for any path
p = (u, t1, u1, t2, u2, . . . ) from the root u to leaf nodes of T̃u(t)
time monotonically decreases, i.e., we have that t1 > t2 > . . . .

Lemma 2. For any pair of nodes i, u of a temporal graph G(t), the k-th component of the positional
feature vector r(t)i!u stores the number of times i appears at the k-th layer of the monotone TCT of u.

Edge and node embeddings. To obtain the embedding h� for an event � = (u, v, t), an L-layer
PINT computes embeddings for node u and v using L steps of temporal message passing. However,
when computing the embedding h

L
u (t) of u, we concatenate node states sj(t) with the positional

features r(t)j!u and r
(t)
j!v for all node j in the L-hop temporal neighborhood of u. We apply the same

procedure to obtain h
L
v (t), and then combine h

L
v (t) and h

L
u (t) using a readout function.
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Similarly, to compute representations for node-level prediction, for each node j in the L-hop neigh-
borhood of u, we concatenate node states sj(t) with features r(t)j!u. Then, we use our injective MP to
combine the information stored in u and its neighboring nodes. Figure 5 illustrates the process.

Notably, Proposition 9 states that PINT is strictly more powerful than existing TGNs. In fact, the
relative positional features mimic the discriminative power of WA-TGNs, while eliminate their
temporal monotonicity constraints. Additionally, PINT can implement injective temporal message
passing (either over states or states + positional features), akin to maximally-expressive MP-TGNs.

Proposition 9 (Expressiveness of PINT: link prediction). PINT (with relative positional features) is
strictly more powerful than MP-TGNs and CAWs in distinguishing events in temporal graphs.

Figure 6: PINT cannot
distinguish the events
(u, v, t3) and (v, z, t3).

When does PINT fail? Naturally, whenever the TCTs (annotated with
positional features) for the endpoints of two edges (u, v, t) and (u0

, v
0
, t)

are pairwise isomorphic, PINT returns the same edge embedding and is
not able to differentiate the events. Figure 6 shows an example in which
this happens — we assume that all node/edge features are identical. Due
to graph symmetries, u and z occur the same number of times in each level
of v’s monotone TCT. Also, the sets of temporal walks starting at u and z

are identical if we swap the labels of these nodes. Importantly, CAWs and
MP-TGNs also fail here, as stated in Proposition 9.

Proposition 10 (Limitations of PINT). There are synchronous events of temporal graphs that PINT
cannot distinguish (as seen in Figure 6).

Implementation and computational cost. The online updates for PINT’s positional features have
complexity O

⇣
d |V

(t)
u |+ d |V

(t)
v |

⌘
. Similarly to CAW’s sampling procedure, our online update

is a sequential process better done in CPUs. However, while CAW may require significant CPU-
GPU memory exchange — proportional to both the number of walks and their depth —, we only
communicate the positional features. We can also speed-up the training of PINT by pre-computing
the positional features for each batch, avoiding redundant computations at each epoch. Apart from
positional features, the computational cost of PINT is similar to that of TGN-Att. Following standard
MP-TGN procedure, we control the branching factor of TCTs using neighborhood sampling.

Note that the positional features monotonically increase with time, which is undesirable for practical
generalization purposes. Since our theoretical results hold for any fixed t, this issue can be solved
by dividing the positional features by a time-dependent normalization factor. Nonetheless, we have
found that employing L1-normalization leads to good empirical results for all evaluated datasets.

5 Experiments
We now assess the performance of PINT on several popular and large-scale benchmarks for TGNs.
We run experiments using PyTorch [25] and code is available at www.github.com/AaltoPML/PINT.

Tasks and datasets. We evaluate PINT on dynamic link prediction, closely following the evaluation
setup employed by Rossi et al. [27] and Xu et al. [42]. We use six popular benchmark datasets:
Reddit, Wikipedia, Twitter, UCI, Enron, and LastFM [16, 27, 38, 42]. Notably, UCI, Enron, and
LastFM are non-attributed networks, i.e., they do not contain feature vectors associated with the
events. Node features are absent in all datasets, thus following previous works we set them to vectors
of zeros [27, 42]. Since Twitter is not publicly available, we follow the guidelines by Rossi et al. [27]
to create our version. We provide more details regarding datasets in the supplementary material.

Baselines. We compare PINT against five prominent TGNs: Jodie [16], DyRep [32], TGAT [42],
TGN-Att [27], and CAW [38]. For completeness, we also report results using two static GNNs: GAT
[34] and GraphSage [12]. Since we adopt the same setup as TGN-Att, we use their table numbers
for all baselines but CAW on Wikipedia and Reddit. The remaining results were obtained using the
implementations and guidelines available from the official repositories. As an ablation study, we also
include a version of PINT without relative positional features in the comparison. We provide detailed
information about hyperparameters and the training of each model in the supplementary material.

Experimental setup. We follow Xu et al. [42] and use a 70%-15%-15% (train-val-test) temporal
split for all datasets. We adopt average precision (AP) as the performance metric. We also analyze
separately predictions involving only nodes seen during training (transductive), and those involving
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Table 1: Average Precision (AP) results for link prediction. We denote the best-performing model (highest
mean AP) in blue. In 5 out of 6 datasets, PINT achieves the highest AP in the transductive setting. For the
inductive case, PINT outperforms previous MP-TGNs and competes with CAW. We also evaluate PINT w/ and
w/o relative positional features. Adopting positional features leads to significant performance gains.

Model Reddit Wikipedia Twitter UCI Enron LastFM
Tr

an
sd

uc
tiv

e

GAT 97.33± 0.2 94.73± 0.2 - - - -
GraphSAGE 97.65± 0.2 93.56± 0.3 - - - -

Jodie 97.11± 0.3 94.62± 0.5 98.23± 0.1 86.73± 1.0 77.31± 4.2 69.32± 1.0
DyRep 97.98± 0.1 94.59± 0.2 98.48± 0.1 54.60± 3.1 77.68± 1.6 69.24± 1.4
TGAT 98.12± 0.2 95.34± 0.1 98.70± 0.1 77.51± 0.7 68.02± 0.1 54.77± 0.4
TGN-Att 98.70± 0.1 98.46± 0.1 98.00± 0.1 80.40± 1.4 79.91± 1.3 80.69± 0.2
CAW 98.39± 0.1 98.63± 0.1 98.72± 0.1 92.16± 0.1 92.09± 0.7 81.29± 0.1

PINT (w/o pos. feat.) 98.62± .04 98.43± .04 98.53± 0.1 92.68± 0.5 83.06± 2.1 81.35± 1.6
PINT 99.03± .01 98.78± 0.1 99.35± .01 96.01± 0.1 88.71± 1.3 88.06± 0.7

In
du

ct
iv

e

GAT 95.37± 0.3 91.27± 0.4 - - - -
GraphSAGE 96.27± 0.2 91.09± 0.3 - - - -

Jodie 94.36± 1.1 93.11± 0.4 96.06± 0.1 75.26± 1.7 76.48± 3.5 80.32± 1.4
DyRep 95.68± 0.2 92.05± 0.3 96.33± 0.2 50.96± 1.9 66.97± 3.8 82.03± 0.6
TGAT 96.62± 0.3 93.99± 0.3 96.33± 0.1 70.54± 0.5 63.70± 0.2 56.76± 0.9
TGN-Att 97.55± 0.1 97.81± 0.1 95.76± 0.1 74.70± 0.9 78.96± 0.5 84.66± 0.1
CAW 97.81± 0.1 98.52± 0.1 98.54± 0.4 92.56± 0.1 91.74± 1.7 85.67± 0.5

PINT (w/o pos. feat.) 97.22± 0.2 97.81± 0.1 96.10± 0.1 90.25± 0.3 75.99± 2.3 88.44± 1.1
PINT 98.25± .04 98.38± .04 98.20± .03 93.97± 0.1 81.05± 2.4 91.76± 0.7

novel nodes (inductive). We report mean and standard deviation of the AP over ten runs. For further
details, see Appendix D. We provide additional results in the supplementary material.

Results. Table 1 shows that PINT is the best-performing method on five out of six datasets for
the transductive setting. Notably, the performance gap between PINT and TGN-Att amounts to
over 15% AP on UCI. The gap is also relatively high compared to CAW on LastFM, Enron, and
UCI; with CAW being the best model only on Enron. We also observe that many models achieve
relatively high AP on the attributed networks (Reddit, Wikipedia, and Twitter). This aligns well with
findings from [38], where TGN-Att was shown to have competitive performance against CAW on
Wikipedia and Reddit. The performance of GAT and TGAT (static GNNs) on Reddit and Wikipedia
reinforces the hypothesis that the edge features add significantly to the discriminative power. On the
other hand, PINT and CAW, which leverage relative identities, show superior performance relative
to other methods when only time and degree information is available, i.e., on unattributed networks
(UCI, Enron, and LastFM). Table 1 also shows the effect of using relative positional features. While
including these features boosts PINT’s performance systematically, our ablation study shows that
PINT w/o positional features still outperforms other MP-TGNs on unattributed networks. In the
inductive case, we observe a similar behavior: PINT is consistently the best MP-TGN, and is better
than CAW on 3/6 datasets. Overall, PINT (w/ positional features) also yields the lowest standard
deviations. This suggests that positional encodings might be a useful inductive bias for TGNs.
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Figure 7: Time comparison: PINT versus TGNs (in log-
scale). The cost of pre-computing positional features is
quickly diluted as the number of epochs increases.

Time comparison. Figure 7 compares the
training times of PINT against other TGNs.
For fairness, we use the same architecture
(number of layers & neighbors) for all MP-
TGNs: i.e., the best-performing PINT. For
CAW, we use the one that yielded results in
Table 1. As expected, TGAT is the fastest
model. Note that the average time/epoch of
PINT gets amortized since positional fea-
tures are pre-computed. Without these fea-
tures, PINT’s runtime closely matches TGN-
Att. When trained for over 25 epochs, PINT
runs considerably faster than CAW. We pro-
vide additional details and results in the sup-
plementary material.
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Table 2: Average precision results for TGN-Att + relative positional features.
Transductive Inductive

UCI Enron LastFM UCI Enron LastFM

TGN-Att 80.40± 1.4 79.91± 1.3 80.69± 0.2 74.70± 0.9 78.96± 0.5 84.66± 0.1
TGN-Att + RPF 95.64± 0.1 85.04± 2.5 89.41± 0.9 92.82± 0.4 76.27± 3.4 91.63± 0.3
PINT 96.01± 0.1 88.71± 1.3 88.06± 0.7 93.97± 0.1 81.05± 2.4 91.76± 0.7

Incorporating relative positional features into MP-TGNs. We can use our relative positional
features (RPF) to boost MP-TGNs. Table 2 shows the performance of TGN-Att with relative positional
features on UCI, Enron, and LastFM. Notably, TGN-Att receives a significant boost from our RPF.
However, PINT still beats TGN-Att+RPF on 5 out of 6 cases. The values for TGN-Att+RPF reflect
outcomes from 5 repetitions. We have used the same model selection procedure as TGN-Att in Table
1, and incorporated d = 4-dimensional positional features
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75

80
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95
Enron

transductive
inductive

Figure 8: PINT: AP (mean and std) as a function of the
dimensionality of the positional features.

Dimensionality of relative positional features.
We assess the performance of PINT as a func-
tion of the dimension d of the relative positional
features. Figure 8 shows the performance of
PINT for d 2 {4, 10, 15, 20} on UCI and Enron.
We report mean and standard deviation of AP
on test set obtained from five independent runs.
In all experiments, we re-use the optimal hyper-
parameters found with d = 4. Increasing the
dimensionality of the positional features leads
to performance gains on both datasets. Notably,
we obtain a significant boost for Enron with d = 10: 92.69 ± 0.09 AP in the transductive setting
and 88.34± 0.29 in the inductive case. Thus, PINT becomes the best-performing model on Enron
(transductive). On UCI, for d = 20, we obtain 96.36± 0.07 and 94.77± 0.12 (inductive).

6 Conclusion
We laid a rigorous theoretical foundation for TGNs, including the role of memory modules, relation-
ship between classes of TGNs, and failure cases for MP-TGNs. Together, our theoretical results shed
light on the representational capabilities of TGNs, and connections with their static counterparts. We
also introduced a novel TGN method, provably more expressive than the existing TGNs.

Key practical takeaways from this work: (a) temporal models should be designed to have injective
update rules and to exploit both neighborhood and walk aggregation, and (b) deep architectures can
likely be made more compute-friendly as the role of memory gets diminished with depth, provably.
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Societal and broader impact
Temporal graph networks have shown remarkable performance in relevant domains such as social
networks, e-commerce, and drug discovery. In this paper, we establish fundamental results that
delineate the representational power of TGNs. We expect that our findings will help declutter the
literature and serve as a seed for future developments. Moreover, our analysis culminates with PINT,
a method that is provably more powerful than the prior art and shows superior predictive performance
on several benchmarks. We believe that PINT (and its underlying concepts) will help engineers and
researchers build better recommendation engines, improving the quality of systems that permeate our
lives. Also, we do not foresee any negative societal impact stemming directly from this work.
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