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Figure 1: We reconstruct three groups of representative objects with both open and closed surfaces
using NDF [15] (left) and our proposed HSDF (right). Compared with the SOTA NDF [15], our
method achieves higher surface reconstruction quality and more consistent surface normals. All the
results are reconstructed with an equivalent resolution.

Abstract

Neural implicit function based on signed distance field (SDF) has achieved im-
pressive progress in reconstructing 3D models with high fidelity. However, such
approaches can only represent closed surfaces. Recent works based on unsigned
distance function (UDF) are proposed to handle both watertight and open surfaces.
Nonetheless, as UDF is signless, its direct output is limited to the point cloud,
which imposes an additional challenge on extracting high-quality meshes from
discrete points. To address this challenge, we present a novel neural implicit
representation coded HSDF, which is a hybrid of signed and unsigned distance
fields. In particular, HSDF is able to represent arbitrary topologies containing
both closed and open surfaces while being compatible with existing iso-surface
extraction techniques for easy field-to-mesh conversion. In addition to predicting a
UDF, we propose to learn an additional sign field. Unlike traditional SDF, HSDF
is able to locate the surface of interest before level surface extraction by generating
surface points following NDF [15]. We are then able to obtain open surfaces via
an adaptive meshing approach that only instantiates regions containing surfaces
into a polygon mesh. We also propose HSDF-Net, a dedicated learning framework
that factorizes the learning of HSDF into two easier sub-problems. Experiments
and evaluations show that HSDF outperforms the state-of-the-art techniques both
qualitatively and quantitatively.
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1 Introduction

Recent advances in neural implicit representation [12, 40, 43, 48, 58] have set a new state of the
art in 3D modeling and reconstruction by breaking the previous barrier in resolution and topology.
However, as such approaches rely on the signed distance function (SDF) which divides the space into
inside and outside of the object, they are limited to representing closed shapes. To lift the limitation,
methods based on unsigned distance function (UDF) [15, 52, 50] are proposed such that a much
broader class of shapes containing open surfaces can be effectively represented and learned via deep
neural networks.

However, as UDF is signless, directly applying the iso-surface extracting technique, e.g. the Marching
Cubes algorithm, would convert all open surfaces into the closed mesh. To generate open structures,
these approaches have to convert the resulting UDF field into discrete points and then apply the
Ball-Pivoting algorithm [4] (BPA) to obtain the meshing result. Nonetheless, the BPA technique is
prone to introduce self-intersections and disconnected surface patches with inconsistent normals (see
Figure 1). In addition, BPA is highly sensitive to the input parameters and often requires per-shape
parameter tuning in order to generate a complete meshing result. This hinders UDF-based approaches
from being practically used in real-world applications as mesh remains the prominent standard for
modeling and rendering in both industry and academia.

To address the above issue, we present a novel learnable implicit representation, named Hybrid Sign
and Distance Function (HSDF), that can faithfully represent complex geometry containing both
closed and open surfaces, while being compatible with off-the-shelf iso-surface extraction methods,
e.g. the Marching Cubes algorithm, for easy and high-quality field-to-mesh conversion. The key
idea of HSDF is to integrate the advantages of both SDF and UDF while avoiding their respective
shortcomings. We empirically find that the learning of UDF is quite robust and can generalize well to
novel data. Therefore, to inherit the benefit of UDF and overcome its limitation, we propose to learn
an additional sign field in addition to UDF via a sign predictor. Unlike traditional SDF, HSDF is able
to locate the open surface before performing level surface extraction. We achieve this by generating
surface points via the gradient field of the unsigned distance function following NDF [15]. Hence,
we are able to create local SDFs by multiplying the UDF with the sign field and cast complex shapes
containing both closed and open surfaces by incorporating an adaptive meshing algorithm that only
instantiates the regions containing surface points into a polygon mesh.

As HSDF may be discontinuous at regions far from the surface due to the sudden change of signs,
we propose to factorize the learning of HSDF into two easier sub-tasks, each of which learns a
continuous function. Specially, we propose HSDF-Net that learns the unsigned distance and sign
field individually using the same input in a separate manner. A fusion framework is also proposed
to faithfully fuse the predicted distance and sign field at the inference time. Finally, we introduce
an adaptive masked Marching Cubes algorithm for converting HSDF into the high-quality mesh at
flexible resolution efficiently. Extensive experiments show that HSDF can outperform the previous
state-of-the-art methods in both qualitative and quantitative measurements. We summarize the key
contributions as follows:

• We introduce HSDF, a novel neural implicit field that can faithfully represent complex
shapes with closed and open surfaces while being compatible with existing level surface
extraction techniques.

• We propose a dedicated learning framework that separates the decoding of sign and distance
in accordance with the definition of HSDF.

• We propose an adaptive masked Marching Cubes algorithm to generate meshes from HSDF
efficiently.

2 Related Works

3D neural shape representation is a very fundamental and popular research topic in computer vision
and graphics. In this section, we will review some recent advances in neural shape representations
from two aspects: Explicit & Implicit Representation. Some survey papers [30, 6, 1, 60] have
comprehensively summarized the development of 3D shape representation.
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Learning on 3D Explicit Representations. For learning on 3D shapes, various 3D representations
are applied to the learning-based approaches, such as point clouds, voxels, and polygonal meshes.
The voxel represents the concrete 3D shapes with regular domain which is directly an extension of 2D
pixel grids, and it is widely used in 3D deep learning. Many previous works [38, 18, 59] investigated
this representation by extending the 2D deep learning operators to the 3D domain. However, 3D voxel
representation suffers from low-resolution, high-computation, and memory-consumption drawbacks.
Further, Wang et al.tried their best to address the above drawbacks by introducing the octree-based
deep learning methods [54, 56, 55, 36]. The point cloud is flexible and easier to be captured by
some portable 3D scanners (e.g. Microsoft Kinect), but the main challenge is that the fidelity is
too low to represent high-quality shape geometry and topology. Due to its irregular and disordered
structure, the traditional deep learning methods cannot directly be applied, Qi et al.firstly introduced
PointNet [45] and PointNet++ [46] for 3D classification and segmentation by pooling operation
which is order-independent. Wang et al. [57] constructed a sub-graph by KNN and applied the
graph neural network on the point cloud to learn the local geometric features for shape analysis [8].
There is also work [29] that leverages hierarchical structure for point cloud understanding. Some
works [11, 34, 26, 47, 35, 28] exploited the topology of polygonal meshes for shape analysis. There is
a recent trend [24, 53, 31, 37, 42, 22, 62] of studying the deformable meshes to represent the detailed
geometry. The predefined connections of the vertices set to limit the flexibility and topology.

Learning on 3D Implicit Representations. Implicit function is a powerful tool capable of modeling
arbitrary geometric details and topological structures. With the help of deep neural networks, a
complex shape can be implicitly represented by classifying the query point in/outside a shape (Binary
Occupancy) [39, 44, 17, 23, 49, 20, 13] or predicting the continuous signed distance (SDF) to the
shape surface [12, 40, 43, 32, 48], where the sign of SDF determines the query point in/out-side of a
shape. The binary occupancy and signed distance function can only represent the watertight closed
surface, since it is essential that partition the set of query points inside or outside of the shape. For the
open surfaces (e.g. cloth, thin-shell models), Atzmon et al. [2] developed a deep learning approach –
Sign Agnostic Learning (SAL) for raw data with any inside/outside labeling, but the prediction of
SAL is still SDF for the close surface reconstruction. Furthermore, the concurrent works NDF [16]
and DUDE [52] proposed neural-based methods that predict the unsigned distance field to represent
arbitrary surfaces without any closed surface data. NDF adopts the multi-scale encoding techniques
from IF-Net [14] to enhance the surface details. DUDE introduces a disentangled shape representation
that utilizes the unsigned distance field (UDF) and normal vector field (nVF), which learns high-
fidelity representations. Due to the gradient vanishing of UDF close to the surface, UDF fails to
predict high-quality estimation of high-ordered geometry attributes (e.g. normal, tangent plane),
CSPNet [51] represents such surfaces by a class of implicit representation – closest-surface-point
(CSP), which achieves local geometric attributes accurately and efficiently.

Recent concurrent works such as GIFS [63], DeepCurrents [41], MeshUDF [25], 3PSDF [9] and
NDC [10] also focus on modeling open surfaces. DeepCurrents [41] combines the explicit boundary
curves and the implicit field. And the final open surfaces are obtained by solving a minimal surface
problem, which is not as flexible as pure implicit field to model arbitrary shapes. Methods like
GIFS [63] and NDC [10] model the relationships between every two points or edge intersections,
which is not as efficient as modeling the relationships between points and surfaces. And the re-
constructed surface normals will be different from the ground truth meshes because point-surface
relationships are missing. MeshUDF [25] proposes a differential meshing algorithm for UDF. Since
its meshing process is still based on the Marching Cubes algorithm and the signs required are decided
in a heuristic way, the outcome meshes suffer from flipped faces and have different normal directions
from ground truth meshes. 3PSDF [9] proposes an implicit representation that divides the space
into three classes, namely positive, negative and null. Null class enables 3PSDF to mask out certain
regions in the space and represent open shapes. 3PSDF formulates the reconstruction task as a
classification problem. It eases the learning difficulty but also limits the applications on downstream
tasks that require SDF continuity, such as neural rendering.

In contrast, HSDF can efficiently model arbitrary shapes with both open and closed surfaces and
achieves high-quality reconstruction with more consistent surface normals similar to the ground truth
using the proposed adaptive masked Marching Cubes algorithm.
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Figure 2: HSDF-Net architecture. The input sparse point cloud is voxelized and encoded in a
multi-scale manner into a shape code. Next, the distance predictor takes the shape code and query
point p as input to predict an unsigned distance Dis(p). The sign predictor takes the same input and
predicts a signed value Sign(p). The field fusion module (Sec. 3.3) is proposed to fuse Dis(p) and
Sign(p). The rightmost lamp example is reconstructed from test data using the proposed adaptive
masked Marching Cubes algorithm (Sec. 3.4).

3 Method

In this section, we introduce the proposed shape representation and our HSDF-Net with an adaptive
masked Marching Cubes algorithm into high-fidelity single-layer meshes. A diagram of our system
architecture is shown in Fig. 2. We first define the proposed implicit shape representation (Sec. 3.1).
Then we introduce the model structure of HSDF-Net and explain our learning strategy (Sec. 3.2).
Finally, we illustrate the approach to fuse the hybrid distance and sign together to form a HSDF
(Sec. 3.3) and the adaptive masked Marching Cubes algorithm (Sec. 3.4).

3.1 Shape Representation

We define the target surface as S . Our proposed formulation takes a vectorized shape code z ∈ Z and
a point p ∈ R3 as input, and predicts a hybrid sign and distance function HSDF(p, z) : R3×Z 7→ R.
If we define p′ as the closest point of p on the surface S and the surface normal of p′ as v.
Then unsigned distance can be computed as UDF(p, z) = ∥p − p′∥2 and the sign is calculated
as SIGN(p, z) = sign(v · (p − p′)), where sign(·) returns the sign of the input. Specifically,
SIGN(p, z) is positive if v aligns with p− p′ and negative otherwise. The overall HSDF expression
can be defined as:

HSDF(p, z) = SIGN(p, z) ·UDF(p, z)

= sign(v · (p− p′)) · ∥p− p′∥2
s.t. p′ = argmin

ps∈S
∥p− ps∥2

(1)

By this definition, we are able to locate the surface of interest by searching for the points on the surface
following the paradigm of [15] on leveraging the gradient of UDF(·). In addition, the introduced
sign field SIGN can convert the UDF into a signed one, enabling the use of the iso-surface extraction
technique for easy field-to-mesh conversion. By incorporating an adaptive masked Marching Cubes
algorithm (detailed in Section 3.4) that only instantiates the regions containing surface points into a
mesh, we are able to model complex topology with open surfaces.

3.2 HSDF-Net: Model Architecture

For regions that are far from the surface, the HSDF representation may be discontinuous as the sign
field may undergo a sudden change. To ease the learning of HSDF, we factorize the learning into two
sub-problems: learning of the unsigned distance and the sign field. As depicted in Fig. 2, we propose
HSDF-Net that contains three components: a shared volume encoder, a distance predictor, and a sign
predictor. The shape encoder extracts features from input sparse point clouds in a multi-scale manner,
which follows IF-Net [14]. Then we feed encoded multi-scale shape code and query point p into the
sign and the distance predictors in Fig. 2 to get a sign prediction Sign(p) and a distance prediction
Dis(p). Next, we will introduce our network components’ formulation in detail.
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Volume Encoder: Our goal is to reconstruct an arbitrary surface S from a sparse point cloud
X ∈ X . The input point cloud is first voxelized and encoded by 3D CNNs into multi-scale grid
features F1, · · · ,Fn,Fk ∈ FK×K×K

k , where K is the grid size and Fk ∈ RC is a feature with C
channels. If we denote the result of trilinear interpolation of grid feature Fi at position p as Ti,
then Ψx(p) = (T1, . . . ,Tn) can represent the concatenated shape code for input X at point p and
Ψx(p) : R3 7→ F1 × . . .×Fn defines the encoder function, see IF-Net [14].
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Figure 3: 2D illustration of sign and distance fu-
sion. Assume the green line is the target surface.
Row 1: By multiplying sign and distance point-
wise, we can obtain an original HSDF, where some
points (e.g. A and B) may be wrongly signed.
Row 2: By using gradients of sign function (i.e.
yellow vectors) and gradients of distance function
(i.e. brown vectors) to optimize the original fused
HSDF, HSDF of points A, B can be effectively
rectified (i.e. green line).

Distance Predictor: The distance predictor pre-
dicts the UDF between points and the ground
truth surface. We formulate this as a function
Φ ((T1, . . . ,Tn)) : F1 × . . .×Fn 7→ R+, and
we use fully connected layers with ReLU acti-
vation functions to guarantee Φ ≥ 0. In general,
the distance predictor could be formulated as
Disx(p) = (Φ ◦Ψx) (p) : R3 7→ R+

0 .

Sign Predictor: We extend sign concept to ar-
bitrary shapes. For example, a T-shirt model has
consistent outward face normal directions, and
we can easily tell the sign of a query point p
even though a T-shirt is obviously an open sur-
face because we will intuitively choose the clos-
est point p′ on the surface and use the normal
direction of p′ as a clue of the sign. Detailed
formulation is defined above in Sec. 3.1. For
cars with inner structures, we also compute the
sign of a query point p according to the normal
direction of its closest surface point, no matter
whether p is inside the car or close to the outside
surface.

Therefore, we extend the concept of “signed dis-
tance” to a broader range of shapes like open
shapes by combining “distance” and “sign” com-
putation and prediction processes. We define
Θ((T1, . . . ,Tn)) : F1 × . . . × Fn 7→ R0 as a sign predictor. By composition we obtain our
sign predictor Signx(p) = (Θ ◦Ψx) (p) : R3 7→ R0 which we treat as a regressor to the signed
distance. Hence, the predicted binary sign can be computed as sign(Signx(p)) : R3 7→ [−1, 1]
where sign(·) returns the sign of the input. And the ground truth binary sign can also be represented
as SIGNx(p) = sign(SDF (p,Sx)) : R3 7→ [−1, 1].

Learning: We define the volume encoder, distance predictor and sign predictor as we, wd and ws,
respectively. During distance regression training, we use L1 mini-batch loss to jointly optimize
we ∪wd:

Ld :=
∑
x∈B

∑
p∈P

|min (Disx(p), δ)−min (UDF (p,Sx) , δ)|

where B and P stand for a mini-batch and a sub-sample of points. Clamping the maximal regressed
distance to value δ > 0 forces the model capacity to focus more on the vicinity of the surface.

During sign predictor training, we use L1 mini-batch loss to jointly optimize we ∪ws:

Ls :=
∑
x∈B

∑
p∈P

|max (min (Signx(p), δ) ,−δ)−max (min (SDF (p,Sx) , δ) ,−δ)|

Finally, we train our HSDF-Net in an end-to-end manner by optimizing the total loss: Ltotal :=
Ld + Ls.

3.3 Sign and Distance Field Fusion

The HSDF-Net trains a shared volume encoder and two decoders respectively for the sign and
distance prediction. With this learning manner, we can obtain a predicted sign function Signx (p)
and a predicted distance function Disx(p) of query points p after training. Although Signx (p) and
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Disx(p) are both learned continuous function, they can be fused into a hybrid sign and distance
function HSDF(p,S) with our fusing algorithm illustrated in Fig. 3. In Fig. 3, we plot a local region
in 2D of learned sign function Signx(p) and distance function Disx(p) where X and p is the input
sparse point cloud and the query point, respectively. The first row of Fig. 3 describes a straightforward
fusion strategy that multiply distance with sign pointwisely: HSDF(p,X) = Signx(p) ·Disx(p).

In the second row of Fig. 3, we design a simple but effective optimization using the gradients of the
predicted sign function Grads = ∇Signx(p) and the gradients of the predicted distance function
Gradd = ∇Disx(p) to optimize the predicted signs of points like A, B. As described in Fig. 3, if
Grads ·Gradd is negative as point A, then the sign will be optimized to negative and vice versa for
optimizing point B. Since Grads and Gradd can be inferred directly using the backward operation
of deep neural networks, this optimization is not time-consuming.

3.4 Mesh Extraction
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Figure 4: A 2D illustration of mesh extraction on
our fused HSDF. Green contour indicates an open
shape in 2D. We push Marching Cubes grid points
like A and B to their closest points on the surface,
i.e., A′ and B′, respectively, using the gradients
of distance function (i.e. black vectors). All the
boxes in red enclosing surfaces form a mask for
Marching Cubes to extract the complex shapes into
meshes.

Our fused HSDF enables us to use efficient
meshing methods like Marching Cubes. Hence,
we propose an adaptive masked Marching Cubes
algorithm. A 2D T-shirt example of fused HSDF
is depicted on the left side in Fig. 4. Assume the
green contour stands for the open surface, which
disconnects at the collar, sleeves, and waist. The
red/ blue region indicates where the sign is pos-
itive/ negative.

Next, we set up a Marching Cubes grid to mesh
the surface S in green. All the grid points
can be pushed to the underlying surface by
the gradients of the distance function. Among
them, we take points like A, B for example.
We define pA and pB as the coordinate of A
and B. Then the coordinate of the closest sur-
face point of A (i.e. A′) can be computed as
pA′ = pA −Disx(pA) · ∇Disx(pA)

||∇Disx(pA)||2 where

− ∇Disx(pA)
||∇Disx(pA)||2 represent a unit vector towards

the underlying surface. And we compute pB′

and all other points by the same process. After all the grid points are pushed to the surface, we can
easily pick out those boxes (in red) which enclose surfaces. And these selected cubes form a mask for
us to find out where the surfaces lie (works for arbitrary shapes). Finally, simple masked Marching
Cubes can be applied to our HSDF to extract any complex shapes.

4 Experiments

In this section, we validate HSDF on 3D shape reconstruction from sparse point clouds and demon-
strate that HSDF can reconstruct watertight shapes on par with SOTAs. And then we show that our
approach outperforms SOTA techniques on reconstructing complex shapes such as cars with inner
structures in terms of quality and speed.

4.1 Data Preparation and Metrics

HSDF Computation. The HSDF computation follows a similar manner as mesh-to-sdf [33]. For
every spatial point p, we find the nearest point p′ on the mesh surface and its corresponding surface
normal v. If the dot product of v and p′ − p is negative, we assign its sign to be positive with its
distance to be |p′ − p| and vice versa. Please refer to the supplementary for further experimental
details and results.

Computation for Complex Shapes. We compute HSDFs on repaired ShapeNet dataset [19] on four
typical categories with complex shapes, namely cars (7,497 models) with inner structures, chairs
(6,579 models), lamps (2,316 models), and ships (1,851 models) with thin open surfaces. We also
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(a) Input (b) IF-Net (c) NDF (d) Ours (e) GT

Figure 5: Comparison between different methods on reconstructing closed shapes (without inner
structure) from point clouds. The first row and the third row are independent experiments. The second
row visualizes the inner reconstruction of the example in the first row. Input point number is 3, 000
for all the results.

attain HSDFs on 307 garments from MGN [5] because garments are also a typical category comprised
of open surfaces.

Computation for Closed Shapes. In order to compare the performance on watertight shapes,
we compute HSDFs on 3,094 ShapeNet [7] cars, which have been converted to closed shapes by
DISN [61]. If the model only contains closed surfaces, HSDF is reduced to vanilla SDF, which also
conforms to our intuition, because HSDFs are the natural extension of SDFs to represent a wider
range of shapes.

Metrics. We follow the commonly used reconstruction metrics to evaluate the reconstructed meshes’
quality: Chamfer distance (CD) [3], Normal consistency (NC) [39] and Oriented Normal Consistency
which takes face directions into account. OccNet [39] defines a normal consistency score as the
mean absolute dot product of the normals in one mesh and the normals at the corresponding nearest
neighbors in the other mesh. In contrast, we define Oriented Normal Consistency as the mean dot
product of the normals in one mesh and the normals at the corresponding nearest neighbors in the
other mesh to make it sensitive to flipped mesh faces. More implementation details are demonstrated
in supplemental materials, and We will release the code and data for facilitating future research.

4.2 Shape Fitting of Single Model

To demonstrate HSDFs can represent complex shapes with both closed and open surfaces, and can
be learned by HSDF-Net, we fit models using NDF [15] and our HSDF-Net. For NDF, we extract
meshes following the same process as NDF [15], namely using the Ball-Pivoting algorithm to mesh
dense point clouds generated by a trained NDF.

Cost Method
Resolution

643 1283 2563

Time
NDF 89s 58m 780m
Ours 5s 17s 95s

Storage
NDF 17M 64M 1276M
Ours 1M 3M 10M

Table 1: Comparison on average meshing time
and storage budget per model. Our HSDF can
reconstruct single-layer meshes much faster with a
much lower storage budget.

As shown in Fig. 1, NDF results in poor qual-
ity. The holes and flipped faces cannot be easily
optimized by post-processing techniques like
closing holes or recomputing normals. Our ap-
proach can robustly reconstruct complex shapes
with both open and closed surfaces as shown in
Fig. 1, such as the dresses, plant leaves, and hu-
man characters. We also compare the timing and
storage consumption between two single-layer
mesh prediction approaches: HSDF-Net with
MCubes (ours) and NDF. As shown in Table
1, our approach outperforms NDF in time and
storage budget.

4.3 Shape Reconstruction of Closed Surfaces
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Dataset MGN Car Chair Ship Lamp Mean

#Points 10K 3K 10K 3K 10K 3K 10K 3K 10K 3K 10K 3K

Chamfer
Distance

Input 0.879 1.70 0.683 1.91 0.814 2.42 0.327 0.933 0.350 1.08 0.611 1.61
W.GT 3.46 3.46 4.87 4.87 2.93 2.93 3.79 3.79 5.32 5.32 4.07 4.07
NDF 0.102 0.158 0.137 0.325 0.122 0.291 0.104 0.207 0.142 0.231 0.121 0.242
Ours 0.114 0.151 0.124 0.289 0.101 0.209 0.133 0.194 0.166 0.274 0.128 0.223

Normal
Consistency

NDF 0.954 0.938 0.879 0.817 0.903 0.865 0.884 0.850 0.909 0.869 0.906 0.868
Ours 0.962 0.957 0.898 0.842 0.920 0.896 0.891 0.863 0.923 0.904 0.919 0.892

Oriented
NC

NDF 0.517 0.390 0.383 0.310 0.423 0.344 0.445 0.358 0.541 0.505 0.462 0.381
Ours 0.929 0.900 0.711 0.646 0.835 0.749 0.826 0.732 0.878 0.760 0.836 0.757

Table 2: Comparison on Chamfer distance(×10−4) & Normal Consistency & Oriented Normal
Consistency which is sensitive to face normal directions.

# Points Input OccNet IF-Net NDF Ours

300 12.5 2.53 2.76 1.51 1.34
3000 1.54 1.17 0.615 0.191 0.155

Table 3: Comparison on Watertight Cars (DISN
dataset) using Chamfer-L2 Distance(×10−4).

Most of the SOTA such as OccNet [39] and
IF-Net [14] require watertight training data. In
order to compare with these SOTA methods,
we train these methods along with NDF [15]
on 3094 ShapeNet [7] cars pre-processed by
DISN [61]. The pre-processing transform open
shapes into closed shapes and removes all the
interior contents of cars like seats. In Table 3, we compare the Chamfer Distance [21] of our method
against all the baselines quantitatively with 300 input points and 3,000 input points. Our method
achieves the best performance. In Fig. 5, we show that our HSDFs can achieve comparable quality as
UDF-based SOTA [15] and SDF-based SOTA [14]. All the results are reported using test data unseen
during training time.

4.4 Shape Reconstruction of Complex Shapes

In order to demonstrate that HSDFs can reconstruct meshes with better quality efficiently, we
train our HSDF-Net on five representative categories containing complex shapes illustrated in
Sec. 4.1. In Table 2, we compare our method quantitatively against NDF and watertight
ground truth (W.GT) on the complex shapes with 3,000 and 10,000 points as input. The vi-
sual comparisons are shown in Fig. 6 where we can see thin open structures (i.e. the clothes,
the back of the chair, and the hat of the lamp) and complex inner structures (i.e. the seats
and windows, etc.). All these results are reported on test data unseen during training time.

(a) Ours (b) GT (c) Ours (d) GT

Figure 7: Reconstructed meshes with face di-
rections corrected. Above are two examples
from test data. And they have more reasonable
face directions even than their noisy ground
truth meshes which have flipped faces. This
shows that HSDF-Net learns a pattern of face
normal directions from the prior knowledge,
which can be robust to small noises.

As depicted in Fig. 6 and Fig. 1, our HSDF is the
first representation that can efficiently reconstruct
high-fidelity single-layer open mesh with reasonable
face normal directions. These advantages are only
possible because 1) HSDFs can model open shapes
by hybrid distance and sign; 2) HSDF-Net can learn
the prior knowledge of face normal direction in the
form of signs, which results in reasonable face di-
rections and also enables using marching cubes to
accelerate meshing; 3) Our two-head training man-
ner enables using deep neural networks (known to
represent continuous functions) to learn HSDFs. Al-
though we computed HSDFs using surface normal
information in training data illustrated in Sec. 4.1,
our HSDF-Net is still robust to noise like flipped
faces in training data. We can even use the learned
HSDF-Net to reconstruct meshes with more reason-
able face directions than their ground truth with only
point clouds as input, see Fig. 7.

4.5 Further Discussions
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(a) Input (b) W.GT (c) NDF (d) Ours (e) GT

Figure 6: Shape reconstruction comparison of complex shapes. Dark brown area represents the
back-faces. (a) input point clouds with 3k points for clothes, chairs and lamps; and 10k points for cars
to sample complex inner structures. (b) the watertight version of GT pre-processed by DISN [61],
which erases the inner structures and closes the open surfaces. This is the upper bound of SDF based
approaches. (c) reconstructed meshes using BPA [4] on NDFs [15]. The results of NDF suffers
because BPA is very sensitive to ball-radius, which have to be tuned per-shape [50]. (d) our meshes
reconstructed with the proposed HSDF, which preserves the thin shapes as in (e) GT.

(a) Input (b) Joint (c) two-head (d) GT

Figure 8: Ablation study on two-head training. The recon-
structed meshes with a joint learning strategy are shown as
column (b) where all the open structures like collars and
sleeves are wrongly shaped with watertight surfaces.

(a) Direct fusing (b) Grad optimize (c) GT
Figure 9: Ablation study on sign and distance fusing strategy
illustrated in Fig. 3. The gradient optimized HSDF can
reconstruct meshes with better surface quality as shown in
(b) compared to (a).

Necessity of the two-head training
strategy We validate the necessity
of our two-predictor training strat-
egy for sign and distance by jointly
training a single decoder to predict
a signed distance instead of two de-
coders. All the results are from test
data and reconstructed in the same
condition except for the number of de-
coders. As we can see in column (b) in
Fig. 8, although the HSDFs for train-
ing are sampled in the same way as
two-head training, joint training can
never learn HSDFs correctly because
a discontinuous function is beyond
what a single DNN can express. In
contrast, our results in column (c) are
a plausible open surface that is similar
to the ground truth.

Necessity of HSDF fusion We val-
idate the quality improvement by inte-
grating HSDF fusion as described in
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Sec. 3.3. As shown in Fig. 9, the gradient optimization consistently removes the Moire pattern and
produces smoother results than direct fusing.

Limitations The first limitation of our approach is the reconstruction accuracy of mesh boundaries.
The marching cube algorithm cuts through every cube to extract the surfaces. The extraction becomes
ill-posed when cubes enclose the boundary surface of an open shape, which results in non-manifold
structures. We envision that increasing the resolution of boundary cubes will alleviate this problem
by decreasing the boundary cubes’ size. The second limitation is that we rely on consistent and clean
normals of the training data to compute HSDFs. Datasets without clear normals like unprocessed
ShapeNet [7] have to be repaired [19] before training.

5 Conclusions

We propose a novel hybrid signed and distance field (HSDF) and a dedicated learning model HSDF-
Net as an intuitive but useful extension of SDF in previous works. Through sufficient experiments,
we have shown that this natural extension leads to a substantial increase in modeling capacities for a
much wider range of complex shapes. And we further validate the proposed HSDF can reconstruct
arbitrary shapes containing open surfaces efficiently with high fidelity and consistent surface normals.
In future work, we expect to explore more applications, such as reconstructions from 2D images to
exploit our representational capacities. And we will implement our proposed approach in Jittor [27],
which is a fully just-in-time (JIT) compiled deep learning framework.

6 Broader Impact

The proposed HSDF representation and the dedicated learning strategy can serve as a fundamental
tool for modeling 3D shapes with arbitrary topologies including both open and closed surfaces.
Hence, it can have a positive impact to research fields such as computer vision, computer graphics
and human-computer interaction, etc. Specifically, due to the enhanced representing and meshing
ability of HSDF, our method can reconstruct a wider range of complex shapes with high fidelity and
consistent surface normals from raw scanning. This could benefit various real-world applications,
including 3D reconstruction tasks from point clouds, images or voxels with thin structures and open
surfaces. However, during data collection for our model training, particular care must be taken to
ensure that the privacy and security of the owners of private models are not violated.
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