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Abstract

Tensor decompositions are powerful tools for dimensionality reduction and feature
interpretation of multidimensional data such as signals. Existing tensor decom-
position objectives (e.g., Frobenius norm) are designed for fitting raw data under
statistical assumptions, which may not align with downstream classification tasks.
In practice, raw input tensors can contain irrelevant information, while data augmen-
tation techniques may be used to smooth out class-irrelevant noise in samples. This
paper addresses the above challenges by proposing augmented tensor decomposi-
tion (ATD), which effectively incorporates data augmentations and self-supervised
learning (SSL) to boost downstream classification. To address the non-convexity
of the new augmented objective, we develop an iterative method that enables the
optimization to follow an alternating least squares (ALS) fashion. We evaluate our
proposed ATD on multiple datasets. It can achieve 0.8% ⇠ 2.5% accuracy gain over
tensor-based baselines. Also, our ATD model shows comparable or better perfor-
mance (e.g., up to 15% in accuracy) over self-supervised and autoencoder baselines
while using less than 5% of learnable parameters of these baseline models. We have
released our data processing and codes in https://github.com/ycq091044/ATD.

1 Introduction

Extracting unsupervised features from high-dimensional data is essential in various scenarios, such
as physiological signals (Cong et al., 2015), hyperspectral images (Wang et al., 2017) and fMRI
(Hamdi et al., 2018). Tensor decomposition models are often used for high-order feature extraction
(Sidiropoulos et al., 2017). Among these, the CANDECOMP/PARAFAC (CP) decomposition is
one of the most popular models. The low-rank CP tensor decompositions (Kolda and Bader, 2009)
assume that the input data is composited by a small set of components, while the reduced features are
the coefficients that quantify the importance of each basis, which provides a compact representation.

Under this low-rank assumption, existing tensor decomposition objectives aim to fit individual data
samples with statistical error measures (Hong et al., 2020; Singh et al., 2021; Yang et al., 2022), e.g.,
Frobenius norm or KL-divergence. Though fitness is an essential principle for feature reduction,
common objective functions do not account for downstream tasks, e.g., classification.

Contrastive self-supervised learning (SSL) (He et al., 2020) is recently popular for unsupervised
feature learning, which utilizes the class-preserving data augmentations (Dao et al., 2019) and
learns an encoder that can filter out class-irrelevant information. The optimization goal is to enforce
alignments (Chen et al., 2020; Wang and Isola, 2020), ensuring that the anchor sample is closer to the
positive sample (which has the same latent class as the anchor sample) than to the negative sample
(which is in a different latent class) in the embedding space. In an unsupervised setting, positive
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samples are given by data augmentations, while negative samples are hard to acquire (Arora et al.,
2019; He et al., 2020; Chen et al., 2020). Also, previous models are mostly built on deep neural
networks, which are often black-box models with tens of thousands of learnable parameters.

This paper aims to incorporate both the fitness and alignment principles into CP tensor decomposition1

by augmenting the common fitness objective with a new self-supervised loss. The new self-supervised
loss is based on the unbiased estimation of negative samples (Chuang et al., 2020), which effectively
prevents the sampling bias issue (Arora et al., 2019). The purpose of our design (i.e., introducing
SSL into CP tensor decomposition) is to learn class-aware tensor decomposition results for boosting
the downstream tensor sample classifications. To address the non-convex subproblems from the new
objective, we formulate an iterative method, which solves least squares optimization in each step with
a closed-form solution. The main contributions are summarized below.

• We propose augmented tensor decomposition, named ATD, which learns an unsupervised CP
structure decomposition by extending the original fitness objective with a self-supervised loss on
the contrastiveness of similar and dissimilar tensor samples.

• We develop an iterative method to address the non-convex subproblem from the new objective,
which enables our algorithm to follow an alternative least squares fashion. Our algorithm has
asymptotically the same complexity of each optimization sweep as the common CP-ALS.

• We provide extensive evaluations on four real-world datasets and compare to recent tensor
decomposition models, autoencoder models, and self-supervised models. Our method shows better
or comparable prediction performance in various downstream classifications while only requiring
much fewer (e.g., less than 5% of) parameters than that of deep learning baselines.

2 Background

Notation. We use plain letters for scalars, such as x or X , boldface uppercase letters for matrices,
e.g., X, boldface lowercase letters for vectors, e.g., x, and Euler script letters for tensors, random
variables of tensors, and probability distributions, e.g., X . Tensors are multidimensional arrays
indexed by three or more indices (modes). For example, an N -mode tensor X is an N -dimensional
array of size I1 ⇥ · · ·⇥ IN , where xi1,...,iN is the element at the (i1, · · · , iN )-th position. For matrix
X, the r-th row and column are x(r) and xr respectively, while xij is for the (i, j)-th element. kXkF
is the Frobenius norm. For vector x, the r-th element is xr, and we use kxk2 to denote the vector
2-norm, h·, ·i for the vector inner product, � for the outer product, and J·K for the Kruskal product.
Indices in the paper start from 1, e.g., x1 is the first column of the matrix.

2.1 Tensor Modeling

This paper aims to learn tensor bases from unlabeled data and then use the bases to build a feature
extractor for downstream classification. Without loss of generality (w.r.t. tensor order), we consider
the fourth-order tensor, e.g., a collection of multi-channel Electroencephalography (EEG) signals,

T =
h
T (1), T (2), . . . , T (N)

i
2 RN⇥I⇥J⇥K ,

where T (n) 2 RI⇥J⇥K . The first dimension of T corresponds to data samples (e.g., one for each
patient), while the other three are feature dimensions (e.g., channel by frequency by timestamp).

Data Model. To model the above tensor, previous works (Kolda and Bader, 2009) assume that

• There are a set of rank-one tensor components E = {E1, . . . , ER}, which are learnable;

• The tensor data sample/slice T (n) admits a low-rank structure and can be represented as a weighted
sum of these tensor components E , where x(n) denotes its coefficient vector;

• On top of the low-rank structure, each data sample T (n) also contains additional element-wise i.i.d.
Gaussian noise due to real-world distortion (e.g., physical noise in signal measurements).

1Our design may work for other tensor models, such as Tucker decomposition. We leave it to future work.
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In the context of downstream classifications, we further assume that each sample T (n) is semantically
associated to one of the latent classes p 2 {1, . . . , P}, and we let Dp be the sample distribution of
class-p. Thus, the data sample can be formulated as, 8n,

T (n) =
RX

r=1

x(n)
r · Er + ✏(n) ⇠ Dp, p 2 {1, . . . , P}, (1)

where

Er = ar � br � cr, r 2 {1, . . . , R},
✏(n) ⇠i.i.d. N (0,�), where � is generally small.

Here ar,br, cr are the learnable parameters, which produces the rank-one component Er, and they
are the column vectors of {A 2 RI⇥R,B 2 RJ⇥R,C 2 RK⇥R}, referred as "bases".

CANDECOMP/PARAFAC Decomposition (CPD). Given the above tensor model, standard CPD
only captures the i.i.d. Gaussian noise by minimizing the negative log-likelihood (NLL), which
results in the following standard fitness/reconstruction loss,

Lcpd =
NX

n=1

���T (n) � Jx(n),A,B,CK
���
2

F
= kT � JX,A,B,CKk2F .

Here, the Kruskal product J·K outputs a fourth-order reconstructed tensor from four input factor
matrices. For consistency, if the first input is a vector, the output is considered as a third-order tensor.

2.2 Problem Formulation

CP decomposition seeks a low-rank reconstruction, without special consideration for the downstream
task. In this paper, we are motivated to improve the CPD model by exploiting the latent classes (in an
unsupervised way) and learn good bases to provide better class-aware features for classification.

What are Good Bases? This paper considers two design principles for good bases. The first
principle is fitness, which requires a low-rank tensor reconstruction with the bases. Second, data
samples associated with the same latent class should be decomposed into similar coefficient vectors,
with the bases, while the vectors should be dissimilar if the samples are from different latent classes.
This principle is called alignment, which is important for classification but not considered in the
standard tensor decomposition. In this paper, we assess the quality of the learned bases by the
performance of downstream classification, where the coefficient vectors (obtained using the bases via
decomposition) are the feature inputs (into the downstream classifier).

Working Pipelines. To put it succinctly, the paper tackles an unsupervised learning problem while
using downstream supervised classification for evaluation. The procedures are briefly outlined:

• First, we learn the bases {A,B,C} from a large set of unlabeled data. The loss function is
developed in consideration of the fitness and alignment (defined in the next section) principles.

• Then, we construct the following feature extractor given {A,B,C}. The feature vector of a
new sample is obtained by the closed-form solution of the least squares problem (↵ > 0 is a
hyperparameter),

f(T (new);A,B,C) = argmin
x2R1⇥R

✓���T (new) � Jx,A,B,CK
���
2

F
+ ↵kxk22

◆
. (2)

Note that, when f(·) is applied to a batch of samples, it outputs a coefficient matrix.

• Next, we evaluate the feature extractor with a set of labeled data. Given f(·), we first apply it on
the labeled data to extract their features and then train an additional logistic regression model (as
the downstream classifier) on top of the extracted features, so that the result of classifications will
implicitly reflect how good the bases are.
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Figure 1: Standard CPD vs Our ATD Model

3 Augmented Tensor Decomposition

We show our model in Figure 1. The design is inspired by the recent popularity of SSL. To exploit
the latent class information, we introduce class-preserving data augmentation into CPD model and
design self-supervised loss to constrain the learned low-rank features (i.e., the coefficient vectors).

Data Augmentation2 In general, data augmentation methods are chosen to perturb the raw data
while preserving class label information (He et al., 2020; Chen et al., 2020). Given a sample T (n),
we assume that after data augmentation, its perturbation T̃ (n) preserves the label and admits the
component-based representation as in Eqn. (1).

3.1 Self-supervised Loss

The design of our self supervised loss corresponds to the alignment principle, which is based on
pairwise feature similarity and dissimilarity. We call a pair of data samples from the same latent
class as positive pair, a pair of samples from different latent classes as negative pair and a pair of
independent samples (two random samples from the dataset) as random pair. Intuitively, an anchor
plus a positive sample composes a positive pair, similarly for negative pairs and random pairs. In this
work, our self-supervised loss aims to maximize the feature similarity between positive pairs and
minimizes that between negative pairs in an unsupervised way (no labels during optimization).

Formally, let Xp,Yp be discrete random variables (of tensor samples) distributed as Dp, p 2
{1, . . . , P}. We want to minimize the following objective when no class labels are given,

Lss = Lpos + �Lneg,

where � � 1 is a hyperparameter and

Lpos = �E [sim (f (Xp) , f (Yq)) | p = q] ,

Lneg = E [sim (f (Xp) , f (Yq)) | p 6= q] .
(3)

Here Lpos maximizes the feature similarity of positive pairs while Lneg minimizes the feature
similarity of negative pairs. f(·) is the feature extractor, defined in Eqn. (2), and the similarity
measure is given by cosine distance, parameterized by two random variables,

sim (f (Xp) , f (Yq)) =

⌧
f(Xp)

kf (Xp)k2
,

f(Yq)

kf (Yq)k2

�
.

To this end, the key is to implement the self-supervised loss, i.e., Eqn. (3), in an unsupervised setting.
Specifically, we want to construct the sampler of positive pairs and the sampler of negative pairs
with unlabeled data only. The sampler of positive pairs (in short, positive sampler) can be easily
approximated by data augmentation techniques, which provides "surrogate" positive pairs (given any

2We provide further discussions and ablation studies on data augmentation in Appendix C.3 and C.5.

4



sample as the anchor, we apply data augmentation methods to generate a perturbed data as positive
sample, and then the anchor plus the perturbed data is a positive pair). However, the negative sampler
is infeasible, without labels. As a compromise, previous works (He et al., 2020; Chen et al., 2020)
consider using random sampler to replace the negative sampler given that the random sampler can
be easily achieved by picking two independent samples from the dataset. However, this practice is
shown to induce sampling bias and hurts the learned representation (Arora et al., 2019; Chuang et al.,
2020) since a random pair may be from the same latent class.

Construction of Negative Sampler. In this paper, we consider using the law of total probability
to construct the negative sampler in a statistical way. Formally, assume rp is the label rate of latent
class-p (thus, we have

P
p rp = 1), we apply the law of total probability and the following holds,

E [sim (f (Xp) , f (Yq)) | p 6= q] =
PX

p=1

rp
X

q 6=p

rq
1� rp

Ep,q [sim (f (Xp) , f (Yq))]

=�
PX

p=1

rprp
1� rp

Ep,q [sim (f (Xp) , f (Yq)) | p = q] +
PX

p=1

PX

q=1

rprq
1� rp

Ep,q [sim (f (Xp) , f (Yq))]

=� E


rp
1� rp

sim (f (Xp) , f (Yq)) | p = q

�
+ E


1

1� rp
sim (f (Xq) , f (Yq))

�
.

(4)
Here, the usage of E[·] means that the expectation is taken over four interdependent random variables,
i.e., p, q,Xp,Yq, while Ep,q[·] means that p, q is fixed and thus it is only taken over two random
variables, i.e., Xp,Yq . The result shows that the negative sampler can be equivalently replaced by a
weighted combination of the random sampler and positive sampler. Here we do not have access to
rp, 8p with unlabeled data, this issue is dealt with later.

Self-supervised Loss. Consequently, we can reformulate our self-supervised loss as,

Lss = Lpos + �Lneg

=� E [sim (f (Xp) , f (Yq)) | p = q] + �E [sim (f (Xp) , f (Yq)) | p 6= q] (5)

= E


�

1� rp
sim (f (Xp) , f (Yq))

�
� E

✓
�rp

1� rp
+ 1

◆
sim (f (Xp) , f (Yq)) | p = q

�
. (6)

From Eqn. (5) to Eqn. (6), we use the results in Eqn. (4)

Two-sided Bound. The above form still requires label rate information, i.e., rp, 8p, we therefore
consider using the following approximation to the above loss Lss,

L⇥
ss(�) = (� + 1)E [sim (f (Xp) , f (Yq))]� E [sim (f (Xp) , f (Yq)) | p = q] . (7)

Here, � � 0 is a hyperparameter, while Lss can be bounded as (derivations in appendix E),

C1L⇥
ss

✓
�� 1

C1

◆
 Lss  C2L⇥

ss

✓
�� 1

C2

◆
, C1 = 1 +max

p

�rp
1� rp

, C2 = 1 +min
p

�rp
1� rp

. (8)

The equivalence is established when C1 = C2, i.e., the class labels are balanced. To simplify the
derivation, we ignore � in the following and let � be a new hyperparameter. Also, the constants
C1 and C2 can be absorbed into a weight hyperparameter �, given in the next section. This bound
implies that, an easy-to-compute �L⇥

ss(�) is often a good approximation of Lss for some �. The next
section specifies how to compute �L⇥

ss(�) unsupervisedly as our empirical self-supervised loss.

3.2 The Objective of ATD

Empirical Estimator. We obtain an empirical estimator of L⇥
ss with Monte Carlo method. Suppose

T and T̃ are the input tensor and the augmented tensor respectively, and X = f(T ), X̃ = f(T̃ ) 2
RN⇥R are the coefficient/feature matrices. We use the row vectors of X, X̃ to estimate Eqn. (7).

The first term E [sim (f (Xp) , f (Yq))] essentially requires a random sampler, which is approximated
by the average cosine similarity of all possible pairs of non-corresponding row vectors of X, X̃, while
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the second term E [sim (f (Xp) , f (Yq)) | p = q] requires a positive sampler, which is estimated by
the average cosine similarity of all pairs of corresponding row vectors,

L̃⇥
ss(�) = (� + 1) · 1

N(N � 1)

NX

n=1

NX

s 6=n

⌧
x(n)

kx(n)k2
,

x̃(s)

kx̃(s)k2

�
� 1

N

NX

n=1

⌧
x(n)

kx(n)k2
,

x̃(n)

kx̃(n)k2

�

= Tr
⇣
X>D(X)G(�)D(X̃)X̃

⌘
,

(9)
where D (X) = diag

⇣
1

kx(1)k2
, · · · , 1

kx(N)k2

⌘
is the row-wise scaling matrix and

G(�) =

2

6664

� 1
N

�+1
N(N�1) · · · �+1

N(N�1)
�+1

N(N�1) � 1
N · · · �+1

N(N�1)

· · · · · · · · · · · ·
�+1

N(N�1)
�+1

N(N�1) · · · � 1
N

3

7775
.

Note that, the form in Eqn. (9) is significantly different from tensor discriminant analysis (Jia et al.,
2014; Tao et al., 2007), which integrates the actual label information as a regularizer and is also
different from graph regularized tensor decomposition (Cai et al., 2010), which incorporates side
information, such as geometrical positions (Maki et al., 2018). Compared to standard noise contrastive
estimation (NCE) (Gutmann and Hyvärinen, 2010; Chen et al., 2020) in the area of contrastive SSL,
our SSL form in Eqn. (9) considers a subtraction form instead of the softmax formulation, making it
amenable to quadratic optimization, as we will show in Sec. 3.3.

Overall Objective. According to Eqn. (8), the self supervised loss Lss is bounded by L⇥
ss(�), while

the constants (i.e., C1, C2) can be absorbed into a weight hyperparameter �. We let the empirical self-
supervised loss, L̃ss=�L̃⇥

ss(�). Our objective follows both the fitness (i.e., CPD reconstruction loss)
and alignment (i.e., self-supervised loss) principles, while also considering Tikhonov regularization
(Golub and Von Matt, 1997) to constrain the scale of all parameters,

L = Lcpd + Lreg + L̃ss, (10)

where

Lcpd = kT � JX,A,B,CKk2F +
���T̃ � JX̃,A,B,CK

���
2

F
,

Lreg = ↵
⇣
kXk2F + kX̃k2F + kAk2F + kBk2F + kCk2F

⌘
,

L̃ss = �L̃⇥
ss(�) = �Tr

⇣
X>D(X)G(�)D(X̃)X̃

⌘
. (11)

The objective has (i) three hyperparameters, �,↵,� > 0; (ii) five factor matrices, A,B,C, X, X̃.

3.3 Alternating Least Squares Optimization

Ideally, we would like to use alternative least squares (ALS) algorithm (Sidiropoulos et al., 2017)
for optimizing the objective, where each factor matrix is updated in a sequence by solving least
squares subproblems. With large scale tensors, we can also resort to mini-batch stochastic ALS (Cao
et al., 2020) to reduce memory footprint of the decomposition. However, the objective in Eqn. (11)
is non-convex to X and X̃, respectively. For addressing the non-convex subproblem, we design an
iterative method in this section, which only involves solving least square problems.

Addressing Non-convex Subproblem. We use the subproblem of X as an example. Given A, B,
C, X̃ fixed, we want to minimize Eqn. (10) by finding the optimal solution, denoted as X⇤,

X⇤  argmin
X

⇣
kT � JX,A,B,CKk2F + ↵kXk2F + �Tr

⇣
X>D(X)G(�)D(X̃)X̃

⌘⌘
. (12)

• First, we are interested to find that the matrix-formed problem in Eqn. (12) can be decomposed into
row-wise subproblems. To obtain the solution of Eqn. (12), it is suffice to solve each subproblem
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independently. Let us consider the subproblem of the k-th row, which is

argmin
x

✓���T (k) � Jx,A,B,CK
���
2

F
+ ↵kxk2F + �Tr

✓
x>

kxk2
g(k)D(X̃)X̃

◆◆
, (13)

where T (k) is the k-th slice of T , and g(k) is the k-th row of G(�).
• Here, Eqn. (13) is still non-convex with respect to x. We let the derivative of Eqn. (13) objective to

be zero and arrange the terms, which yields,

x = v1V3 �
�v2

2kxk2

✓
I� x>x

kxk22

◆
V3, (14)

where

v1 = T(k)
1 (A�B�C), v2 = g(k)D(X̃)X̃, V3 =

�
A>A ⇤B>B ⇤C>C+ ↵I

��1
.

Here x,v1,v2 are row vectors and V3 is a matrix. T(k)
1 is the 1-mode unfolding of T (k), � is the

Khatri-Rao product and ⇤ is the Hadamard product (i.e., element-wise product).
• We consider the following iterative rule and the fixed point is a solution for Eqn. (14), which is a

stationary point of Eqn. (13),

ximpr = v1V3 �
�v2

2kxinitk2

✓
I� x>

initxinit

kxinitk22

◆
V3. (15)

We use an initial guess xinit (obtained by solving Eqn. (13) with while � = 0, which is a least
squares problem) to start. Then, we repeat Eqn. (15) for each row (i.e., each k) independently and
let the improved guess be the initial guess, xinit  ximpr, to iteratively improve the result.

Theorem 1 (proof in Appendix A) ensures that Eqn. (15) converges linearly if � is chosen to be
sufficiently small. In Appendix B, we verify the liner convergence and also empirically show that one
round of Eqn. (15) is sufficient in our experiment, where � = 2. The non-convex subproblem of X̃
can be solved in the same way.
Theorem 1. Given non-zero row vectors v1,v2,u0 2 Rd, non-singular matrix V3 2 Rd⇥d and
� > 0. The sequence {ut}, generated by ut+1 = v1V3 � �v2

2kutk2

⇣
I� ut>ut

kutk2
2

⌘
V3, satisfies,

��ut+1 � u⇤��
2
 �(2m+M)kv2k2kV3kF

m3

��ut � u⇤��
2
,

where u⇤ is the fixed point and m = mint kutk2, M = maxt kutk2 are the bound of the sequence.
With a good u0 and a sufficiently small �, we can safely assume 0 < m M <1.

Optimization Procedures. To minimize Eqn. (10), we alternatively update A,B,C, X, and X̃,
where each subproblem involves only solving least squares problems with closed-form solutions
(summarized in Algorithm 1). With large-scale tensors (as in the experiments), we optimizes the
factors in mini-batches. Between mini-batches, the basis factors A,B,C are shared and updated
incrementally. We show the batch algortihm in Appendix D. The computation head of the algorithm
is matricized tensor times Khatri-Rao product (MTTKRP). The complexity of our optimization
algorithm is asymptotically the same as applying CP-ALS on the original tensor T with the same
rank R, which costs O(NIJKR) to sweep over the whole tensor once.

4 Experiments

This section presents the experimental evaluations. Due to space limitation, additional details,
including data augmentations and baseline implementation, are presented in Appendix C.

4.1 Experimental Setup

Data Preparation. We use four real-world datasets: (i) Sleep-EDF (Kemp et al., 2000), which
contains EOG, EMG and EEG Polysomnography recordings; (ii) human activity recognition (HAR)
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Algorithm 1: Alternating Least Squares
1 Input: Data tensor T 2 RN⇥I⇥J⇥K ; initialized A,B,C, X̃,X; other hyperparameters ↵,�, �;
2 Obtain the augmented tensor T̃ ;
3 repeat
4 Use A,B,C, X̃ to update X by our iterative rules (one iteration) in Eqn. (15);
5 Use A,B,C,X to update X̃ by our iterative rules (one iteration) in Eqn. (15);
6 Use B,C,X, X̃ to update A by solving least squares problem;
7 Use A,C,X, X̃ to update B by solving least squares problem;
8 Use A,B,X, X̃ to update C by solving least squares problem;
9 until max sweep exceeds or change of loss < 0.1% within 3 consecutive sweeps;

10 Output: the learned bases {A,B,C}.

Table 1: Dataset Statistics
Name Data Sample Format Augmentations # Unlabeled (N ) # Training # Test Task # Class

Sleep-EDF I ⇥ J ⇥K: 14 ⇥ 129 ⇥ 86 (a), (b) 331,208 42,803 41,078 Sleep Staging 5
HAR I ⇥ J ⇥K: 18 ⇥ 33 ⇥ 33 (a), (b), (c) 7,352 1,473 1,474 Activity Recognition 6

PTB-XL I ⇥ J ⇥K: 24 ⇥ 129 ⇥ 75 (a), (b) 17,469 2,183 2,185 Gender Identification 2
MGH I ⇥ J ⇥K: 12 ⇥ 257 ⇥ 43 (a), (b) 4,377,170 238,312 248,041 Sleep Staging 5

* We report the data format after short time Fourier transform (STFT) in Appendix C.2, which is used to obtain the spectrogram.

(Anguita et al., 2013) with smartphone accelerometer and gyroscope data; (iii) Physikalisch Technis-
che Bundesanstalt large scale cardiology database (PTB-XL) (Alday et al., 2020) with 12-lead ECG
signals; (iv) Massachusetts General Hospital (MGH) (Biswal et al., 2018) datasets with multi-channel
EEG waves. All datasets are split into three disjoint sets (i.e., unlabeled, training and test) by subjects,
while training and test sets have labels. Basic statistics are shown in Table 1. All models (baselines
and our ATD) use the same augmentation techniques: (a) jittering, (b) bandpass filtering, and (c) 3D
position rotation. We provide an ablation study on the augmentation methods in Appendix C.5.

Baseline Methods. We include the following comparison models from different perspectives:

• Tensor based models: ATDss� is our variant, which removes the self-supervised loss from the
objective in Eqn. (10); Stochastic alternating least squares (SALS) applies on the the CPD objective
with Tikhonov regularizer, which works on large tensors; Graph regularized SALS (GR-SALS)
augments the objective of SALS with a graph regularizer (Maki et al., 2018; Cai et al., 2010),
define as Tr

�
X>GX

�
.

• Self-supervised models: SimCLR-r (Chen et al., 2020) and BYOL-r (Grill et al., 2020) are two
popular SSL models with their own objective functions, where r indicates the size of the output
representation.

• Auto-encoder models: AE-r denotes a CNN based autoencoder with mean square error (MSE)
reconstruction loss, and AEss-r denotes the same autoencoder model with standard NCE loss in
the bottleneck layer, where r is the representation size.

All models use the unlabeled set to train a feature encoder and use training and test sets to evaluate.
Note that, deep neural network models use the same CNN backbone. In Appendix C.8, we have also
compared with two recent supervised tensor learning models, which shows the usefulness of our ATD
and the large unlabeled set, especially in low-label rate scenarios.

Evaluation and Environments. We evaluate model performance mainly based on classification
accuracy, where we train an additional logistic classifier (He et al., 2020) on top of the feature encoder.
Also, for different models, we compare their number of learnable parameters. The experiments are
implemented by Python 3.8.5, Torch 1.8.0+cu111 on a Linux workstation with 256 GB memory, 32
core CPUs (3.70 GHz, 128 MB cache), two RTX 3090 GPUs (24 GB memory each). All training
is performed on the GPU. For tensor based models, we use R = 32 and implement the pipeline in
CUDA manually, instead of using torch-autograd.

4.2 Experimental Results

This section shows the experimental results on downstream classification. We use all the unlabeled
data to train the encoder or feature extractor, and use training data (since Sleep-EDF and MGH
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Table 2: Result of Downstream Classification (%). The table shows that our ATD can provide
comparable or better performance over all baselines with fewer parameters, especially deep learning
models. It also shows the usefulness of considering both fitness and alignment as part of the objective.

Sleep-EDF (5,000) HAR (1,473) PTB-XL (2,183) MGH (5,000)
Accuracy # of Params. Accuracy # of Params. Accuracy # of Params. Accuracy # of Params.

Self-sup models:
SimCLR-32 84.98 ± 0.358 210,384 74.75 ± 0.723 53,286 69.25 ± 0.355 200,960 67.34 ± 0.970 212,624
SimCLR-128 85.19 ± 0.358 222,768 76.69 ± 0.697 65,670 68.19 ± 0.793 237,920 66.98 ± 1.331 246,608
BYOL-32 84.29 ± 0.405 211,440 73.71 ± 2.832 54,342 65.08 ± 1.535 202,016 68.83 ± 1.168 214,736
BYOL-128 83.26 ± 0.337 239,280 71.79 ± 1.866 82,182 65.49 ± 0.612 254,432 68.55 ± 1.339 279,632

Auto-encoders:
AE-32 74.78 ± 0.723 217,216 63.13 ± 0.775 62,940 59.01 ± 0.896 224,528 68.58 ± 0.427 220,088
AE-128 75.17 ± 0.897 241,888 60.52 ± 1.604 87,612 58.29 ± 0.412 298,352 67.05 ± 1.375 257,048
AEss-32 80.92 ± 0.345 217,216 71.70 ± 2.135 62,940 68.47 ± 0.231 224,528 71.46 ± 0.386 220,088
AEss-128 81.84 ± 0.259 241,888 72.43 ± 1.370 87,612 68.88 ± 0.604 298,352 70.19 ± 0.617 257,048

Tensor models:
SALS 84.27 ± 0.481 7,328 91.86 ± 0.295 2,688 69.15 ± 0.483 7,296 71.93 ± 0.379 9,984
GR-SALS 84.33 ± 0.356 7,328 92.33 ± 0.282 2,688 69.02 ± 0.477 7,296 72.35 ± 0.228 9,984
ATDss� 84.19 ± 0.221 7,328 92.41 ± 0.391 2,688 69.38 ± 0.612 7,296 72.78 ± 0.522 9,984
ATD 85.01 ± 0.224 7,328 93.35 ± 0.357 2,688 70.26 ± 0.523 7,296 74.15 ± 0.431 9,984
*Parenthesis shows the number of training samples. Our improvements are statistically significant with p < 0.05 (details in appendix D.7).

datasets have enough training samples, we randomly selected a subset of them) for learning a
downstream classifier and use all test data. Each experiment is conducted with five different random
seeds and the mean and standard deviations are reported. The metrics are the accuracy and the
number of learnable parameters. All models have 32-dim features in the end, except that for two
self-supervised baselines and autoencoder variants, which have 128-dim options.

4.2.1 Better Classification Accuracy with Fewer Parameters
From Table 2, ATD shows comparable or better performance over the baselines. We have also reported
the running time per epoch/sweep in Appendix C.7 for all models. Compared to the variant ATDss�,
our ATD can improve the accuracy by 1.0% ⇠ 1.9%, which shows the benefit of the inclusion of
self-supervised loss. SALS and ATDss� have similar performance, while their objectives differ in that
ATDss� considers the Frobenius norm of the augmented data. Thus, their accuracy gap is caused by
the use of data augmentation. Also, the experiments show that the fitness and alignment principles
are both important. We observe that with a self-supervised loss (i.e., alignment), AEss can give
significant improvements over AE, while ATD shows ⇠ 8% accuracy gain over the self-supervised
models on MGH dataset, since we can better preserve the data with a reconstruction loss (i.e., fitness).

Moreover, the table shows that tensor based models require fewer parameters, i.e., less than 5%
of parameters compared to deep learning models. On HAR, the deep unsupervised models show
poor performance due to (i) they may not optimize a large number of parameters on middle-scale
dataset; (ii) movement signals in HAR might have few degrees of freedom, which matches well
with the low-rank assumption of tensor methods. On large-scale Sleep-EDF, self-supervised models
outperforms ATD marginally since they have more parameters thus can capture more information.

4.2.2 Better Performance in Low-label Rate Scenarios
On the MGH dataset, we also show the effect of varying the amount of training data in Figure 2. We
include an end-to-end convolutional neural network (CNN) model based on (Biswal et al., 2018),
called Reference CNN, which is a supervised model and only uses the training and test sets. To be
more readable, we separate the comparison figure into two sub-figures: the left compares our ATD
model with self-supervised and auto-encoder baselines and the right one compares ATD with tensor
baselines and the reference model, and the scale of y-axis on two sub-figures are the same.

We find that all unsupervised models outperform the supervised reference CNN model in scenarios
with fewer training samples. With more training data, the performance of all models get improved,
especially the reference CNN model, which can optimize the encoder and predictive layers in an
end-to-end way and finally outperforms our ATD when more training samples is available.

4.2.3 Stable Results with Hyperparameter Variation
For a comprehensive evaluation, we also conduct ablation studies on the effect of the data augmenta-
tion methods and on hyperparameters. Due to space limitation, we move the experimental settings and
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Figure 2: Varying the # of Training Data

results to Appendix C.6, while summarizing the general conclusions here: (i) with more diverse data
augmentation methods, the final results are relatively better; (ii) with a larger rank R, the performance
will be better generally; (iii) our ATD is not sensitive hyperparameters ↵ and �, and � 6= 0 can be
chosen from a large range (e.g., � = 2 in the experiments) for decent performances.

5 Related Work
Data augmentation and Self-supervised Learning. Data augmentation exploits class-preserving
perturbations to smooth out noise and encode task-invariances (Dao et al., 2019). It has been widely
used in various data formats, such as images (Cireşan et al., 2010), text (Lu et al., 2006), audio
(Uhlich et al., 2017), and time series (Wen et al., 2020; Yang et al., 2021b). Data augmentation also
benefits the recent development of contrastive SSL (He et al., 2020; Chen et al., 2020), which extracts
class-relevant features by optimizing a deep neural network encoder to achieve agreements between
semantically similar samples and disagreements on dissimilar samples. However, in contrastive SSL,
a recent work (Arora et al., 2019) highlighted that the common practice of replacing negative samples
with random samples leads to sampling bias, which may hurt the learned representation significantly
(Chuang et al., 2020). In this paper, we introduce an unbiased self-supervised objective into CP tensor
decomposition model and shows that the new design can be helpful in producing class-aware outputs.

Stochastic Algorithms for Tensors. With the rapid growth in data volume, efficient stochastic tensor
methods become increasingly important for higher-order data structures to boost scalability. These
methods are largely based on sampling (Ma and Solomonik, 2021; Yang et al., 2021a; Kolda and Hong,
2020), which accelerates the computation of over-determined least square problems (Battaglino et al.,
2018; Larsen and Kolda, 2020) in ALS for dense (Ailon and Chazelle, 2006) and sparse (Eshragh
et al., 2019) tensors by effective strategies, such as Fast Johnson-Lindenstrauss Transform (Ailon
and Chazelle, 2006), leverage-based sampling (Eshragh et al., 2019), and sketching. However, these
algorithms only focus on making ALS steps less costly and require to load the full data into memory.
Thus, we do not consider them in our setting. This paper integrates augmentation techniques and
self-supervised loss into tensor decomposition, and later we adopt an effective stochastic alternating
optimization to handle large scale optimization with less memory consumption.

6 Conclusion
This paper introduces the concept of self-supervised learning for tensors and proposes Augmented
Tensor Decomposition (ATD) and the ALS-based optimization. We show that by explicitly contrasting
positive and negative samples, the decomposition results are more aligned with downstream classifi-
cation. On four real-world datasets, we show the advantages of our model over various unsupervised
models and in low-label rate scenarios, our model even outperforms the reference supervised models.

Compared to deep learning methods, tensor based models are not as flexible in processing multimodal
and diverse inputs, such as natural images. However, applying tensor decomposition on the outputs
of earlier layers of pre-trained deep neural networks may be a feasible way to address the weaknesses.
This direction would be interesting for future work.
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