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Abstract

Auxiliary learning is a widely adopted practice in deep learning, which aims to
improve the model performance on the primary task by exploiting the beneficial
information in the auxiliary loss. Existing auxiliary learning methods only focus
on balancing the auxiliary loss and the primary loss, ignoring the module-level
auxiliary influence, i.e., an auxiliary loss will be beneficial for optimizing specific
modules within the model but harmful to others, failing to make full use of auxiliary
information. To tackle the problem, we propose a Module-Aware Optimization
approach for Auxiliary Learning (MAOAL). The proposed approach considers the
module-level influence through the learnable module-level auxiliary importance,
i.e., the importance of each auxiliary loss to each module. Specifically, the proposed
approach jointly optimizes the module-level auxiliary importance and the model
parameters in a bi-level manner. In the lower optimization, the model parameters
are optimized with the importance parameterized gradient, while in the upper
optimization, the module-level auxiliary importance is updated with the implicit
gradient from a small developing dataset. Extensive experiments show that our
proposed MAOAL method consistently outperforms state-of-the-art baselines for
different auxiliary losses on various datasets, demonstrating that our method can
serve as a powerful generic tool for auxiliary learning2.

1 Introduction

Auxiliary learning is a common practice in deep learning, which utilizes auxiliary losses (generally
from related tasks) to benefit the primary task in terms of model performance or generalization
ability. The auxiliary learning paradigm has shown its effectiveness in various areas including
image classification [1, 2], recommendation [3–5], reinforcement learning [6, 7], etc. Under various
scenarios, task-specific auxiliary losses are designed for different purposes, e.g., in recommendation,
previous works [5, 3] add the click-through rate prediction loss to help the click conversion rate
prediction; in image classification [1], the self-supervised auxiliary loss is designed to improve
classification accuracy when labels are inadequate; and the losses of head pose estimation and facial
attribute inference are utilized to aid facial landmark detection [8].

Existing auxiliary learning methods focus on balancing the importance of each auxiliary loss and
the primary loss. Most of them assign a predefined weight to each auxiliary loss and then optimize
the sum of the weighted auxiliary losses and the primary loss. The predefined weights generally
need carefully tuning with Hyper-parameter Optimization (HPO) tools to prevent negative auxiliary
transfer. Recently, several works [9, 10, 6] are proposed to automatically assign weights to each
auxiliary loss based on the gradient similarity between each auxiliary loss and the primary loss. The
more recent works [11] further proposes to utilize a non-linear auxiliary loss combination to better
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exploit the beneficial auxiliary information, and [12] proposes to jointly select the most beneficial
task and data for auxiliary learning.

Nevertheless, existing approaches ignore the important fact that an auxiliary loss could have different
influences on different modules within the model. Here we define a module to be a fine-grained part
of the model, e.g., a module can be a block in ResNet [13], a transformer block in Bert [14], or a
layer in a Multi-Layer-Perceptron (MLP). The necessity of considering the module-level influence of
auxiliary losses has been indicated by research related to multi-task learning. Previous multi-task
learning works [15, 16] show that shallow layers (layers close to the input) contain more common
information among related tasks, while deep layers (layers close to the output) contain more task-
specific information that tends to cause negative transfer. This phenomenon indicates that when
the auxiliary loss comes from a related task, if we do not consider the module-level influence, the
negative information in the deep layers will counterbalance the benefits brought by the shallow layers,
resulting in inefficient usage of auxiliary losses. However, these multi-task learning works [15, 16]
aim at designing model architectures, not suitable for the auxiliary learning scenario where the model
architecture is designed (and fixed) for the primary task, and our target is to utilize the auxiliary losses
to better optimize the model. In sum, considering the module-level influence is important to auxiliary
learning, and there has been no work on auxiliary learning considering this module-level influence.

To deal with the module-level auxiliary influence, we propose a module-aware optimization approach
for auxiliary learning (MAOAL). The comparison of the existing methods and our module-aware
optimization approach is shown in Figure 1. The proposed MAOAL approach considers the module-
level influence of auxiliary losses by introducing the learnable module-level auxiliary importance,
which reflects the importance of each auxiliary loss to each module within the model. Specifically,
the module-level auxiliary importance and the model parameters are jointly optimized in a bi-level
manner. In the lower optimization, the model parameters are updated with the module-level auxiliary
importance parameterized gradient, so that each auxiliary loss can be used to optimize the module it
is beneficial to, making each module of the model play a better role for the primary task. In the upper
optimization, the module-level auxiliary importance is updated with the implicit gradient from a small
developing dataset, making the module-level auxiliary importance more accurate. Additionally, the
best-response approximation is utilized for efficient implicit gradient calculation. Since the module-
level auxiliary importance is learned by a data-driven optimization process without requiring specific
knowledge of the auxiliary task, the proposed module-aware optimization method can accommodate a
variety of auxiliary losses. We conduct experiments on different tasks and datasets, and experimental
results show that our method consistently outperforms state-of-the-art methods. Particularly, when we
consider a wider range of auxiliary losses, such as adopting L2 regularization [17, 18] as an auxiliary
loss, our method can also deal with the module-level influence in these situations and bring better
model performance.

We summarize our contributions as follows. (i) We are the first to investigate the module-level
influence in the general auxiliary learning setting. (ii) We propose a module-aware optimization
(MAOAL) method for auxiliary learning, which utilizes the module-level auxiliary importance
parameterized gradient to optimize the model parameters, and optimizes the module-level importance
with the implicit gradient. (iii) Extensive experiments demonstrate that our method consistently
outperforms state-of-the-art baselines in various scenarios. Analysis of the modules and the module-
level auxiliary importance provides insights for auxiliary learning.
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Figure 1: Existing methods utilize the combination of the primary loss and auxiliary losses to update
the whole model parameters. In module-aware optimization, auxiliary loss 1 should update the
parameters in module 1,2,3 and auxiliary loss 2 should update module 2,4 and 5.
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2 Related Work

Auxiliary Learning Auxiliary learning is a common practice in deep learning. This learning
paradigm aims to improve the model performance on the primary task with designed auxiliary losses
(generally from auxiliary tasks). Most existing works [1, 3] utilize the auxiliary losses by linearly
combining them with the primary loss and then utilizing the combined loss to optimize the whole
model. The weights for the auxiliary losses will be tuned to avoid negative transfer to the primary
task. Some recent works [9, 10, 6, 19] propose to automatically weight the auxiliary losses during
the training process in a dynamic way. Specifically, work [9] calculates the gradient of each auxiliary
loss, and utilizes the cosine similarity between the auxiliary gradient and that of the primary loss as
the auxiliary loss weight. Work [10] shares a similar idea with [6], but with the goal that the weighted
gradient sum should be close to the gradient of the primary task. Moreover, [11] proposes to learn a
non-linear combination for auxiliary losses, and [12] proposes to select not only the task but also each
data sample within each task to make full use of the auxiliary information. However, these methods
only conduct model-level optimization for auxiliary losses, ignoring the fact that one auxiliary loss
could contribute differently to different modules within the model.

Multi-task learning Another line of highly related work to optimize several losses is multi-task
learning. Different from the goal of auxiliary learning, multi-task learning aims to obtain good
performance on all the learned tasks, while learning with auxiliary losses only focuses on the primary
task. Existing multi-task learning methods can be roughly categorized to three parts [20]: multi-task
architecture design [21, 16], multi-task optimization [22–24] and multi-task relationship learning [25].
Multi-task architecture design methods aim at designing proper architectures for simultaneously
learning multiple tasks. Some architecture design works [16, 21] point that different tasks share
more common information in the shallow layers, which inspires us that module-aware optimization
for auxiliary losses is needed. The multi-task optimization methods aim at optimizing the whole
model for all tasks with methods like loss weighting [22, 23], which can be used to optimize multiple
losses. Particularly, work [26] proposes to assign layer-wise to each loss, but it only focuses on
multi-task setting and the weight is assigned based on heuristics, which cannot be directly applied
to our general auxiliary setting where we only care about the performance of the primary task and
the auxiliary losses might by some other regularization terms like L2 regularization or disentangled
regularization [27–30].

Position of this work This work is mainly inspired by [31], where the machine is expected to
automatically select the data, tasks and model to be learned. Previous works have focused on different
aspects. [27, 32–35] focus on automatic data selection, [11, 6, 9] focus on automatic task selection,
and [36–38] focus on automatic model designing. More recently, some works focus on joint selection
of different elements, where the selection space is much more complicated. [12] proposes to joint
select task and data, [39, 40] proposes to joint select data and model, and this work fills the joint
task-model selection gap.

3 The Proposed Method

3.1 Preliminaries and Problem Formulation

Assume that we have a primary task Tgoal and its corresponding loss Lgoal (primary loss). There
are totally K auxiliary losses {La1, La2, · · · , Lai, · · · , LaK}, utilized to help the primary task.
Let Dtrain, Dv respectively be the training and validation dataset. The model for the pri-
mary task is parameterized by θ, which is a deep model composed of different modules, i.e.,
θ = [θ1, θ2, · · · , θj , · · · θm]. The partition for the modules can be flexibly defined by users, e.g., a
module can be a block in ResNet [13], a transformer block in Bert [14], or specified by its designed
function [41]. Previous approaches for auxiliary learning generally adopt the following objective:

Lc(θ) = Lgoal(θ;Dtrain) +

K∑
i=1

wi ∗ Lai(θ;Dtrain), (1)

where wi is the weight used to balance the auxiliary losses and the primary loss. With proper values
set for wi, the model parameters θ are updated with the widely adopted gradient descent method
where t is the unrolled step:

θt = θt−1 − η∇θt−1
Lc(θt−1). (2)
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Figure 2: The module-aware optimization method for auxiliary learning. In each loop, the lower
optimization is conducted for T times followed by one-step upper optimization. In the example, in
Loop1, the two auxiliary losses La1, La2 update all modules equally. After Loop1 optimization, La1

is only important to module2 and is used for updating module2 while La2 only for module1.

Although this kind of learning paradigm has been widely used in various scenarios, it cannot deal
with the module-level influence as indicated in [21, 16]. To avoid confusion, we remind that the
superscript of θj indexes the module within the model, and the subscript of θt indexes the unrolled
step in the rest of the paper.

Our goal is to deal with the module-level influence of auxiliary losses and make each auxiliary loss
optimize the module which it is beneficial to. Specifically, we introduce the module-level auxiliary
importance matrix α = {αij}Ki=1

m
j=1, where αij is the importance of auxiliary loss Lai to the module

θj , and then optimize the model parameters θ for the primary task according to the module-level
auxiliary importance. Here two key problems are how to obtain the optimal module-level auxiliary
importance and how to utilize the importance to optimize the model parameters θ. We optimize the
module-level auxiliary importance and the model parameters in a bi-level manner, and the whole
framework of the module-aware optimization process is shown in Figure 2. In the lower optimization,
we optimize the model parameters θ with the importance parameterized gradient. In the upper
optimization, we update the module-level auxiliary importance with the implicit gradient from a
developing dataset Ddev . In the next two subsections, we describe the lower and upper optimization
in detail and summarize the complete algorithm in Section 3.4.

3.2 Lower Optimization: Importance Parameterized Gradient for Model Parameters

In the lower optimization, we optimize the model parameters θ on the training dataset Dtrain.
Assuming that we have already known the module-level auxiliary importance αij , we will utilize the
importance to guide the optimization process of the model parameters θ. We first obtain the gradient
of each module θj with respect to each auxiliary loss Lai:

[∇θ1Lai,∇θ2Lai, · · · ,∇θmLai] = ∇θLai(θ;Dtrain), i = 1, 2, · · · ,K (3)

Then we reweight the gradient of each auxiliary loss with the importance αij and obtain the impor-
tance parameterized gradient∇θL̄(θ, α;Dtrain) as follows:

∇θL̄ai(θ, αi;Dtrain) = [αi1∇θ1Lai, αi2∇θ2Lai, · · · , αim∇θmLai], i = 1, 2, · · · ,K, (4)

∇θL̄(θ, α;Dtrain) = ∇θLgoal(θ;Dtrain) +

K∑
i=1

∇θL̄ai(θ, αi;Dtrain), (5)

where in Eq.(4), the gradient for each auxiliary loss is masked with its module-level auxiliary
importance, where if the ith auxiliary loss is important to optimizing the jth module, the auxiliary
module-level gradient ∇θjLai will be weighted with a larger αij and vice versa. In Eq.(5), we
combine all the weighted auxiliary gradient and the gradient of the primary loss to obtain the
importance parameterized gradient, which will be finally used to optimize the model parameters θ.
After that, we utilize the widely adopted unrolled gradient descent to optimize the model parameters
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θ as follows, where η1 is the learning rate.

θt+1 = θt − η1∇θtL̄(θt, α;Dtrain) (6)

3.3 Upper Optimization: Implicit Gradient for Module-level Auxiliary Importance

In the upper optimization, our target is to optimize the module-level auxiliary importance αij . To
obtain the gradient of α, we introduce a small developing dataset Ddev as in [42]. Ddev is a small-size
dataset for the primary task split from the validation dataset Dv . Since we expect that our model can
finally perform well on the validation dataset Dv , our model should also perform well enough on its
subset Ddev . Therefore, it is natural to utilize the loss on Ddev to optimize the importance matrix α.
Assume that we have conducted M steps of lower optimization, and the current model parameter is θM .
The loss of the model on the developing dataset Lgoal(θM (α);Ddev) can be calculated. Note that we
only calculate the primary loss on Ddev because we actually only care about the model performance
on the primary task. Directly calculating the gradient of α with respect to Lgoal(θM (α);Ddev) is
not easy. The loss Lgoal(θM (α);Ddev) directly relies on the model parameters θM instead of the
importance matrix α. α implicitly influences the value of Lgoal(θM (α);Ddev) by influencing the
gradient of θ as shown in the lower optimization in Eq.(6). According to this observation, we use the
chain rule to obtain the the gradient of α with respect to Lgoal(θM (α);Ddev):

∇αLgoal(θM (α);Ddev) = ∇θMLgoal(θM (α);Ddev)∇αθM (7)

The term ∇θMLgoal(θM (α);Ddev) is easy to obtain using the autograd tools. However, the term
∇αθM requires more complex exploration to the lower unrolled steps. By differentiating and unrolling
the process in Eq.(6), we obtain the following results:

∇αθM = −
∑

0≤τ<M

(
∏

0≤j<τ

[I − η1∇2
θL̄(θ, α;Dtrain)]|θM−1−j

)∇α∇θη1L̄(θ, α;Dtrain)|θM−1−τ
,

(8)
where τ indexes the steps we look back, summing up all the M looking-back results gives the desired
gradient. This means that if we know the Jacobi and the Hessian within the past M steps, we can use
them to calculate ∇αθM , the gradient of α with respect to current model parameters θM . Detailed
derivation can be found in the supplementary file. However, this kind of calculation is memory-
consuming because we have to restore the Jacobi and Hessian during the past M steps. To improve
efficiency, we follow the best-response approximation in [42] and assume that θ0, θ1, · · · , θM−1 all
equal to θM . With this assumption, we can approximate Eq.(8) in the following manner:

∇αθM ≈ −
∑

0≤τ<M

(I − η1∇2
θL̄(θM , α;Dtrain))

τ∇α∇θη1L̄(θM , α;Dtrain), (9)

where we only use the Hessian and Jacobi at the current step. Replacing the term ∇αθM in Eq.(7)
with Eq.(9) gives the desired gradient of α. Moreover, the calculation for Eq.(7) can be performed
efficiently using vector-Jacobian products [42] as shown in Algorithm 1, which is both memory and
computation efficient. This kind of approximation assumes that θτ (0 ≤ τ < M) equals to θM , which
will be more accurate when θτ is around the best response θ∗ under given α(the best response θ∗ is
the point that the unrolled process in Eq.(6) converges to when α is fixed). This is why it is called
best-response approximation in [42]. The effectiveness of this approximation is practically validated
in both previous works [42, 43, 11] and our experiments.

3.4 Overall Algorithm

With both the lower and upper optimization above, we summarize the complete module-aware
optimization algorithm for auxiliary learning in Algorithm 1. The input for the algorithm contains
three datasets: the training dataset Dtrain, the developing dataset Ddev and the validation dataset
Dv , and the hyperparameters. T and η1 are used for the lower optimization, where T is the steps we
conduct lower optimization in one loop and η1 is the learning rate for the lower optimization. M and
η2 are used for the upper optimization, where M is the total looking-back steps in Eq.(9) and η2 is
the learning rate for the upper optimization. The model parameters are randomly initialized and the
importance matrix is initialized with all its elements 1.0. Specifically, in line 4 to line 6, we conduct
lower optimization for T times. In line 15 to line 22, we conduct the upper optimization, where
line 16 to line 21 is the process that utilizes the vector-Jacobian products to calculate the gradient in
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Eq.(7). The lower optimization and the upper optimization are iteratively conducted until converged.
Particularly, in line 7 to line 14, we will evaluate the model performance on the validation dataset Dv

after each interval loops of lower-and-upper optimization. We always record the θ with the best
performance in θopt, and finally return the parameters θopt. The use of the validation dataset is to
prevent the model from overfitting Dtrain or Ddev. Note that we do not directly look back the total
T steps in the upper optimization, but only look back M steps(M < T ) for faster computation of
Eq.(7), which is also adopted by [42, 11].

In our algorithm, each auxiliary loss enjoys an independent vector αi = {αij}mj=1, enabling it not
only to balance losses, but also consider how important each auxiliary loss is to each module. Without
requiring specific knowledge of auxiliary losses, the data-driven optimization of the module-level
auxiliary importance enables our method to be applied to the general setting of auxiliary learning.

Algorithm 1 Module-Aware Optimization for Auxiliary Learning (MAOAL)

1: input: dataset:Dtrain, Ddev, Dv; hyperparameters: T,M, η1, η2, interval
2: initialize: θ, α, counter = 0, performanceopt = 0, θopt = θ
3: while not converged do
4: // lower optimization: update θ with fixed α
5: for t = 0 to T − 1 do
6: Update model parameters θ using Eq.(6);
7: end for
8: // evaluate the model on Dv

9: counter = counter + 1
10: if counter%interval == 0 then
11: performance = Metric(θ;Dv);
12: if performance > performanceopt then
13: performanceopt = performance, θopt = θ;
14: end if
15: end if
16: // upper optimization: update α with current θ ;
17: p = v = ∇θLgoal(θ;Ddev);
18: for τ = 1 to M do
19: v ← v − grad(η1∇θL̄(θ, α;Dtrain), θ, grad_outputs = v)
20: p← p+ v
21: end for
22: ∇αLgoal(θ;Ddev) = −grad(η1∇θL̄(θ, α;Dtrain), α, grad_outputs = p)
23: α← α− η2∇αLgoal(θ;Ddev)
24: end while
25: Return θopt

4 Experiments

In this section, we empirically assess the efficacy of our method on various tasks and datasets. Also,
we provide ablations on how our method works and the module influence under different scenarios.

4.1 Experimental Setup

Task and datasets (i) We first focus on the image classification problem with auxiliary tasks. We
conduct experiments on two fine-grained image classification datasets, CUB [44] and Oxford-IIIT
Pet [45], and two widely adopted general image classification datasets, CIFAR10 and CIFAR100 [46].
Specifically, on the CUB dataset, there are total 200 species of birds and each image has the label of
its attributes, like the wing color and bill shape. In general, it requires expert knowledge to classify
the birds, but it is much easier to discriminate the attributes. Thus, it is a natural practice to regard
bird species classification as the primary task, and use the wing color classification and bill shape
classification losses as the auxiliary losses. On the Oxford-IIIT Pet, CIFAR10 and CIFAR100 dataset,
we follow the practice in [1] and rotate each image with degrees of {0, 90, 180, 270}. The primary
task is image classification and we add the rotation degree prediction loss as the auxiliary loss. Note
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Figure 3: Adopted models and module partitions. Red number refers to module index.

that in the CUB datasets, we adopt pretrained backbone but in other datasets we train from scratch,
to show the effectiveness of our method with different initialization. (ii) The second problem we
focus on is the user rating prediction in recommendation. We evaluate our methods on two datasets
with different sparsity, Amazon Beauty [47] and MovieLens1M [48]. Our primary task is to predict
the rating for each user-item pair based on the user features and item features. In this problem, we
consider a kind of more generalized auxiliary loss, L2 regularizer. In recommendation, L2 regularizer
plays an important role to the model performance and is often used as an auxiliary loss [17, 18]. In
this setting, the primary loss is the rating regression loss and the auxiliary loss is the L2 regularizer.
Detailed dataset information can be found in the supplementary.

Baselines We compare our methods with different baselines that can be used for the general setting
of auxiliary learning. Single loss learning (SLL) is a natural baseline that only utilizes the primary
loss to train the model. Comparing with this baseline can help judge whether the auxiliary loss is
beneficial to the primary task. Additionally, assigning each loss equal weights ”1.0”(Equal) can be
used to show the benefits of different auxiliary methods. Another natural baseline (HPO-tune) is to
combine the auxiliary losses with predefined weights, and then use the HPO methods to tune the
weights as conducted in [1]. GCS [9] is a baseline that utilizes the similarity between the gradient of
each auxiliary loss and that of the primary loss to weight each auxiliary loss. AuxL [11] is a recently
proposed method that learns a non-linear combination of all the losses. Uncert [22] is a method that
is designed for combining the losses from multiple tasks, where the loss of each task is weighted
according to their uncertainty. Note that for the methods that do not rely on Ddev, we add Ddev to
their training set for fair comparison.

Implementation We utilize the most widely adopted structure [8] for the tasks, with one common
backbone followed by task-specific heads for all the tasks. In the image classification problem, the
auxiliary losses come from some related auxiliary tasks and each task will have its corresponding
task-specific head, but the recommendation problem only has one task head for the rating regression
because its auxiliary loss is from L2 regularizer. For different tasks, we utilize different backbones.
For the CUB and Pet dataset, we utilize ResNet18 [13] as the backbone. For the CIFAR10 and
CIFAR100, we use a 4-layer convolutional network(ConvNet). For the rating prediction in Amazon-
Beauty and MovieLens-1M, we choose AutoINT [49] as the backbone. The model structure and
the module partition for the three settings are shown in Figure 3. We implement the task-specific
heads with Multi-layer Perceptron(MLP) whose layer number is searched in {1, 2}. In ResNet18, the
modules are divided by residual blocks, in 4-layer CovNet, the modules are divided by convolutional
layer, and in AutoINT, the modules are divided by Transformer block. More detailed implementation
can be found in the supplementary file.

4.2 Method Effectiveness

We evaluate our method on all the aforementioned tasks and datasets. For the image classification task,
we utilize the top1-accuracy as the metric and for the rating prediction task, we utilize RMSE(rooted
mean squared error) as the metric. Higher accuracy for image classification and lower RMSE for
rating prediction indicate better performance. The overall results are shown in Table 1. As indicated
in previous works [11, 9], losses from auxiliary tasks play a more important role when the labels
for the primary task are inadequate. Therefore, we also conduct experiments on the CUB and Pet
dataset, where for the primary task, we only utilize 20% labels. The results for this semi-supervised
setting are shown in Table 2. We run all the experiments with three random seeds and report the mean
and the std. Note that L2 regularizer with coefficient is too large for recommendation, so the Equal
baseline performs worst on the Beauty and MovieLens dataset.
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Alleviating negative information from auxiliary loss The results of CUB and MovieLens in Table 1
show that the auxiliary losses are harmful to the primary task. The baselines that utilize the auxiliary
losses generally achieve worse performance than the SLL baseline that only utilizes the single primary
loss to train. Our method shows its strong ability to alleviate the negative information from the
auxiliary loss, it achieves comparative performance with the SLL baseline even though it does not
use Ddev for training. It is worth noting that the AuxL which also adopts a bi-level optimization
framework shows excellent ability in alleviating the negative impact of the harmful auxiliary losses.

Exploiting useful information in auxiliary losses The results of Pet and Beauty in Table 1 and
the results of Pet-semi and CUB-semi in Table 2 show that the auxiliary losses are beneficial to
the primary task. All the baselines that utilize auxiliary losses show substantial improvement over
the SLL baseline which only uses a single loss. Our method beats all the baselines in exploiting
the beneficial auxiliary information, showing the advantage of the module-level consideration. The
AuxL baseline fails to perform well enough probably because the form of the non-linear combination
requires a specific design for the non-linear model in specific tasks.

Other Observations (i) Comparing the results of CUB and Pet in Table 1 to that in Table 2, we can
see that when the labels are inadequate for the primary task, the auxiliary losses from related tasks
will bring more benefits, which is consistent to previous works [11, 9]. (ii) The rotation prediction
task seems to have little influence on the task of classification on the CIFAR10 and CIFAR100
dataset, the different methods that utilize the auxiliary rotation prediction loss do not bring substantial
improvement or severely do harm to the task of CIFAR classification. This phenomenon may be
caused by the low resolution of the CIFAR images, where the changes brought by rotation may
not be so significant. (iii) Although the Beauty and the MovieLens experiments both utilize the L2
regularizer to help the rating prediction, the auxiliary regularizer shows different effects. In Beauty,
the regularizer is helpful but in MovieLens, the regularizer is harmful. This phenomenon is easy to
understand because the MovieLens dataset is dense while Beauty is sparse. Regularizer is important
to the sparse Beauty by preventing the overfitting problem. In the dense MovieLens, data are enough
for each user so the regularizer is not necessary.

Overall, when we utilize different kinds of auxiliary losses, we always expect to exploit the bene-
ficial information while resisting the impact of negative information. Our proposed module-aware
optimization method, shows its superiority when facing both beneficial and harmful auxiliary losses.

Additionally, based on the reviews, we add additional experiments on the NYUv2 [50] and CIFAR-
100/20 datasets so that we can validate the ability of our method when facing more auxiliary tasks. In
NYUv2, we totally have 3 tasks, i.e., segmentation, depth prediction and normal prediction, where
the segmentation is the primary task and we adopt the EfficientNet [51] as the backbone, which is
split into 8 blocks according to its model structure. In the CIFAR-100/20 dataset, we treated each of
the 20 ‘coarse’ classes as one task, where each coarse class contains 5 classes. We regard the “people”
classification(“baby”, “boy”, “girl”, “man”, “woman”) as the primary task, and the 0-9 coarse class
classification as the auxiliary tasks, totally 11 tasks. The ResNet18 is adopted as the backbone for the
CIFAR-100/20. The results of the added experiments are shown in Table 3. These experiments show
that our method can comply well with more auxiliary losses and also more advanced models.

Table 1: Performance of different methods under different scenarios. The methods with the best
performance are bolded.

Dataset
Method CUB Pet CIFAR10 CIFAR100 Beauty MovieLens

ACC(%) ACC(%) ACC(%) ACC(%) RMSE RMSE
SLL 77.290.63 61.141.03 71.600.25 46.520.42 1.10080.0006 0.90680.0028

Equal 71.680.87 67.520.58 70.600.30 45.570.25 2.45120.0013 2.25670.0052
HPO-tune 76.720.71 66.910.46 71.510.05 46.330.24 1.09180.0004 0.93790.0008

GCS 71.590.10 66.690.77 70.950.02 45.690.01 1.09560.0018 0.91370.0001
Uncert 71.641.15 67.420.81 71.000.42 46.370.01 1.09420.0004 0.98830.0001
AuxL 76.990.81 66.410.97 71.580.05 46.980.06 1.08930.0028 0.90630.0018

MAOAL 77.300.17 69.610.93 72.240.27 47.570.40 1.08730.0017 0.90450.0013
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Table 2: Performance of different methods with only 20% label on the primary task.
Dataset SLL Equal HPO-tune GCS Uncert AuxL MAOAL

CUB-semi 48.150.88 50.540.55 50.340.71 51.060.59 50.630.16 48.500.74 52.360.64

Pet-semi 31.811.17 49.070.94 49.281.25 47.160.57 47.961.04 46.100.58 51.420.31

Table 3: Performance of different methods in the setting with more auxiliary tasks.
NYUv2 SLL Equal HPO-tune Uncert GCS AuxL MAOAL

m-IOU(%) 32.610.21 33.150.15 33.090.25 32.930.32 32.180.34 33.060.14 33.880.23

pixel-acc(%) 68.420.62 68.110.24 68.520.52 68.740.62 67.580.80 68.360.53 69.170.44

CIFAR-100/20 SLL Equal HPO-tune Uncert GCS AuxL MAOAL
acc(%) 49.730.61 51.270.61 51.750.72 48.400.72 51.800.40 51.530.23 53.870.46

4.3 Module-level Auxiliary Importance

1 2 3 4 5
module index

−0.04
−0.02

0.00
0.02
0.04

m
od

ul
e 

im
po

rta
nc

e

bill shape
wing color

(a) CUB

1 2 3 4 5
module index

0.4
0.6
0.8
1.0
1.2
1.4

m
od

ul
e 

im
po

rta
nc

e

Rotation Prediction

(b) Pet

1 2 3 4 5
module index

−0.04
−0.02

0.00
0.02
0.04

m
od

ul
e 

im
po

rta
nc

e

Rotation Prediction

(c) CIFAR10

1 2 3 4 5
module index

−0.04
−0.02

0.00
0.02
0.04

m
od

ul
e 

im
po

rta
nc

e

Rotation Prediction

(d) CIFAR100

1 2 3 4 5 6
module index

0.01290
0.01295
0.01300
0.01305
0.01310
0.01315

m
od

ul
e 

im
po

rta
nc

e

L2 Regularizers

(e) Beauty

1 2 3 4 5 6
module index

−0.04
−0.02

0.00
0.02
0.04

m
od

ul
e 

im
po

rta
nc

e

L2 Regularizers

(f) MovieLens

1 2 3 4 5
module index

0.2
0.4
0.6
0.8
1.0
1.2

m
od

ul
e 

im
po

rta
nc

e

bill shape
wing color

(g) CUB-semi

1 2 3 4 5
module index

0.5
1.0
1.5
2.0
2.5

m
od

ul
e 

im
po

rta
nc

e

Rotation Prediction

(h) Pet-semi

Figure 4: Module-level auxiliary importance

We expect that the learned module-level auxiliary importance can offer us some insights for auxiliary
learning. The learned module importance under each scenario is shown in Figure 4 and the modules
are numbered the same as in Figure 3. (i) When the auxiliary losses are harmful (CUB,MovieLens)
or have no substantial influence(CIFAR10,CIFAR100) to primary task, the final learned module-level
auxiliary importance will be 0. It is a little surprising to note that in these harmful or unrelated
auxiliary settings, our method can achieve comparative or even better performance than the SLL
(only use single primary loss) baseline even though we utilize fewer data to train the model. This
improvement may benefit from the dynamic weighting and training process. Although the weights
for the auxiliary losses are finally set to zero, in the training process, the bi-level framework can
utilize the gradient from the auxiliary losses to help the model generalize better on the unseen small
Ddev . That is to say, the gradient from the auxiliary losses may guide θ to a better descent direction
for the primary task in the early stages, but the gradient will show little importance when the better
direction is found. (ii) When the auxiliary losses come from some related beneficial tasks (CUB-semi,
Pet-semi), the importance of modules fits our intuition where the modules close to the input show
higher importance while the modules close to the output show lower importance, and this is why our
method can better exploit beneficial auxiliary information. Our module-aware optimization stops
the auxiliary losses from optimizing deep modules (close to output), thus avoiding negative transfer
in deep modules. (iii) However, in (b)Pet, module 1 shows low importance although the module
2,3,4,5 still follows the previous pattern, probably because compared to Pet-semi, the labels in Pet
for the primary task are enough, so the information from the primary loss is enough to capture the
low-level feature in the first module, and the gradient from the rotation loss is not so necessary. (iv) L2
regularizer is beneficial to the Beauty dataset, but its pattern is also different from that of CUB-semi
and Pet-semi. Module6 (task head) and module1 (embedding table) need larger L2 regularizer than
middle transformer blocks.
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The learned module-level auxiliary importance shows different patterns under different scenarios,
indicating our method can be applied to a variety of auxiliary learning scenarios.

4.4 Influence of Module Choice

In this part, we explore the influence of how we choose the module. We choose different partitions
of modules and conduct experiments on the CUB-semi and Pet dataset. The results are shown
in Table 4. The Parameter-L means we regard each parameter in the network as a module in our
algorithm, which is a finer-grained partition. The Block-L means we regard each block in the ResNet
as a module(the same as all the previous experiments). The Model-L means we regard the whole
model as a module, which degenerates to the loss weighting methods. We can see that the Model-L

Table 4: Performance of different choice of modules.

Dataset Parameter-L Block-L Model-L
CUB-semi 52.480.79 52.360.64 51.160.42

Pet 66.140.60 69.610.93 67.180.75

variant performs worse than the Block-L, in-
dicating the importance of considering the
module-level effect of auxiliary losses. Ad-
ditionally, we find that regarding each pa-
rameter as a module does not bring substan-
tial improvement compared to the Block-L.
This may be due to the reason that such a

fine-grained module partition will make the importance matrix α contain more parameters. Opti-
mizing more parameters in the upper level requires more data samples in Ddev [42], which prevents
the finer-grained partition from bringing more improvement. We also find that the performance of
Paramter-L has obvious performance drop compared to Block-L in the Pet experiment, while in
the CUB-semi experiment, the performance drop is less. This is likely because in the CUB-semi
setting, we adopt the pretrained backbone for finetuning which can prevent overfitting problem to
some extent, but in the Pet experiment we train from scratch.

4.5 Module Complexity Influence on Importance with L2 Regularizer
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Figure 5: Importance changes with
module hidden dimension

We also explore how the module complexity will influence
the learned importance when the auxiliary loss is the L2 reg-
ularizer. We change the hidden dimensions of the task head
(2-layer MLP) of AutoINT in the Beauty dataset, and plot the
learned importance for each module in Figure 5. Specifically,
we change the hidden dimension of module6 from 8 to 128,
and plot their auxiliary module-level importance. It can be seen
that small hidden dimensions like hidden8 and hidden16 will
finally bring a small regularizer for this module while larger hid-
den dimensions like hidden128 will bring comparatively larger
importance. This fits our experience that the higher module
complexity requires a larger regularizer to prevent overfitting.

5 Conclusion

In this paper, we propose a module-aware optimization approach for the commonly encountered
auxiliary learning scenario. Our method fills the gap that there exists module-level influence of
auxiliary losses but there is no general method that can deal with this effect. We conduct extensive
experiments to show that our proposed method can achieve superior performance with auxiliary
losses from different scenarios, which could serve as a powerful tool when we want to obtain benefits
from the auxiliary losses. Our method has no negative social impact. Despite its effectiveness, the
only limitation of our method could be the computational cost is almost the same as that of the GCS
baseline, i.e., we should calculate the gradient for each auxiliary loss and the training time is linear to
the number of auxiliary losses. Reducing this kind of additional cost is an interesting future direction.
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