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Abstract

The most widely used technique for solving large-scale semidefinite programs
(SDPs) in practice is the non-convex Burer-Monteiro method, which explicitly
maintains a low-rank SDP solution for memory efficiency. There has been much
recent interest in obtaining a better theoretical understanding of the Burer-Monteiro
method. When the maximum allowed rank p of the SDP solution is above the
Barvinok-Pataki bound (where a globally optimal solution of rank at most p is
guaranteed to exist), a recent line of work established convergence to a global
optimum for generic or smoothed instances of the problem. However, it was open
whether there even exists an instance in this regime where the Burer-Monteiro
method fails. We prove that the Burer-Monteiro method can fail for the Max-Cut
SDP on n vertices when the rank is above the Barvinok-Pataki bound (p �

p
2n).

We provide a family of instances that have spurious local minima even when the
rank p = n/2. Combined with existing guarantees, this settles the question of the
existence of spurious local minima for the Max-Cut formulation in all ranges of the
rank and justifies the use of beyond worst-case paradigms like smoothed analysis
to obtain guarantees for the Burer-Monteiro method.

1 Introduction

Semidefinite programs (SDPs) are a powerful algorithmic tool with wide-ranging applications in
combinatorial optimization, control theory, machine learning and operations research. Notably, they
yield optimal approximation algorithms for NP-hard problems like Max-Cut [GW95] and other
constraint satisfaction problems [Rag08]. While interior-point algorithms and the ellipsoid method
give polynomial time guarantees for solving semidefinite programs, memory becomes a bottleneck for
relatively modest instance sizes. This has prompted research into scalable semidefinite programming
algorithms—see [MHA20] for a recent survey.

One of the most popular methods for solving SDPs in practice is the one pioneered by Burer and
Monteiro [BM03, BM05], which explicitly constrains the rank of the SDP solution for efficiency.
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[Bar95, Pat98] Above Barvinok-Pataki bound:
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for generic instances
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(no possible global convergence
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Figure 1: Combined with existing guarantees, our work settles the question of the existence of
spurious local minima for (MC-BM) in all ranges of the rank p.

Consider the celebrated Goemans-Williamson SDP relaxation for Max-Cut [GW95]:
min

X2Sn⇥n
hA,Xi

s.t. Xii = 1 for i 2 [n],

X ⌫ 0.

(MC-SDP)

Here Sn⇥n denotes the set of all symmetric n⇥n matrices and the cost matrix A 2 Sn⇥n is typically
the adjacency matrix of a weighted graph.1 The above Goemans-Williamson SDP also gives a natural
semidefinite programming relaxation for the Grothendieck problem [AN04], quadratic program-
ming [Nes98, CW04], variants of community detection problems [Abb17], and other combinatorial
optimization problems; in many of these settings the matrix A may also have negative entries. Instead
of maintaining a solution X in Sn⇥n, the Burer-Monteiro method explicitly maintains a low-rank
solution of the form X = Y Y > where Y 2 Rn⇥p, and aims to solve the following optimization
problem:

min
Y 2Rn⇥p

⌦
A, Y Y >↵

s.t. ||Yi||2 = 1 for i 2 [n],
(MC-BM)

where Yi 2 Rp denotes the ith row of Y , taken as a column vector, and || · || denotes the Euclidean
norm. We may also denote the objective of (MC-BM) as OBJ(Y ) :=

⌦
A, Y Y >↵. We denote the

feasible region as
Mn,p :=

�
Y 2 Rn⇥p

: ||Yi||2 = 1 for i 2 [n]
 
.

(When n is clear from the context or unimportant, we may just write Mp.) Note that Mn,p is a
product manifold since it can be viewed as a Cartesian product of n unit spheres in Rp.

This formulation yields significant memory savings when p ⌧ n by storing Y instead of X and
has the additional advantage of dropping the positive semidefiniteness constraint. On the other
hand, (MC-BM) is a non-convex constrained optimization problem. Local optimization methods
like Riemannian gradient descent and other heuristics for manifold optimization or constrained
optimization are used to solve this non-convex problem with surprisingly good empirical results
[BM03, BM05]. This motivates the following question:

When does the Burer-Monteiro method converge to a globally optimal solution?

This question has attracted much recent interest on the theoretical front. It is known that when the
rank bound p of the SDP solution is above the so-called Barvinok-Pataki bound p �

p
2n (more

formally, p satisfies p(p+1)
2 � n), a globally optimal solution of rank at most p is guaranteed to

exist [Bar95, Pat98]. Moreover, below this bound, there exist instances for which (MC-BM) has
a spurious local minimum [WW20]. When the rank bound p is above the Barvinok-Pataki bound,
Boumal, Voroninski, and Bandeira [BVB16, BVB18] showed that for generic instances,2 any second-
order critical point Y of (MC-BM) is globally optimal for (MC-BM), and thus Y Y > is optimal for

1Note that (MC-SDP) can also be reformulated as a maximization SDP where the cost matrix is the Laplacian
matrix L = D�A, where D is the diagonal degree matrix. The two formulations are equivalent since changing
the diagonal of the cost matrix just corresponds to adding a constant to the objective value at each feasible point.

2By generic instances, we mean the guarantee holds for all cost matrices A 2 Sn⇥n except a set of zero
measure.
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(MC-SDP) (their result also applies for a broad class of SDPs with equality constraints). Under such
conditions, known algorithms converge to second-order critical points of (MC-BM), and polynomial-
time convergence guarantees can be shown for smoothed instances [BBJN18, PJB18, CM19].

On the other hand, for general cost matrices A, the best known bound only guarantees convergence
to a global optimum of the Burer-Monteiro method when p > n

2 [BVB18, Cor. 5.11]. For general
cost matrices A of (MC-BM), there is a large range for the rank bound p 2 (

p
2n, n/2) where we

do not know whether the Burer-Monteiro method works. To the best of our knowledge, it was open
whether there exists any instance (not specific to Max-Cut) where the Burer-Monteiro method fails
above the Barvinok-Pataki bound. In fact, the authors of [BVB18] pose this question:

“It remains unclear whether or not a zero-measure set of cost matrices must be
excluded. Resolving this question is key to gaining a deeper understanding of the
relationship between (MC-SDP) and (MC-BM).”

—End of Section 6 in [BVB18], mutatis mutandis

Our main theorem resolves this question by constructing an instance of (MC-BM) with a spurious
local minimum (i.e., a local minimum which is not globally optimal) when p is as large as ⇥(n)
(note that a spurious local minimum is also a spurious second order critical point). This result is
contextualized in Figure 1.
Theorem 1. For any n � 4 and 2  p  n/2, there exist cost matrices A for which the associated
instance of (MC-BM) has a spurious local minimum.

Combining Theorem 1 with other existing results yields a clearer understanding of the optimization
landscape and a characterization of the range of p for which (MC-BM) can have spurious local
minima. Furthermore, our result justifies the use of beyond worst-case paradigms like smoothed
analysis to obtain global convergence guarantees for the Burer-Monteiro method. (See also Appendix
A for a further discussion of prior work.)

We also empirically evaluate Theorem 1 in Appendix G. Our experiments suggest that the spurious
local minima we construct have significantly larger basins of convergence than our theoretical results
guarantee.

Outline of paper. We begin with Section 2 (Preliminaries) which provides necessary background
for the construction of spurious local minima in Theorem 1. In Section 3, we list the main lemmas for
Theorem 1 and show how Theorem 1 follows. In Sections 4 and 5, we discuss some of these lemmas
in more detail. In particular, Section 4 sketches the proofs that our construction yields a spurious
first and second-order critical point. Section 5 contains the full proof that our construction yields a
spurious local minimum, with the proofs of key sublemmas left to Appendix D. We present potential
follow-up directions in Section 6 (Conclusion) and empirically evaluate Theorem 1 in Appendix G.

2 Preliminaries

Section 2.1 gives an overview of the Riemannian geometry of (MC-BM). In Section 2.2, we use
this geometry to give necessary conditions for local minimality and a characterization of global
optimality. Section 2.3 provides an overview of Riemannian gradient descent, which is key to proving
local minimality in Theorem 1 (see Section 5 for details). Section 2.4 contains definitions (including
classes of matrices) used in the construction for Theorem 1.

2.1 Riemannian derivatives

Mp is a smooth embedded submanifold of Rn⇥p [BVB18, Prop. 1.2], and is furthermore an
embedded Riemannian submanifold of Rn⇥p [Bou22, Def. 3.55] if we equip the linearizations of
Mp at each point (known as the tangent spaces—defined below) with (a restriction of) the inner
product h·, ·i on Rn⇥p.
Proposition 1 (Tangent space [BVB18, Lem. 2.1]). The tangent space to Mp at Y 2Mp, denoted
TY Mp, is the following subspace of Rn⇥p:

TY Mp =
�
U 2 Rn⇥p

: hYi, Uii = 0 for i 2 [n]
 
.
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Here, Yi 2 Rp, Ui 2 Rp denote the ith rows of Y and U respectively, taken as column vectors. (In
other words, TY Mp is the space of matrices row-wise orthogonal to Y .) We call an element of
TY Mp a tangent vector (at Y ).

The Riemannian gradient at Y 2Mp, grad OBJ(Y ), is the orthogonal projection of the classical
Euclidean gradient at Y onto TY Mp, which yields the following expression (see Appendix B):

grad OBJ(Y ) = 2(A� diag(⌫))Y, where ⌫i :=
nX

j=1

Aij hYi, Yji , for all i 2 [n]. (1)

(Note that ⌫ 2 Rn is a function of Y , although we write ⌫ instead of, e.g., ⌫(Y ) when Y is clear
from context.) We take (1) to be the definition of ⌫ from now on.

The Riemannian Hessian of OBJ at Y 2Mp, Hess OBJ(Y ), is a linear, symmetric map from TY Mp

to TY Mp given by the classical differential of (a smooth extension of) grad OBJ(Y ), projected to
the tangent space [Bou22, Cor. 5.16]. This yields (see Appendix B):

Hess OBJ(Y )[U ] = 2ProjY

✓
(A� diag(⌫))U

◆

for U 2 TY Mp, where the linear map ProjY : Rn⇥p ! TY Mp denotes the orthogonal projector
onto TY Mp ✓ Rn⇥p, i.e., ProjY (Z) = argminU2TY Mp

kU � Zk. In what follows, Hess OBJ(Y )

will only appear as part of a quadratic form, yielding the following cleaner expression:

hHess OBJ(Y )[U ], Ui = h2ProjY ((A� diag(⌫))U) , Ui = 2
⌦
A� diag(⌫), UU>↵ ,

for U 2 TY Mp, where we used the fact that hProjY (Z), Ui = hZ,Ui for any Z 2 Rn⇥p, U 2
TY Mp.

2.2 Necessary and sufficient conditions

Recall the definition of a local (and global) minimum:
Definition 1 (Local/global minimum). Consider the program

min
x2D

f(x)

where D ✓ Rd. x 2 D is a local minimum if there exists ✏ > 0 such that if y 2 D and ||y � x|| < ✏,
we have f(x)  f(y). x 2 D is a global minimum if f(x)  f(y) for all y 2 D.

The following are standard necessary conditions for local optimality, and correspond to the first and
second-order critical point criteria that need to be satisfied by any local minimum of (MC-BM) (see
[BVB18, Prop 2.4]).
Proposition 2 (First-order critical point [BVB18, Def. 2.3] and [WW20, Prop. 3]). Y 2 Mp

is a first-order critical point for (MC-BM) if and only if grad OBJ(Y ) = 2(A � diag(⌫))Y = 0.
Equivalently, Y 2 Mp is a first-order critical point if and only if there exists � 2 Rn such that
(A� diag(�))Y = 0. If such a � exists, it is unique and equal to ⌫ given by (1).
Proposition 3 (Second-order critical point [WW20, Prop. 4]). A first-order critical point Y 2Mp

is additionally a second-order critical point if and only if

hHess OBJ(Y )[U ], Ui = 2
⌦
A� diag(⌫), UU>↵ � 0

for all U 2 TY Mp, and where ⌫ is given in (1). (This is equivalent to Hess OBJ(Y ) ⌫ 0.)

We say a critical point or local minimum is spurious if it is not globally optimal. Finally, we
characterize which first-order critical points of (MC-BM) are globally optimal. Since second-order
critical points and local minima are also first-order critical points, this also provides a characterization
of optimality for them.
Proposition 4 (Characterization of optimality for first-order critical points). A first-order critical
point Y of (MC-BM) is globally optimal if and only if A� diag(⌫) ⌫ 0, where ⌫ is given in (1).

While not framed precisely in this way, Proposition 4 follows directly from prior work (see Appendix
B for details). The proof involves a comparison between the criticality conditions of (MC-BM) and
the Karush–Kuhn–Tucker (KKT) conditions of (MC-SDP).
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2.3 Riemannian gradient descent

The analogue to gradient descent for optimizing over a smooth manifold is Riemannian gradient
descent (see [Bou22, Ch. 4] for an introduction), which yields analogous analyses and guarantees. It
includes as part of its specification a retraction [Bou22, Def. 3.47]. A rectraction on Mp associates
to each point Y 2Mp a map RY : TY Mp !Mp which converts movement in the tangent space
to movement on the manifold Mp. We use the natural metric projection retraction [Bou22, Sec.
5.12], defined for Y 2Mp, U 2 TY Mp as RY (U) := argminZ2Mp

k(Y + U)� Zk. With this
definition, it is easy to see that RY (U) is Y +U followed by a normalization of each row. This yields
the following Riemannian gradient descent algorithm for (MC-BM):

Input: Initializer Y (0) 2Mp, step size ⌘ > 0.

For t = 0, 1, 2, . . .

Y (t+1)
= RY (t)

⇣
�⌘grad OBJ(Y (t)

)

⌘
.

2.4 Construction-specific definitions

Finally, we give a few miscellaneous technical definitions which will be used in our construction of a
spurious local minimum for (MC-BM).
Definition 2 (Axial position). We call the matrix

eY :=


I(n/2)
�I(n/2)

�
2Mn,(n/2)

the axial position, where In/2 denotes the identity matrix in Rn
2 ⇥n

2 .

We use the term “axial position" because when we view Mn,(n/2) as a Cartesian product of n unit
spheres in Rn/2, eY corresponds to placing a single unit vector on both the negative and positive sides
of each axis in Rn/2.

The following sets of matrices will be important in our construction:
Definition 3 (Pseudo-PD, pseudo-PSD). We say a matrix M 2 Sn⇥n is pseudo-PD (“pseudo-positive
definite”) if M [i] � 0 for all i 2 [n], where M [i] 2 S(n�1)⇥(n�1) denotes the submatrix of M
formed by removing the ith row and column. Similarly, we say that M 2 Sn⇥n is pseudo-PSD
(“pseudo-positive semidefinite”) if M [i] ⌫ 0 for all i 2 [n].
Definition 4 (Strictly pseudo-PD, strictly pseudo-PSD). We say a matrix is M 2 Sn⇥n is strictly
pseudo-PD if it is pseudo-PD but not positive semidefinite. We say M is strictly pseudo-PSD if it is
pseudo-PSD but not positive semidefinite. (Note that in both cases we require M ✏ 0, not M ⌥ 0.)

Clearly every strictly pseudo-PD matrix is also strictly pseudo-PSD, but the converse turns out to be
false.

3 Proof of Theorem 1

In this section we prove Theorem 1. We focus on the case where n is even and p = n/2 and construct
cost matrices for which eY is a spurious local minimum, since constructions for p < n/2 can be easily
extracted from the former by padding with zeros. Before this, as a warm-up, we characterize those
cost matrices for which eY is a spurious first and second-order critical point in the following two
propositions. While not strictly necessary for the proof of Theorem 1, Propositions 5 and 6 have far
simpler proofs and are interesting in their own right. An overview of the proofs is given in Section 4,
and the full proofs can be found in Appendix C.

Proposition 5 (First-order critical point characterization for eY ). For (MC-BM) when p = n/2, the
axial position eY is a first-order critical point if and only if the cost matrix A takes the form

A =


B B
B B

�
+ diag(↵) (2)

for some ↵ 2 Rn and B 2 Sn
2 ⇥n

2 . Furthermore, eY is additionally spurious if and only if B ✏ 0.
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Figure 2: A spurious minimum and corresponding global minimum for n = 4, p = 2.

Proposition 6 (Second-order critical point characterization for eY ). For (MC-BM) when p = n/2,
the axial position eY is a second-order critical point if and only if the cost matrix A takes the form

A =


P P
P P

�
+ diag(↵)

for some ↵ 2 Rn and pseudo-PSD P 2 Sn
2 ⇥n

2 . Furthermore, eY is additionally spurious if and only
if P is strictly pseudo-PSD.

It is not surprising that Propositions 5 and 6 allow you to arbitrarily change the diagonal of the cost
matrix. Doing so simply corresponds to adding a constant to the objective value at each point and
does not change the geometry of the problem.3

Next, the following lemma provides a sufficient condition for eY to be a spurious local minimum.
This is the most challenging of our results to prove, and we give the proof and discuss the challenges
involved in Section 5. Key sublemmas are left to Appendix D.

Lemma 1 (Local minimum condition for eY ). For (MC-BM) when p = n/2, the axial position eY is
a local minimum if the cost matrix A takes the form

A =


M M
M M

�
+ diag(↵) (3)

for some ↵ 2 Rn and pseudo-PD M 2 Sn
2 ⇥n

2 . Furthermore, eY is additionally spurious if M is
strictly pseudo-PD.

Actualizing Lemma 1 to construct a spurious local minimum requires the existence of strictly pseudo-
PD matrices, which we posit in the following lemma:
Lemma 2 (Existence of strictly pseudo-PD matrices). The set of k ⇥ k strictly pseudo-PD matrices
is nonempty for any k � 2.

We provide constructions of strictly pseudo-PD matrices in Appendix E. Our main nonnegative
construction takes the form UU> � ✏Ik, where U 2 Rk⇥(k�1) is a random matrix. It is shown
(UU>

)[i] � 0 for all i with high probability. One can show that when ✏ > 0 is sufficiently small, the
(k�1)⇥ (k�1) principal submatrices of UU>�✏Ik remain positive definite, while UU>�✏Ik ✏ 0

since UU> is rank-deficient.

We use Lemmas 1 and 2 to prove Theorem 1:

Proof of Theorem 1. Lemmas 1 and 2 imply that for even n such that n � 4, there exists an instance
of (MC-BM) with a spurious local minimum when p = n/2. To construct a spurious local minimum
for p < n/2, we can simply use the construction for n0

= 2p vertices and rank p. The entries of the
cost matrix that correspond to additional rows of elements of Mn,p past n0 can be set to 0, ensuring
that these additional rows cannot affect the objective value. (See Appendix F for details.)

One instantiation of our construction for n = 4, p = 2 is illustrated in Figure 2. In this visualization,
we think of the nonnegative cost matrix as the adjacency matrix of a weighted graph, which is natural

3One can easily check that the Riemannian derivatives at any point Y 2 Mp remain unchanged since ⌫ in
(1) will act as an offset.
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for (MC-BM). Each row of Y specifies the position of one of the vertices on the unit sphere in Rp

(for p = 2, the circle shown in gray). We illustrate “heavy” (higher weight) edges with solid lines,
and “light” (lower weight) edges with dashed lines. Intuitively, each edge “pushes" its endpoints
away from each other, with heavier edges pushing harder. We see by symmetry that this state is in
equilibrium (each vertex is pushed equally clockwise and counter-clockwise), so the gradient is 0.
Showing that this instance is indeed a local minimum is much more involved, and requires arguing
that if the vertices were perturbed slightly, the heavy edges would still approximately cancel out, and
the main force on the vertices would be the light edges pushing the pairs a, c and b, d back to being
diametrically opposite.4

4 Overview of the proofs of criticality (Propositions 5 and 6)

In this section we provide overviews of the proofs of Propositions 5 and 6, which characterize the
cost matrices for which eY is a spurious/optimal first and second-order critical point respectively (see
Appendix C for the full proofs).

4.1 Overview of the proof of first-order criticality (Proposition 5)

Supposing the cost matrix A takes the form (2), one can set � ↵ where � 2 Rn is the multiplier
from Proposition 2, and then observe (A� diag(�))eY = 0, implying eY is a first-order critical point.
For the other direction, one can show that if eY is a first-order critical point with associated multiplier
� 2 Rn (from Proposition 2), then (A� diag(�))eY = 0 implies A� diag(�) must take the block

form

B B
B B

�
for some B 2 Sn

2 ⇥n
2 . Thus, A takes the form (2) with ↵ �.

To show eY is additionally spurious if and only if B ✏ 0, note from above that if Y is a first-order
critical point, the unique associated multiplier � is equal to ↵. Recall from Proposition 2 that ⌫ = �

at a first-order critical point, implying A� diag(⌫) = A� diag(↵) =


B B
B B

�
. Such a matrix is

positive semidefinite if and only if B is positive semidefinite, and Proposition 4 concludes the proof.

4.2 Overview of the proof of second-order criticality (Proposition 6)

Since every second-order critical point is a first-order critical point, we assume the cost matrix
A takes the form (2) and show that eY is additionally a second-order critical point if and only if
B is additionally pseudo-PSD. Recall from Section 4.1 that when eY is a first-order critical point,

A� diag(⌫) =


B B
B B

�
. Now, one can observe that an arbitrary element U 2 TeY Mn/2 must take

the following form: Uii = U(n/2)+i,i = 0 for all i 2 [n/2], and all other entries of U are arbitrary.
Due to this, one can show that

D
Hess OBJ(eY )[U ], U

E
= 2

⌦
A� diag(⌫), UU>↵ � 0 for all U 2 TeY Mn/2

() 2

⌧
B B
B B

�
, uu>

�
� 0 for all u 2 R1 [ · · · [Rn/2, (4)

where Ri is the subspace of Rn consisting of those vectors v such that vi = v(n/2)+i = 0. Restricting

u to only lie in Ri in (4) is equivalent to the matrix

B[i] B[i]

B[i] B[i]

�
2 S(n�2)⇥(n�2) being positive

semidefinite, which is equivalent to B[i] being positive semidefinite. (Recall that B[i] denotes the
submatrix of B formed by removing row i and column i.) Then (4), which takes the preceding
statement over all i 2 [n/2], is equivalent to B being pseudo-PSD. (We note that the preceding
portion of the proof is formalized in a slightly different way in Appendix C.) The second half of
Proposition 6 (characterizing when the second-order critical point eY is spurious) follows immediately

4We provide an interactive visualization for the p = 2 and p = 3 cases at
https://vaidehi8913.github.io/burer-monteiro.
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from the corresponding characterization in Proposition 5, since every second-order critical point is a
first-order critical point.

5 Proof of local minimality (Lemma 1)

In this section we give the proof of Lemma 1. We first discuss the challenges involved and why
classical techniques break down. We then state the two main sublemmas used in the proof of Lemma
1 (with proofs of these sublemmas left to Appendix D). Finally, we give the proof of Lemma 1 itself.

Challenges. Unfortunately, arguing about the value of the objective function at some point Y
near eY is challenging, and classical techniques for proving that eY is a local minimum fail. For
example, [WW20], which constructs spurious local minima for (MC-BM) when p <

p
2n, similarly

first constructs spurious second-order critical points and then proves that they are additionally local
minima. However, their proof follows because their spurious second-order critical points are non-
degenerate [WW20, Def. 3], which corresponds to the rank of the Riemannian Hessian being
sufficiently high. We show in Appendix D (Proposition 9) that for any instance of (MC-BM) when
p �
p
2n, all spurious second-order critical points are degenerate, meaning this approach will not

work. Furthermore, there is no hope of using the positivity of a higher-order Riemannian derivative
(e.g., the fourth derivative) to prove that eY is a local minimum, since it can be shown that all
higher-order derivatives are degenerate. (See Appendix D for further discussion of these challenges.)

Overview and key sublemmas. Thus, we provide a novel approach involving Riemannian gradient
descent (Section 2.3). For the first sublemma below, recall that a neighborhood of a point Y 2Mp is
a set of the form {Y 0 2Mp : ||Y � Y 0|| < ✏} for some ✏ > 0. The proof is given in Appendix D.
Lemma 3 (Convergence to a point with the same objective value). In the setting of Lemma 1 with
pseudo-PD M 2 Sn

2 ⇥n
2 , there exists a neighborhood N ✓Mn/2 of eY and ⌘0 > 0 depending only

on the instance of (MC-BM) such that if you initialize Riemannian gradient descent (as specified
in Section 2.3) with any step size ⌘ < ⌘0 at any point Y (0) 2 N , it converges to a point Y such that
OBJ(Y ) = OBJ(eY ).

Note that Lemma 3 does not imply convergence to eY itself; this is not actually true due to the degener-
acy mentioned above. Instead, we show in the proof of Lemma 3 that Y is an antipodal configuration,

i.e., it takes the form

G
�G

�
2Mn/2 for some G 2 Rn

2 ⇥n
2 . Such antipodal configurations (of which

eY is one) all have the same objective value and correspond in particular to “flat” directions from eY .
For a given Y (0), it is not a priori clear which of these antipodal configurations it will converge to, so
we argue convergence to some antipodal configuration.

In the proof of Lemma 3, we track convergence to an antipodal configuration via a potential � :

Mn/2 ! R�0, where �

✓
G1

G2

�◆
:= ||G1 + G2||2. (Here, G1, G2 2 Rn

2 ⇥n
2 .) Clearly � is 0 if

and only if the input is antipodal. We show that � decreases geometrically over the iterations of
Riemannian gradient descent.

Next, we show via a smoothness argument that with sufficiently small step size, the objective is
nonincreasing over the iterations of Riemannian gradient descent. The proof is given in Appendix D.
Lemma 4 (OBJ is nonincreasing). There exists ⌘̃ > 0 depending only on the instance of (MC-BM)
such that a single iteration of Riemannian gradient descent (as specified in Section 2.3) with any step
size ⌘ < ⌘̃ cannot increase the objective value, regardless of the starting point.

Lemmas 3 and 4 imply OBJ(Y (0)
)  OBJ(Y ) = OBJ(eY ), and as a result the neighborhood N in

Lemma 3 certifies that eY is a local minimum. The details follow:

Proof of Lemma 1. We first show that if M 2 Sn
2 ⇥n

2 is pseudo-PD, then eY is a local minimum.
We claim that the neighborhood N from Lemma 3 certifies that eY is a local minimum. Indeed, let
V 2 N , and initialize Riemannian gradient descent at V with step size ⌘ < min {⌘0, ⌘̃}, with ⌘0, ⌘̃
defined as in Lemmas 3, 4. Per Lemma 3, we know that Riemannian gradient descent will converge to
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a point V such that OBJ(eY ) = OBJ(V ). Since OBJ is continuous, convergence in iterates translates
to convergence in objective values, and thus the nonincreasing nature of Riemannian gradient descent
from Lemma 4 implies OBJ(V )  OBJ(V ). Then OBJ(eY ) = OBJ(V )  OBJ(V ), and we are done.

Now we show that eY is additionally spurious if M is strictly pseudo-PD. Indeed, this follows
immediately from the last line of Proposition 5. (Recall that any local minimum is also a first-order
critical point.)

6 Conclusion

We show that the Burer-Monteiro method can fail for instances of the Max-Cut SDP, for rank up to
p =

n
2 . To the best of our knowledge, prior to our work it was unknown whether the Burer-Monteiro

method could fail for any instance of any SDP with rank above the Barvinok-Pataki bound. We settle
this question and thus justify the use of smoothed analysis to obtain guarantees for the Burer-Monteiro
method.

There are many interesting potential follow-up directions to this work. We provide one construction of
(MC-BM) instances with spurious local minima. Our construction has, and relies on, many interesting
properties and symmetries. It is possible that some of these properties are necessary, and further
analyzing this construction could give insight that allows us to fully characterize spurious minima
for (MC-BM) instances. Analyzing this construction could also help us understand this interesting
threshold phenomenon for (MC-BM) when p = n/2—one dimension higher and there are not only
no spurious local minima, there are no spurious second-order critical points at all. Another potential
direction is seeing if similar techniques can be used to construct instances with spurious local minima
for SDPs with other structures (not just Max-Cut).

Lastly, we note that a limitation of our work is that it only points to the existence of local minima,
and does not give a full characterization of when we can expect local minima to exist. We also note
that since this is a theoretical result about optimization landscapes, we do not foresee any adverse
societal impacts of our work.
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