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1 Additional Experiments

1.1 Fine-grained performance boost on ImageNet subsets over SotA

We compare our method to TransFG [2], the SotA FGVC method on Dogs ImageNet. We summarize
our findings in Table 1, which shows that our method provides state-of-the-art performance boost in
the fine-grained setting over vanilla relation-agnostic encoders. ∆1 and ∆2 denote the perfomance
boost achieved by an FGVC method over relation-agnostic encoders in the coarse-grained and
fine-grained settings respectively.

Relational features play a much more significant role in distinguishing fine-grained categories than
coarse-grained ones. This is because most coarse-grained classes can be distinguished by local/global
features alone, and would not require relational information. However, for fine-grained classes, the
cross-view relationships often happen to be the only available discriminator. Thus, a learner not
leveraging the same would suffer from the information gap (Section 3.2 in the main manuscript),
not providing any significant boost over a relation-agnostic encoder. Our method, by capturing the
cross-view relationships, is able to bridge this information gap.

Method Tiny ImageNet ∆1 Dogs ImageNet ∆2 ∆2 −∆1

Relation-Agnostic Encoder 88.75 91.30
TransFG [2] 88.85 0.10 92.30 1.00 0.90

Relational Proxy (Ours) 88.91 0.16 92.75 1.45 1.29
Table 1: Comparison of coarse vs. fine-grained accuracy gains over a relation-agnostic encoder.

1.2 Permutation invariance of AST

For our method to be robust to changes in pose and relative orientation of local object parts, we
require the Attribute Summarization Transformer (AST) to be permutation invariant. We achieve the
same by eliminating position embeddings [4] from our AST. We test the validity of our requirement
by comparing the classification accuracy of Relational Proxies having ASTs with and without
position embeddings [4]. We summarize our findings in Table 2, which shows that making the AST
permutation invariant in fact plays a role in enhancing the performance of our model.

Given the low inter-class variation of the cultivar datasets, parts of leaves from different classes
could appear the same under changes in orientation, making a permutation sensitive model mistake it
for a different class. For this reason, the AST without position embeddings (permutation invariant)
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performs significantly better (compared to other benchmarks) than the one with position embeddings
(permutation sensitive).

Method Benchmark Cultivar
FGVC Aircraft Stanford Cars CUB NA Birds Cotton Soy

w/ Position Embeddings 95.11 96.15 91.82 91.09 68.77 50.15
w/o Position Embeddings 95.25 96.30 92.00 91.20 69.81 51.20

Table 2: Effect of position embeddings on the permutation invariance of the Attribute Summarization
Transformer (AST).

1.3 Evaluation with VGG-16 Backbone

To ensure that our method has no backbone specific dependency, we perform evaluations with VGG-
16 [5] backbone and report our findings in Table 3. As the numbers show, our method remains stable
across backbones, significantly outperforming SotA methods that report performances with VGG-16
backbones as well.

Method FGVC Aircraft CUB
MaxEnt [1] 78.08 77.02
MMAL [6] 87.00 83.75

Ours (Relational Proxies) 91.20 ±0.03 88.13 ±0.01
Table 3: Comparison of our method with state-of-the-art using VGG-16 backbone.

2 Qualitative Results

2.1 Importance of Relational Information

Figure 1 shows examples of classes that cannot be separated by global or local information alone. The
cross-view relational information serves as the strongest discriminator for such classes. For example,
Black-footed Albatross, Laysan Albatross and the Sooty Albatross (denoted in red, dark blue and
orange respectively), share a large number of local attributes and have similar overall appearances, but
have differing geometries. For this reason, as can be observed from the low-dimensional visualization
of their embeddings obtained via UMAP [3], they are only separable based on their relational features,
and not by their global or local features. Additionally, Figure 2 shows that such classes becomes
separable as the model learns to incorporate the relational information as part of the learning process.

2.2 Relation-Agnosticity of Relational Proxies

Figure 3 shows UMAP visualizations of global and local embeddings for instances of a single
class, obtained from a fully trained Relational Proxy model. It provides empirical evidence for our
theoretical result in Lemma 3, i.e., f will produce relation-agnostic representations if the downstream
objective is cross-entropic in nature. As can be seen, despite using the same set of proxies for
the global and the local views, they get mapped to disjoint locations in the representation space.
The distance between the clusters of global and local views is proportional to the information
gap (Proposition 1), which is separately being learned by the relational encoder ξ (Proposition 2).
However, some global embeddings can still be seen to overlap with the cluster of the locals. This
happens with images for which the information provided by the global view becomes redundant
after collectively knowing the set of local views. The global view does not provide any additional
information and thus can be merged with the local views with no information loss (while maintaining
the requirement of k-distinguishability).
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Figure 1: Top: Low dimensional embedding visualization of categories that are difficult to separate
by global or local features alone, but can be separated using relational information. Bottom: Sample
images from such categories. Colors indicate category memberships.
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Figure 2: Low dimensional visualization of the relational representation (r) space evolution across
epochs. Colors indicate category memberships.

3 Additional notes on Relational Proxies

3.1 Pseudocode

Algorithm 1 provides the pseudocode for training our Relational Proxies model. We start by initializ-
ing a set of c learnable class-proxies {p1,p2, ... pc}. For each image x, we obtain its global zg and
set ZL of local representations by propagating their corresponding views (obtained via cropping func-
tions cg and cl) through a relation-agnostic encoder f (lines 10-11). We then realize the cross-view
relational encoder ξ as a combination of the Attribute Summarization Transformer (AST) and the
MLP ρ. The AST returns a summary of the local views zL (line 12). Using zg and zL, ρ computes the
cross-view relation embedding r (line 13). Thereafter, all three representation of x, i.e., zg , zl and r
are used to condition the learning of the class proxies. The representations are incentivised to remain
close to the proxy corresponding to their true class, while being distant from proxies of other classes
(lines 15-19). How far the representation space deviates from this structural requirement is captured
by computing the cross-entropic loss Lrproxy. Minimizing Lrproxy thus has the effect of enforcing the
representations to form a metric space (lines 23-27). Upon convergence, {p1,p2, ... pc} serve as the
set of Relational Proxies.
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Figure 3: Low dimensional visualization of embeddings of global and local views for instances of a
single class. The gap between the two clusters indicate the retention of relation-agnosticity even after
the convergence of Relational Proxies, thereby supporting Lemma 3.

Figure 4: Male (left) and female (right) cardinals.

3.2 Cross-view relationships for intra-class variations

Figure 4 depicts the large variation in non-relational features like color and texture between male
and female cardinals. Even though they belong to the same fine-grained category of cardinal birds, a
model not accounting for the relationships between the individual local parts and the global view
of the object, and hence not capturing the fine-grained geometric relationships, would not be able
to map such significantly varying instances to the same neighborhood of the representation space.
In such scenarios, the relational information becomes the only component that can be used to learn
compact representations of categories with such large intra-class variations.
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Algorithm 1: RELATIONAL-PROXIES: End-to-end training procedure for Relational Proxies.
Input :A set of images X, their corresponding labels Y, the number of fine-grained categories

c, the number of epochs N , and the learning rate η.
Output :A relation agnostic-encoder f , a cross-view relation encoder ξ, and a set of c

relational-proxies P corresponding to the unique labels in Y.
1 /* Initialize c learnable class-proxy vectors representing the labels in

Y. An image with label yi has pi as its corresponding class-proxy.
*/

2 P← {p1,p2, ... pc}
3 for epoch← 1 to N do
4 Lrproxy ← 0
5 for p ∈ P do
6 ψ+ ← 0;ψ− ← 0
7 for x ∈ X do
8 g← cg(x)
9 L← {l1, l2, ... lk} ← cl(x)

10 zg ← f(g)
11 ZL ← {zl1 , zl2 , ... zlk} ← {f(l) : l ∈ L}
12 zL ← AST(ZL)
13 r← ρ(zg, zL)
14 // true proxy for x
15 if p == p+ then
16 ψ+ ← ψ+ + e−α(s(zg,p)−δ) + e−α(s(zL,p)−δ) + e−α(s(zg,p)−δ)

17 // negative proxies for x
18 else
19 ψ− ← ψ− + eα(s(zg,p)+δ) + eα(s(zL,p)+δ) + eα(s(r,p)+δ)

20 ψ+ ← 1 + ψ+

21 ψ− ← 1 + ψ−

22 Lrproxy ← Lrproxy − 1
c log

(
1

ψ+·ψ−

)
23 f ← f − η∇fLrproxy
24 AST← AST− η∇ASTLrproxy
25 ρ← ρ− η∇ρLrproxy
26 for p ∈ P do
27 p← p− η∇pLrproxy
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