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Abstract

Existing action recognition methods typically sample a few frames to represent
each video to avoid the enormous computation, which often limits the recognition
performance. To tackle this problem, we propose Ample and Focal Network
(AFNet), which is composed of two branches to utilize more frames but with less
computation. Specifically, the Ample Branch takes all input frames to obtain
abundant information with condensed computation and provides the guidance for
Focal Branch by the proposed Navigation Module; the Focal Branch squeezes the
temporal size to only focus on the salient frames at each convolution block; in
the end, the results of two branches are adaptively fused to prevent the loss of
information. With this design, we can introduce more frames to the network but
cost less computation. Besides, we demonstrate AFNet can utilize fewer frames
while achieving higher accuracy as the dynamic selection in intermediate features
enforces implicit temporal modeling. Further, we show that our method can be
extended to reduce spatial redundancy with even less cost. Extensive experiments
on five datasets demonstrate the effectiveness and efficiency of our method. Our
code is available at https://github.com/BeSpontaneous/AFNet-pytorch.

1 Introduction

Online videos have grown wildly in recent years and video analysis is necessary for many applications
such as recommendation [6], surveillance [4, 5] and autonomous driving [31, 17]. These applications
require not only accurate but also efficient video understanding algorithms. With the introduction of
deep learning networks [3] in video recognition, there has been rapid advancement in the performance
of the methods in this area. Though successful, these deep learning methods often cost huge
computation, making them hard to be deployed in the real world.

In video recognition, we need to sample multiple frames to represent each video which makes the
computational cost scale proportionally to the number of sampled frames. In most cases, a small
proportion of all the frames is sampled for each input, which only contains limited information
of the original video. A straightforward solution is to sample more frames to the network but the
computation expands proportionally to the number of sampled frames.

There are some works proposed recently to dynamically sample salient frames [29, 16] for higher
efficiency. The selection step of these methods is made before the frames are sent to the classification
network, which means the information of those unimportant frames is totally lost and it consumes a
considerable time for the selection procedure. Some other methods proposed to address the spatial
redundancy in action recognition by adaptively resizing the resolution based on the importance of
each frame [23], or cropping the most salient patch for every frame [28]. However, these methods
still completely abandon the information that the network recognizes as unimportant and introduce a
policy network to make decisions for each sample which leads to extra computation and complicates
the training strategies.
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Figure 1: Comparisons between existing methods and our proposed Ample and Focal Network
(AFNet). Most existing works reduce the redundancy in data at the beginning of the deep networks
which leads to the loss of information. We propose a two-branch design which processes frames with
different computational resources within the network and preserves all input information as well.

In our work, we go from another perspective compared with previous works. We propose a method
which makes frame selection within the classification network. Shown in Figure 1, we design an
architecture called Ample and Focal Network (AFNet) which is composed of two branches: the ample
branch takes a glimpse of all the input features with lightweight computation as we downsample
the features for smaller resolution and further reduce the channel size; the focal branch receives the
guidance from the proposed navigation module to squeeze the temporal size by only computing on
the selected frames to save cost; in the end, we adaptively fuse the features of these two branches to
prevent the information loss of the unselected frames.

In this manner, the two branches are both very lightweight and we enable AFNet to look broadly
by sampling more frames and stay focused on the important information for less computation.
Considering these two branches in a uniform manner, on the one hand, we can avoid the loss of
information compared to other dynamic methods as the ample branch preserves the information of all
the input; on the other hand, we can restrain the noise from the unimportant frames by deactivating
them in each convolutional block. Further, we have demonstrated that the dynamic selection strategy
at intermediate features is beneficial for temporal modeling as it implicitly implements frame-wise
attention which can enable our network to utilize fewer frames while obtaining higher accuracy. In
addition, instead of introducing a policy network to select frames, we design a lightweight navigation
module which can be plugged into the network so that our method can easily be trained in an end-to-
end fashion. Furthermore, AFNet is compatible with spatial adaptive works which can help to further
reduce the computations of our method.

We summarize the main contributions as follows:

* We propose an adaptive two-branch framework which enables 2D-CNNs to process more
frames with less computational cost. With this design, we not only prevent the loss of
information but strengthen the representation of essential frames.

* We propose a lightweight navigation module to dynamically select salient frames at each
convolution block which can easily be trained in an end-fo-end fashion.

* The selection strategy at intermediate features not only empowers the model with strong
flexibility as different frames will be selected at different layers, but also enforces implicit
temporal modeling which enables AFNet to obtain higher accuracy with fewer frames.

* We have conducted comprehensive experiments on five video recognition datasets. The
results show the superiority of AFNet compared to other competitive methods.

2 Related Work
2.1 Video Recognition

The development of deep learning in recent years serves as a huge boost to the research of video
recognition. A straightforward method for this task is using 2D-CNNs to extract the features of
sampled frames and use specific aggregation methods to model the temporal relationships across
frames. For instance, TSN [27] proposes to average the temporal information between frames. While
TSM [20] shifts channels with adjacent frames to allow information exchange at temporal dimension.
Another approach is to build 3D-CNNs to for spatiotemporal learning, such as C3D [26], I3D [3]
and SlowFast [8]. Though being shown effective, methods based on 3D-CNN5s are computationally
expensive, which brings great difficulty in real-world deployment.

While the two-branch design has been explored by SlowFast, our motivation and detailed structure
are different from it in the following ways: 1) network category: SlowFast is a static 3D model, but



AFNet is a dynamic 2D network; 2) motivation: SlowFast aims to collect semantic information and
changing motion with branches at different temporal speeds for better performance, while AFNet
is aimed to dynamically skip frames to save computation and the design of two-branch structure is
to prevent the information loss; 3) specific design: AFNet is designed to downsample features for
efficiency at ample branch while SlowFast processes features in the original resolution; 4) temporal
modeling: SlowFast applies 3D convolutions for temporal modeling, AFNet is a 2D model which is
enforced with implicit temporal modeling by the designed navigation module.

2.2 Redundancy in Data

The efficiency of 2D-CNNs has been broadly studied in recent years. While some of the works aim
at designing efficient network structure [13], there is another line of research focusing on reducing
the intrinsic redundancy in image-based data [32, | 1]. In video recognition, people usually sample
limited number of frames to represent each video to prevent numerous computational costs. Even
though, the computation for video recognition is still a heavy burden for researchers and a common
strategy to address this problem is reducing the temporal redundancy in videos as not all frames are
essential to the final prediction. [33] proposes to use reinforcement learning to skip frames for action
detection. There are other works [29, 16] dynamically sampling salient frames to save computational
cost. As spatial redundancy widely exists in image-based data, [23] adaptively processes frames with
different resolutions. [28] provides the solution as cropping the most salient patch for each frame.
However, the unselected regions or frames of these works are completely abandoned. Hence, there
will be some information lost in their designed procedures. Moreover, most of these works adopt a
policy network to make dynamic decisions, which introduces additional computation somehow and
splits the training into several stages. In contrast, our method adopts a two-branch design, allocating
different computational resources based on the importance of each frame and preventing the loss of
information. Besides, we design a lightweight navigation module to guide the network where to look,
which can be incorporated into the backbone network and trained in an end-to-end way. Moreover, we
validate that the dynamic frame selection at intermediate features will not only empower the model
with strong flexibility as different frames will be selected at different layers, but result in learned
frame-wise weights which enforce implicit temporal modeling.

3 Methodology

Intuitively, considering more frames enhances the temporal modeling but results in higher computa-
tional cost. To efficiently achieve the competitive performance, we propose AFNet to involve more
frames but wisely extract information from them to keep the low computational cost. Specifically,
we design a two-branch structure to treat frames differently based on their importance and process
the features in an adaptive manner which can provide our method with strong flexibility. Besides,
we demonstrate that the dynamic selection of frames in the intermediate features results in learned
frame-wise weights which can be regarded as implicit temporal modeling.

3.1 Architecture Design

As is shown in Figure 2, we design our Ample and Focal (AF) module as a two-branch structure:
the ample branch (top) processes abundant features of all the frames in a lower resolution and a
squeezed channel size; the focal branch (bottom) receives the guidance from ample branch generated
by the navigation module and makes computation only on the selected frames. Such design can be
conveniently applied to existing CNN structures to build AF module.

Ample Branch. The ample branch is designed to involve all frames with cheap computation, which
serves as 1) guidance to select salient frames to help focal branch to concentrate on important
information; 2) a complementary stream with focal branch to prevent the information loss via a
carefully designed fusion strategy.

Formally, we denote video sample i as v, containing 7" frames as v’ = { fi fi .., f%} For
convenience, we omit the superscript ¢ in the following sections if no confusion arises. We denote the
input of ample branch as v, € RTXC*H*W where O represents the channel size and H x W is the
spatial size. The features generated by the ample branch can be written as:

Vya = F (vg), (1
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Figure 2: Architecture of AF module. The module is composed of two branches, the ample branch
would process all the input features in a lower resolution and reduced channel size; while the focal
branch would only compute the features of salient frames (colored features) guided by our proposed
navigation module. The results of two branches are adaptively fused at the end of AF module so that
we can prevent the loss of information.

where vya € RT*(Co/2)x(Ho/2)x(Wo/2) represents the output of ample branch and F'® stands for a
series of convolution blocks. While the channel, height, width at focal branch are denoted as C,,, H,,
W, correspondingly. We set the stride of the first convolution block to 2 to downsample the resolution
of this branch and we upsample the feature at the end of this branch by nearest interpolation.

Navigation Module. The proposed navigation module is designed to guide the focal branch where to
look by adaptively selecting the most salient frames for video v°.

Specifically, the navigation module generates a binary temporal mask L,, using the output from the
n-th convolution block in ample branch vy.. At first, average pooling is applied to vya to resize the
spatial dimension to 1 x 1, then we perform convolution to transform the channel size to 2:

ya = ReLU (BN (W; * Pool (vye))) , 2)

where * stands for convolution and W, denotes the weights of the 1 x 1 convolution. After that, we
reshape the dimension of feature 9y« from 7' x 2 x 1 x 1to 1 x (2 x T') x 1 x 1 so that we can
model the temporal relations for each video from channel dimension by:

pn = W2 * ’ny,'” (3)

where W5 represents the weights of the second 1 x 1 convolution and it will generate a binary logit
p!, € R? for each frame ¢ which denotes whether to select it.

However, directly sampling from such discrete distribution is non-differentiable. In this work,
we apply Gumbel-Softmax [14] to resolve this non-differentiability. Specifically, we generate a
normalized categorical distribution by using Softmax:

()
exXp | Pn

T=<10:|l;= , 4
A exp (pi) + exp (pr) @
and we draw discrete samples from the distribution 7 as:
L = arg max (log I; + G;), %)
J
where G; = —log(—log U;) is sampled from a Gumbel distribution and U; is sampled from

Unif(0,1) which is a uniform distribution. As arg max cannot be differentiated, we relax the discrete
sample L in backpropagation via Softmax:

- exp ((logl; + Gy) /1)
T Sho e ((logl + Gy) /7)]

the distribution [ will become a one-hot vector when the temperature factor 7 — 0 and we let 7
decrease from 1 to 0.01 during training.

(6)

Focal Branch. The focal branch is guided by the navigation module to only compute the selected
frames, which diminishes the computational cost and potential noise from redundant frames.



The features at the n-th convolution block in this branch can be denoted as v, ; € RT*CoxHoxWo,
Based on the temporal mask L,, generated from the navigation module, we select frames which have
corresponding non-zero values in the binary mask for each video and apply convolutional operations
only on these extracted frames v/ , € RT1XCoxHoxWo.

Yn

/I nf /
vy = Fa (Uy;ﬁl) ’ @
where F is the n-th convolution blocks at this branch and we set the group number of convolutions
to 2 in order to further reduce the computations. After the convolution operation at n-th block, we
generate a zero-tensor which shares the same shape with v, s and fill the value by adding v; ; and

v, s with the residual design following [12].

n—1

At the end of these two branches, inspired by [1, 1 1], we generate a weighting factor 6 by pooling
and linear layers to fuse the features from two branches:

Uy =0 O vya + (1 —=0)Ouys, (8)

where © denotes the channel-wise multiplication.

3.2 Implicit Temporal Modeling

While our work is mainly designed to reduce the computation in video recognition like [28, 24], we
demonstrate that AFNet enforces implicit temporal modeling by the dynamic selection of frames in
the intermediate features. Considering a TSN[27] network which adapts vanilla ResNet[ | 2] structure,
the feature at the n-th convolutional block in each stage can be written as v,, € RTXEXHXW Thyg,
the feature at n 4 1-th block can be represented as:

Un4+1 = Un + Fn+1 (Un)

9
= (14 Avpy1) U, &)
Avnar = F"%(”) (10)

where F), 14 is the n + 1-th convolutional block and we define Av,, 11 as the coefficient learned from
this block. By that we can write the output of this stage vy as:

N
vy = [H (1+ Avy)

n=2

* V7. (11D

Similarly, we define the features in ample and focal branch as:

N
Vys = [H (1 —I—Avy%)] * Uy, (12)

n=2

N
Uy = lH (1+Ln *Avyi)] * Uy, (13)

n=2
where L, is the binary temporal mask generated by Equation 5 and v,, denotes the input of this
stage. Based on Equation 8, we can get the output of this stage as:

vyN:GQUy%—I—(l—H)@vyzfv

N N (14)
:{9@ H(l—i—Avy%) +(1-6)0e H(l—i—Ln*Avyﬁ) }*vyl.
n=2 n=2

As L, is a temporal-wise binary mask, it will decide whether the coefficient Av s will be calculated
in each frame at every convolutional block. Considering the whole stage is made up of multiple
convolutional blocks, the series multiplication of focal branch’s output with the binary mask L,, will
approximate soft weights. This results in learned frame-wise weights in each video which we regard
as implicit temporal modeling. Although we do not explicitly build any temporal modeling module,
the generation of L,, in Equation 3 has already taken the temporal information into account so that
the learned temporal weights equal performing implicit temporal modeling at each stage.
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Figure 3: Illustration of extending AFNet to reduce spatial redundancy to further improve the
efficiency. Only the colored area will be calculated at the inference stage.

3.3 Spatial Redundancy Reduction

In this part, we show that our approach is compatible with methods that aim to solve the problem
of spatial redundancy. We extend the navigation module by applying similar procedures with the
temporal mask generation and the work [1 1] to generate a spatial logit for the n-th convolution block
which is shown in Figure 3:

g, = Wy % (Pool (ReLU (BN (W3 *vye)))) , (15)

where W3 denotes the weights of the 3 x 3 convolution and W stands for the weights of convolution
with kernel size 1 x 1. After that, we still use Gumbel-Softmax to sample from discrete distribution
to generate spatial mask M,, and navigate the focal branch to merely focus on the salient regions of
the selected frames to further reduce the cost.

3.4 Loss functions

Inspired by [27], we take the average of each frame’s prediction to represent the final output of the
corresponding video and our optimization objective is minimizing:

N
L= |-ylog(P(v))+A-> (r—RT)?*|. (16)

(v,y) n=1

The first term is the cross-entropy between predictions P (v) for input video v and the corresponding
one-hot label y. We denote r in the second term as the ratio of selected frames in every mini-batch
and RT as the target ratio which is set before the training (R.S is the target ratio when extending
navigation module to reduce spatial redundancy). We let r approximate RT by adding the second
loss term and manage the trade-off between efficiency and accuracy by introducing a factor A which
balances these two terms.

4 Empirical Validation

In this section, we conduct comprehensive experiments to validate the proposed method. We first
compare our method with plain 2D CNNs to demonstrate that our AF module implicitly implements
temporal-wise attention which is beneficial for temporal modeling. Then, we validate AFNet’s
efficiency by introducing more frames but costing less computation compared with other methods.
Further, we show AFNet’s strong performance compared with other efficient action recognition
frameworks. Finally, we provide qualitative analysis and extensive ablation results to demonstrate the
effectiveness of the proposed navigation module and two-branch design.

Datasets. Our method is evaluated on five video recognition datasets: (1) Mini-Kinetics [23, 24] is a
subset of Kinetics [ 5] which selects 200 classes from Kinetics, containing 121k training videos and
10k validation videos; (2) ActivityNet-v1.3 [2] is an untrimmed dataset with 200 action categories
and average duration of 117 seconds. It contains 10,024 video samples for training and 4,926
for validation; (3) Jester is a hand gesture recognition dataset introduced by [22]. The dataset
consists of 27 classes, with 119k training videos and 15k validation videos; (4) Something-Something
V1&V2 [10] are two human action datasets with strong temporal information, including 98k and
194k videos for training and validation respectively.

Data pre-processing. We sample 8 frames uniformly to represent every video on Jester, Mini-
Kinetics, and 12 frames on ActivityNet and Something-Something to compare with existing works
unless specified. During training, the training data is randomly cropped to 224 x 224 following [35],
and we perform random flipping except for Something-Something. At inference stage, all frames are
center-cropped to 224 x 224 and we use one-crop one-clip per video for efficiency.



Implementation details. Our method is bulit on ResNet50 [12] in default and we replace the first
three stages of the network with our proposed AF module. We first train our two-branch network
from scratch on ImageNet for fair comparisons with other methods. Then we add the proposed
navigation module and train it along with the backbone network on video recognition datasets.
In our implementations, RT denotes the ratio of selected frames while RS represents the ratio of
select regions which will decrease from 1 to the number we set before training by steps. We let
the temperature 7 in navigation module decay from 1 to 0.01 exponentially during training. Due to
limited space, we include more details of implementation in supplementary material.

4.1 Comparisons with Existing Methods

Less is more. At first, we implement AFNet
on Something-Something V1 and Jester
datasets with 8 sampled frames. We com-
pare it with the baseline method TSN as both
methods do not explicitly build temporal =~ Method Frame
modeling module and are built on ResNet50.

Table 1: Comparisons with baseline method on
Something-Something V1 and Jester datasets.

Sth-Sth V1 Jester
Top-1 Acc.  Top-1 Acc.

In Table 1, our method AFNet(RT=1.00) TSN [27](our imp) 8 18.6% 83.5%
shows similar performance with TSN when  AFNet (RT=1.00) 8 19.2% 83.6%
selecting all the frames. Nonetheless, when = AFNet (RT=0.50) g T 268%  89.2%
we select fewer frames in AFNet, it exhibits ~_ AFNet (RT=0.25) 8  270%  892%
much higher accuracy compared to TSN ~_AFNet (soft-weights) 8 27.0% 89.9%

and AFNet(RT=1.00) which achieves Less is

More by utilizing less frames but obtaining higher accuracy. The results may seem counterintuitive as
seeing more frames is usually beneficial for video recognition. The explanation is that the two-branch
design of AFNet can preserve the information of all input frames and the selection of salient frames
at intermediate features implements implicit temporal modeling as we have analyzed in Section 3.2.
As the binary mask learned by the navigation module will decide whether the coefficient will be cal-
culated for each frame at every convolutional block, it will result in learned temporal weights in each
video. To better illustrate this point, we conduct the experiment by removing Gumbel-Softmax [14]
in our navigation module and modifying it to learn soft temporal weights for the features at focal
branch. We can observe that AFNet(soft-weights) has a similar performance with AFNet(RT=0.25),
AFNet(RT=0.50) and outperforms AFNet(RT=1.00) significantly which indicates that learning soft
frame-wise weights causes the similar effect.

Table 2: Performance comparison on Something-Something (Sth-Sth) datasets. GFLOPs represents
the average computation to process one video.

Method Dynamic Backbone Frames Sth-Sth V1 Sth-Sth V2
Top-1 Acc. GFLOPs Top-1 Acc. GFLOPs
TRNRGB/Flow [34] X BN-Inception 8/8 42.0% 32.0 55.5% 32.0
ECO [35] X BN-Inception+ResNet18 8 39.6% 32.0 - -
TSM [20] X ResNetS0 8 45.6% 32.7 59.1% 32.7
bLVNet-TAM [7] X bLResNet50 16 47.8% 35.1 60.2% 35.1
TANet [21] X ResNet50 8 47.3% 33.0 60.5% 33.0
SmallBig [18] X ResNet50 8 47.0% 52.0 59.7% 52.0
TEA [19] X ResNet50 8 48.9% 35.0 60.9% 35.0
SlowFast [8] X ResNet50+ResNet50 8x8 - - 61.7% 66.6x3
AdaFuse-TSM [24] v ResNet50 8 46.8% 31.5 59.8% 31.3
AdaFocus-TSM [28] v MobileNetV2+ResNet50  8+12 48.1% 33.7 60.7% 33.7
AFNet-TSM (RT=0.4) v AF-ResNet50 12 49.0% 279 61.3% 27.8
ANt TSMRT=08) v/ AFResNeSO 12 499% 317 625% 317
AFNet-TSM (RT=0.4) v AF-MobileNetV3 12 45.3% 2.2 58.4% 2.2
AFNet-TSM (RT=0.8) v AF-MobileNetV3 12 45.9% 23 58.6% 23
AFNet-TSM (RT=0.4) v AF-ResNet101 12 49.8% 42.1 62.5% 41.9
AFNet-TSM (RT=0.8) 4 AF-ResNet101 12 50.1% 48.9 63.2% 48.5

More is less. We incorporate our method with temporal shift module (TSM [20]) to validate that
AFNet can further reduce the redundancy of such competing methods and achieve More is Less by
seeing more frames with less computation. We implement our method on Something-Something
V1&V2 datasets which contain strong temporal information and relevant results are shown in Table 2.



Table 3: Comparisons with competitive efficient Table 4: Comparisons with competitive efficient
video recognition methods on Mini-Kinetics. video recognition methods on ActivityNet. AFNet
AFNet achieves the best trade-off compared to achieves the best trade-off compared to existing
existing works. GFLOPs represents the average works. GFLOPs represents the average computation

computation to process one video. to process one video.
Method Mini-Kinetics Method ActivityNet
Top-1 Acc. GFLOPs mAP  GFLOPs
LiteEval [30] 61.0% 99.0 AdaFrame [29] 71.5% 79.0
SCSampler [16] 70.8% 42.0 LiteEval [30] 72.7% 95.1
AR-Net [23] 71.7% 32.0 ListenToLook [9] 72.3% 814
AdaFuse [24] 72.3% 23.0 SCSampler [16] 72.9% 42.0
AdaFocus [28] 72.2% 26.6 AR-Net [23] 73.8% 33.5
VideolQ [25] 72.3% 20.4 VideolQ [25] 74.8% 28.1
AFNet (RT=04)  72.8% 194 AdaFocus [28] 75.0% 266
AFNet (RT=0.8) 73.5% 22.0 AFNet (RS=0.4,RT=0.8) 75.6% 24.6
0.9 =
76 'S —=—- Ratio 0.80
0.8+ \\\ —=- Ratio 0.40
______________ —=- Ratio 0.25
™ 0.7 B
R
<72 0.6
% = s
£ 70 AoaFoccd '
ARNet 047 "ore=Lll L
] SsCsampler | | T Eeea
68 ListenTgLook 0.34 B
Adaframe
66 ; T y T ; ; ; 0.2 T T T T T T T T ' -
15 20 25 30 35 40 45 50 1 2 3 4 5 6 7 8 9 10
GFLOPs Bottleneck Block Index

Figure 4: Computational cost vs mean Average Figure 5: Distribution of RT € {0.25,0.4, 0.8}
Precision on ActivityNet. Our method is imple- for each convolution block in AF-ResNet50 on
mented with different ratio of selected frames Something-Something V1. Dash lines denote us-
RT € {0.6,0.8,1.0} and a fixed ratio of selected ing 3rd-order polynomials to estimate the trend
regions RS € {0.4}. of distribution.

Compared to TSM which samples 8 frames, our method shows significant advantages in performance
as we introduce more frames and the two-branch structure can preserve the information of all
frames. Yet, our computational cost is much smaller than TSM as we allocate frames with different
computation resources by this two-branch design and adaptively skip the unimportant frames with the
proposed navigation module. Moreover, AFNet outperforms many static methods, which carefully
design their structures for better temporal modeling, both in accuracy and efficiency. This can be
explained by that the navigation module restrains the noise of unimportant frames and enforces
frame-wise attention which is beneficial for temporal modeling. As for other competitive dynamic
methods like AdaFuse and AdaFocus, our method shows an obviously better performance both in
accuracy and computations. When costing similar computation, AFNet outperforms AdaFuse and
AdaFocus by 3.1% and 1.8% respectively on Something-Something V1. Furthermore, we implement
our method on other backbones for even higher accuracy and efficiency. When we build AFNet on
efficient structure MobileNetV3, we can obtain similar performance with TSM but only with the
computation of 2.3 GFLOPs. Besides, AFNet-TSM(RT=0.8) with the backbone of ResNet101 can
achieve the accuracy of 50.1% and 63.2% on Something-Something V1 and V2, respectively, which
further validate the effectiveness and generalization ability of our framework.

Comparisons with competitive dynamic methods. Then, we implement our method on Mini-
Kinetics and ActivityNet, and compare AFNet with other efficient video recognition approaches.
At first, we validate our method on Mini-Kinetics and AFNet shows the best performance both in
accuracy and computations compared with other efficient approaches in Table 3. To demonstrate
that AFNet can further reduce spatial redundancy, we extend the navigation module to select salient
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Table 5: Ablation study on navigation module and two-branch architecture. Different sampling
policies are compared with our dynamic temporal selection module in various selection ratios.

Ablation mAP
Structure Temporal Sampling Policy ~ Spatial Sampling Policy  0.25 0.50 0.75

_Single Branch ~ Navigation Module - 46.8% 60.4% 71.3%

Random Sampling 62.8% 71.3% 142%

Two Branch Uniform Sampling - 59.0% 71.7% 74.7%
,,,,,,,,,,,, Normal Sampling _ ____6L5% 714% 746%

Two Branch Navigation Module - 72.2% 743% 75.8%

Two Branch i Random Sampling 69.2% 71.4% 74.1%
e _______ CenterCropping __ 68.9% 720% 73.9%

Two Branch - Navigation Module 72.0% 743% 75.9%

regions of important frame on ActivityNet. We move the temporal navigation module to the first
layer of the network to avoid huge variance in features when incorporating spatial navigation module
and note that we only apply this procedure in this part. We can see from Table 4 that our method
obtains the best performance while costing the least computation compared to other works. Moreover,
we change the ratio of selected frames and plot the mean Average Precision and computational cost
of various methods in Figure 4. We can conclude that AFNet exhibits a better trade-off between
accuracy and efficiency compared to other works.

4.2 Visualizations

We show the distribution of RT among different convolution blocks under different selection ratios
in Figure 5 and utilize 3rd-order polynomials to display the trend of distribution (shown in dash
lines). One can see a decreased trend in RT for all the curves with the increased index in convolution
blocks and this can be explained that earlier layers mostly capture low-level information which has
relatively large divergence among different frames. While high-level semantics between different
frames are more similar, therefore AFNet tends to skip more at later convolution blocks. In Figure 6,
we visualize the selected frames in the 3rd-block of our AFNet with R7'=0.5 on the validation set of
Something-Something V1 where we uniformly sample 8 frames. Our navigation module effectively
guides the focal branch to concentrate on frames which are more task-relevant and deactivate the
frames that contain similar information.

4.3 Ablation Study

In this part, we implement our method on ActivityNet with 12 sampled frames to conduct compre-
hensive ablation study to verify the effectiveness of our design.

Effect of two branch design. We first incorporate our navigation module into ResNet50 and compare
it with AFNet to prove the strength of our designed two-branch architecture. From Table 5, AFNet
shows substantial advantages in accuracy under different ratios of select frames. Aside from it,
models which adopted our structure but with a fixed sampling policy also show significantly better
performance compared with the network based on single branch which can further demonstrate the
effectiveness of our two-branch structure and the necessity to preserve the information of all frames.



Effect of navigation module. In this part, we further compare our proposed navigation module with
three alternative sampling strategies in different selection ratios: (1) random sampling; (2) uniform
sampling: sample frames in equal step; (3) normal sampling: sample frames from a standard gaussian
distribution. Shown in Table 5, our proposed strategy continuously outperforms other fixed sampling
policies under different selection ratios which validates the effectiveness of the navigation module.
Moreover, the advantage of our method is more obvious when the ratio of selected frames is small
which demonstrates that our selected frames are more task-relevant and contain essential information
for the recognition. Further, we evaluate the extension of navigation module which can reduce spatial
redundancy, and compare it with: (1) random sampling; (2) center cropping. Our method shows
better performance compared with fixed sampling strategies under various selection ratios which
verifies the effectiveness of this design.

5 Conclusion

This paper proposes an adaptive Ample and Focal Network (AFNet) to reduce temporal redundancy
in videos with the consideration of architecture design and the intrinsic redundancy in data. Our
method enables 2D-CNNss to have access to more frames to look broadly but with less computation
by staying focused on the salient information. AFNet exhibits promising performance as our two-
branch design preserves the information of all the input frames instead of discarding part of the
knowledge at the beginning of the network. Moreover, the dynamic temporal selection within the
network not only restrains the noise of unimportant frames but enforces implicit temporal modeling
as well. This enables AFNet to obtain even higher accuracy when using fewer frames compared
with static method without temporal modeling module. We further show that our method can be
extended to reduce spatial redundancy by only computing important regions of the selected frames.
Comprehensive experiments have shown that our method outperforms competing efficient approaches
both in accuracy and computational efficiency.
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the appropriate section of your paper or providing a brief inline description. For example:

* Did you include the license to the code and datasets? [Yes] See Section ??.

* Did you include the license to the code and datasets? The code and the data are
proprietary.

* Did you include the license to the code and datasets? [IN/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
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(b) Did you describe the limitations of your work? [Yes] See supplementary material.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See
supplementary material.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [IN/A]
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See Section 4.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4.
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of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
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(b) Did you mention the license of the assets? [Yes] See Section 4.

(c) Did you include any new assets either in the supplemental material or as a URL?

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating?

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content?

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]
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