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A Spectrum Analysis

Below we analyze the spectrum of embedding matrix fΘ(X) for several different objectives to show
that GLEN enjoys better embedding properties than COLES [63].

Without decorrelation term ∥fΘ(X)⊤fΘ(X) − I∥2F used by COLES, the trace-based objective in
Eq. 6 optimization may results in the so-called dimensional collapse which means that the vast
majority of singular values of embeddings are zeroed and only one or two leading components are
non-zero.

Fig. 2b shows that in COLES the sixth singular value and the following singular values are almost
equal zero, whereas the first singular value is over 2600 in value, thus dominating the spectrum.
Fig. 2a shows that our GLEN based on the LogDet difference of terms performs better than COLES.
Firstly, the first leading singular value is not as large as COLES (only 80) so it does not dominate
the spectrum. The next singular values follow a gradual decline. It is worth noting that even with
the decorrelation term ∥fΘ(X)⊤fΘ(X)− I∥2F used by COLES, it only helps the first five leading
singular values, and the first singular value is still larger than the counterpart of GLEN (393 vs. 80).

(a) GLEN (b) COLES (c) with decorrelation

Figure 2: Singular values of embeddings showing the values of first 30 leading singular values. For
comparison purposes, we truncate the range of singular values for COLES. The first singular value of
COLES is 2650 (very large value). The range of singular values with the use of decorrelation term is
393. The decorrelation term penalizes ∥fΘ(X)⊤fΘ(X)− I∥2F . Notice that the spectrum of GLEN
is more balanced.

B Nuclear Norm vs. LogDet for Rank Minimization

In our paper, to facilitate the analysis we assume Rank(S) ≤ log det(I+ S) ≤ Tr(S) (kindly note
that we have a typo in line 193, where we should have written log det(I+ S) rather than log det(S)).
Below we clarify the necessary conditions for this inequality to hold true.
Proposition 6. Let S ∈ Sm+(+), if Tr(S) ≥ m then Rank(S) ≤ log det(I+ S) ≤ Tr(S).

*The corresponding author. Code: https://github.com/allenhaozhu/GLEN.
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Proof. It is easy to observe that Rank(S) ≤ Tr(S) if Tr(S) ≥ m. Moreover, we have Tr(S) >
Tr(log(I + S)) = log det(I + S). Let us assume Rank(S) = n ≤ m ≤ Tr(S), then we have
log(1 + Tr(S)) ≤

∑m
i log(1 + σi(S)) ≤

∑m
i log(I + Tr(S)/m) and

∑m
i log(1 + Tr(S)/m) ≥∑n

i log(1 +m/n) ≥
∑m

i log(1 +m/m) ≥ Rank(S).

C Gradient Analysis

Proposition 7. The objective of optimization fΘ(X)⊤Lt = fΘ(X)⊤Lw is achieved when the
following gradient rule is zeroed.

Proof.

∂ log det
(
I+ αfΘ(X)⊤LtfΘ(X)

)
∂fΘ(X)

= α
(
I+ αfΘ(X)⊤LtfΘ(X)

)−1
fΘ(X)⊤Lt,

∂ log det
(
I+ αfΘ(X)⊤LwfΘ(X)

)
∂fΘ(X)

= α
(
I+ αfΘ(X)⊤LwfΘ(X)

)−1
fΘ(X)⊤Lw,

(18)

∂ log det
(
I+ αfΘ(X)⊤LtfΘ(X)

)
∂Z

−
∂ log det

(
I+ αfΘ(X)⊤LwfΘ(X)

)
∂Z

= 0 ⇔(
I+ αfΘ(X)⊤LtfΘ(X)

)−1
fΘ(X)⊤Lt −

(
I+ αfΘ(X)⊤LwfΘ(X)

)−1
fΘ(X)⊤Lw = 0.

(19)

D Reproducibility

Table 7: The statistics of datasets.
Dataset Task Nodes Edges Features Classes

Cora Transductive 2,708 5,429 1,433 7
Citeseer Transductive 3,327 4,732 3,703 6
Pubmed Transductive 19,717 44,338 500 3
Cora Full Transductive 19,793 65,311 8,710 70
Ogbn-arxiv Transductive 169,343 1,166,243 128 40
Reddit Inductive 232,965 11,606,919 602 41

D.1 Datasets

In this paper, we evaluate our method using six datasets.

Cora is a well-known citation network that is labelled by paper topic. The majority of approaches
report on a subset of this dataset. The Cora dataset contains 2708 scientific publications divided into
seven categories. The citation network has 5429 links. Each publication in the dataset is described
by a 0/1-valued word vector indicating the absence/presence of the corresponding dictionary word.
The dictionary contains 1433 distinct words. Cora Full is made up of 19793 scientific publications
divided into seventy categories. The citation network has 65311 links. The dictionary contains 1433
distinct words.

CiteSeer contains 3312 scientific papers divided into six categories. The citation network has 4732
linkages. Each publication in the dataset is described by a 0/1-valued word vector indicating the
absence/presence of the relevant dictionary word. The dictionary has 3703 distinct terms.

Pubmed is comprised of 19717 scientific papers on diabetes from the PubMed database, grouped
into one of three categories. The citation network has 44338 linkages. Each publication in the dataset
is described by a TF/IDF weighted word vector drawn from a vocabulary of 500 distinct terms.

Reddit is a graph dataset including Reddit postings from September of 2014. In this situation,
the node label represents the community, or "subreddit," to which a post belongs. The 50 largest
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communities were sampled in order to create a post-to-post graph, which connects posts if the same
user comments on both. This dataset has a total of 232,965 posts with an average degree of 492. The
first 20 days are used to training, with the remaining days used to testing (with 30% percent used for
validation).

Ogbn-arxiv is the citation network represented by a directed graph of all Computer Science (CS)
arXiv papers indexed by MAG [62]. Each node represents an arXiv paper, and each directed edge
indicates that one paper references another. Each paper includes a 128-dimensional feature vector
generated by averaging the embeddings of words in the title and abstract. Individual word embeddings
are produced by running the skip-gram model [61] over the MAG corpus.

E Implementation Details

GLEN is implemented in PyTorch.The propagation procedure is efficiently implemented with sparse-
dense matrix multiplications. The codes of GCN, COLES-GCN, SGC, COLES-SGC, S2GC and
COLES-S2GC are also implemented with PyTorch. The weight matrices of classifier are initialized
with Glorot normal initializer. We employ Adam [59] to optimize parameters of the proposed methods
and adopt early stopping to control the training epochs based on validation loss. For all experiments,
we use Adam to optimize Eq. 5 because our method does not have a closed-form solution as COLES
does. All the experiments in this paper are conducted on a single NVIDIA GeForce RTX 1080 with 8
GB memory on a PC with Unbuntu 18.04. We use Python 3.7.3, PyTorch 1.10.0, and CUDA 10.2.

E.1 Hyperparameters

Tables 8 and 9 summarize hyperparameters used by us. GLEN is not highly sensitive to different
hyperparameters. The only hyperparameter for SGC and S 2GC is the aggregation step K. As a
result, we use K = 8 for the majority of benchmarks. Except for Ogbn-arxiv, all contrastive-based
approaches use logistic regression as the classifier. It is worth noting that we do not modify any
logistic regression parameters and instead use the default settings. Ogbn-arxiv exhibits non-linear
feature characteristics because Bag-of-Words was used by the authors to form embeddings. As a
result, the MLP classifier is chosen for GLEN-S2GC on this dataset. We specifically preserve the
MLP classifier configuration from the baseline. The learning rate for the MLP is 0.005 and the
dropout rate is 0.4.

Table 8: The hyperparameters of datasets (node classification).
Dataset Optimizer K lr weight decay Epoch hidden size

Cora Adam 8 1e-3 5e-4 20 512
Citeseer Adam 8 1e-4 1e-4 80 512
Pubmed Adam 8 2e-2 1e-5 40 256
Cora Full Adam 2 1e-2 0 30 512
Ogbn-arxiv Adam 10 1e-2 0 500 126
Reddit Adam 2 1e-2 0 100 600

Table 9: The hyperparameters of datasets (node clustering).
Dataset Optimizer K lr weight decay Epoch hidden

Cora Adam 8 1e-2 5e-4 1 512
Citeseer Adam 8 1e-4 1e-4 30 512
Pubmed Adam 8 2e-2 1e-5 40 256

F Limitation and Broader Impact

Although we propose a promising criterion to learn discriminant features, the rank difference problem
is NP-hard. Choosing and especially solving high quality surrogates to the rank difference of terms is
still an unsolved optimization problem that requires further work within optimization community.
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This paper discusses the design of feature space from a critical point of view. To this end, it
proposes a novel generalized graph embedding framework which is very different compared to the
traditional graph embedding frameworks (e.g., Laplacian Eigenmaps, Linear Discriminant Analysis
or Contrastive Laplacian Eigenmaps). The scope of this framework is not limited to graph embedding.
GLEN can help many downstream works which require learning discriminant representation in an
unsupervised manner to improve the performance of downstream tasks. Node classification, object
category recognition, metric learning and other downstream tasks can accelerate downstream training
thanks to GLEN. More importantly, GLEN-S2GC is a lightweight network which is energy friendly
compared to heavy GCN-based GCL (see ‘Scalability’ section).

Regarding negative impacts, we are not aware of any. GCL is an unsupervised learning paradigm
which, by itself, cannot lead to any negative impact.

G Additional Results

Comparison with other frameworks. Below we show how we can redefine Local Preserving
Projection (LPP) [58] and Deep Spectral Clustering (DSC) [60] within the COLES and GLEN
frameworks. All models below are based on the S2GC backbone:

• DSC extends ‘Deep Spectral Clustering Learning’ [60], by minimizing
Tr(fΘ(X)⊤LwfΘ(X)) where fΘ is a two-layer neural network (MLP). Kindly note this is
non-contrastive learning that only uses Lw.

• LPP is extension of ‘Locality Preserving Projections’ [58], that learns an orthogonal linear
projection by minimizing Tr(UX⊤LwXU⊤)). Notice this is non-contrastive learning that
only uses Lw.

• COLES-LPP is defined by us as minimizing Tr(UX⊤LtXU⊤))− Tr(UX⊤LwXU⊤)).

• COLES-DSC minimizes Tr(fΘ(X)⊤LtfΘ(X))−Tr(fΘ(X)⊤LwfΘ(X)). Two MLP layers
are added (as in the DSC model above) between the S2GC backbone and the loss. Their
layer parameters are added to Θ.

• GLEN-LPP is defined as log det(UX⊤LtXU⊤))− log det(UX⊤LwXU⊤)).

• GLEN log det(fΘ(X)⊤LtfΘ(X))− log det(fΘ(X)⊤LwfΘ(X)) also uses two MLP layers
as in the DSC model.

Table 10 below shows the results.

Table 10: Mean classification accuracy (%) and the standard dev. over 50 random splits. Numbers of
labeled samples per class are in parentheses. The best accuracy per column is in bold. Models are
organized into semi-supervised, contrastive and unsupervised groups. OOM means out of memory.

Method Cora Citeseer Pubmed Cora Full
(5) (20) (5) (20) (5) (20) (5) (20)

S2GC 71.4±4.4 81.3±1.2 60.3±4.0 69.5±1.2 67.6±4.2 73.3±2.0 41.8±1.7 60.0±0.5
LPP 34.5±1.6 54.4±1.5 30.5±1.4 42.3±1.5 39.4±5.3 43.9±4.7 50.8±1.4 61.8±0.5
DSC 32.5±3.9 53.4±4.6 37.2±4.0 48.2±3.0 40.0±5.6 39.2±5.6 50.0±0.0 60.0±1.0
COLES-LPP 75.0±3.4 81.0±1.3 67.9±2.3 71.7±0.9 62.6±5.0 73.2±2.6 47.6±1.2 59.2±0.5
COLES-DSC 73.7±3.0 80.4±1.0 67.4±2.0 71.9±0.9 60.3±6.0 65.9±1.7 23.0±1.4 38.3±1.1

GLEN-LPP 75.3±3.6 82.6±1.2 65.9±2.7 71.5±1.0 68.9±3.9 78.4±2.1 51.4±1.4 62.0±0.6
GLEN-DSC 78.2±2.4 83.0±1.0 69.1±2.1 72.3±0.9 70.6±3.9 80.1±1.9 53.0±1.5 62.6±0.5

H LogDet model vs. JBLD

Definition 1. Given an matrix A,B ∈ Sm+(+), we define the regularized Jensen Bregman LogDet
Divergence as follows:

J(A,B;α) = log det

(
I+ αA+ αB

2

)
−1

2

(
log det(I+αA)+log det(I+αB)

)
for A,B, α ≥ 0,

(20)
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where I can be interpreted as a regularization to prevent det(A) = 0 and log det(A) = −∞.
Proposition 8. For any Sw,St ∈ Sm+(+) and α ≥ 0, we have:

1

2
δ(St,Sw;α, 1) ≥ J(Sw,Sb;α)

= log det

(
I+ αSw + αSb

2

)
− 1

2
(log det(I+ αSw) + log det(I+ αSb)) ,

(21)
where the equality holds only if α = 0 and then det(I+ αSb) = 1.

Proof. Based on Eq. 20, we notice JBLD is a lower bound of our loss:

J(Sw,Sb;α) = log det

(
I+ αSw + αSb

2

)
− 1

2
(log det(I+ αSw) + log det(I+ αSb))

= m log 0.5 · log det (I+ αSt)−
1

2
(log det(I+ αSw) + log det(I+ αSb))

≤ 1

2
(log det (I+ αSt)− log det(I+ αSw)) =

1

2
δ(St,Sw;α, 1).

(22)

I Derivation of GLEN from the SampledNCE framework

COLES [63] extends Laplacian Eigenmaps:

argmin
Z, s.t.Ω(Z)

W+
ij ∥|zi − zj∥|22, (23)

where Z = [z1, · · · , zn] and Ω(Z) are constraints (i.e., orthogonality) by expanding the SampledNCE
formulation:

Ei∼pd

[
Ej∼pd(j|i)[sΘ(xi, xj)] + η Ej′∼pn(j′|i)[s̃Θ(xi, xj′)]

]
. (24)

Symbols pn and pd are negative and positive sampling distributions respectively, sΘ(v, u) =
log exp(u⊤v) = u⊤v and s̃Θ(v, u

′) = log exp(−u′⊤v) = −u′⊤v are similarity measures, whereas
η ≥ 0 controls the impact of negative sampling.

GLEN generalizes SampledNCE, a framework for contrastive learning with positive and negative
sampling, which relies on two terms:

Ev∼pd(v)

[
Eu∼pd(u|v)s(u,v)

]
and η Ev∼pd(v)

[
Eu′∼pn(u′|v)s̃(u

′,v)
]
. (25)

The above two terms are evaluated over two different distributions u ∼ pd(u | v) (nodes u from the
adjacency matrix) and u′ ∼ pn (u

′ | v) (nodes u′ from random negative adjacency matrix).

Let us consider the positive sampling term (the negative sampling term can be expanded in the similar
way). Let pd(v) = 1√

Dvv
and pd(u | v) = Ŵuv√

Duu
where Ŵ is an unnormalized adjacency matrix

and D is its degree matrix. Let W be the degree normalized matrix. Notice u and v are indexes of
embeddings u and v. Let s(·) be defined as in COLES. Then:

Ev∼pd(v)[Eu∼pd(u|v), s(u,v)] =
∑
u,v

Wuv, s(u,v) =

m∑
i=1

∑
u,v

Wuvuivi = ϕ(Z⊤WZ), (26)

where ϕ(·) is a pooling function, i.e., ϕ(M) = Tr(M) yields COLES:
m∑
i=1

m∑
j=1

δ(i− j)ϕ(z⊤i Wzj) =

m∑
i=1

ϕ(z⊤i Wzi) if zi ⊥ zj for i ̸= j, (27)

where zi ⊥ zj imposes orthogonality constraints of Laplacian eigenmaps and δ(z) = 1 if z = 0 and
δ(z) = 0 if z ̸= 0. Finally, think that rows of Z contain all u (and v).
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We let the pooling operator ϕ(·) operate on the entire spectrum under a general aggregation scheme.
A very general operator is ϕ(M) = Rank(M) from which we can recover the original trace (nuclear
norm) of COLES or LogDet of GLEN, γ-nuclear, Sp, and Geman norm, respectively.

COLES uses the following expression based on SampledNCE:

min
Z

∑
i,j

W+
ij ∥zi − zj∥22 −

(η
κ

κ∑
l=1

W l,−
ij

)
∥zi − zj∥22 = max

Z
Tr(Z⊤LtZ)− Tr(Z⊤LwZ), (28)

where W+ is a normalized adjacent matrix and Wl,− are κ normalized randomized k-regular graphs
(adjacency matrices), while Lw and Lt are the corresponding Laplacian matrices.

Negative random sampling is represented by W−, e.g., a randomized k-regular graph or several such
graphs.

If we sample κ → ∞ randomized k-regular graphs (adjacency matrices of size n × n) (each row
receives 1 with probability k/n), the expectation of randomized graph (adjacency matrix) is given as:

E[W−] = lim
κ→∞

1

κ

κ∑
l=1

Wl,− =
k

n
11⊤, (29)

which by itself is a fully-connected graph with the graph Laplacian matrix Lt = I− k
n11

⊤.

We simply set k = 1 to use 1-regular graphs for negative sampling so Lt = I− 1
n11

⊤. Thus, our
contrastive term is equivalent of the total scatter matrix St known from the Linear Discriminant
Analysis, i.e., St = Z⊤(I − 1

n11
⊤)Z = Z⊤LtZ. The positive sampling is encoded by the graph

adjacency matrix Lw.

Thus, our GLEN is given as:

argmax
Z

Rank(Z⊤LtZ)− Rank(Z⊤LwZ). (30)

More precisely, if Z is produced by an encoder fΘ(X) then we optimize the above problem w.r.t. Θ.
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