
Supplementary Material of Training Spiking Neural
Networks with Event-driven Backpropagation

A Invariant sum of gradients among layers with weights

The most commonly used time-based gradient backpropagation method origins from [1]. It approxi-
mates the derivative of spike firing time with respect to membrane potential as the negative inverse

of the derivative of membrane potential to time: ∂tk(s
(l)
i )

∂u
(l)
i (tk)

= −1

du
(l)
i (tk)/dt

, where tk(s
(l)
i ) is the firing

time of a spike emitted by neuron i in layer l at time tk and u
(l)
i (tk) is the membrane potential of

neuron i in layer l at time tk.

Generally, we want to calculate derivatives of spike firing times between layers. Denote tm(s
(l−1)
j )

as the firing time of a spike emitted by neuron j in layer l − 1 at time tm, we want to get the value
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where t
(l)
i,last is the firing time of the last spike emitted by neuron i in layer l before time t, w(l)

ij

is the connection weight between neuron j in layer l − 1 and neuron i in layer l, ϵ() is the spike
response kernel and s

(l−1)
j (τ) = δ(u

(l−1)
j (τ) − θ), where δ is a Dirac delta function and θ is the

firing threshold. This equation comes from the fact that s(l−1)
j (τ) is a Dirac delta function at firing

time, which means its integration is 1 at the firing time. As a result, we can get:
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where tk,last(s
(l)
i ) denotes the firing time of the last spike emitted by neuron i before time tk.

From these two equations, we can obtain an invariant equality:
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Since the spike firing time is determined by the membrane potential at spike time, which is only
influenced by input spikes after the last output spike, the gradients of spike timings between layers
are zero out of certain ranges:
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Therefore, if we denote the loss function as L, then the gradient of L with respect to tm(s
(l−1)
j ) is:
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where tm,next(s
(l−1)
j ) is the firing time of the next spike emitted by neuron j in layer l− 1 after time

tm.
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By summing up all ∂L
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where tm,next(s
(l−1)
j ) is the first spike fired by neuron j in layer l − 1 after time tm. Among these

equations, the third line uses the fact that tk(s
(l)
i ) being between tm(s

(l−1)
j ) and its next spike is

equivalent to tm(s
(l−1)
j ) being between tk(s

(l)
i ) and its last spike. The last line uses formula (S4).

B Deduction of backward formulas

In this section, we calculate all gradients of weights with respect to the loss, which can be represented
as
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As a result, we have to first calculate the gradients of spike timings to the loss.

Firstly we have to rewrite the expression of the loss:
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, (S9)

where N target
i is the target number of spikes fired by neuron i in the output layer.

For the output layer, we make an approximation that ∂(
∑

tk(s
(n)
i )

1)/∂tk = −1. This approximation
is based on the fact that making tk bigger results in smaller weights, which pushes ∂(

∑
tk(s

(n)
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smaller.

Therefore, the derivative of spike firing time with respect to the loss is
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for each neuron i and spike time tk, where the spiking neural network has n layers in total.

For previous layers, one input spike of a neuron only influences the first output spike after it of that
neuron directly. Here we apply a smoother gradient assignment method according to section 3.3 in
the main text, which replaces ∂ϵ(tk−tm)

∂tm
with h(tk − tm) in equations (S2) (S3). Then we can deduce

the derivation of the loss to a certain spike firing time:

∂L

∂tm(s
(l−1)
j )

=
∑
i

∂L

∂tk,next(s
(l)
i )

· ∂tk,next(s
(l)
i )

∂tm(s
(l−1)
j )

=
∑
i

∂L

∂tk,next(s
(l)
i )

· ∂tk,next(s
(l)
i )

∂u
(l)
i (tk,next)

· ∂u
(l)
i (tk,next)

∂tm(s
(l−1)
j )

=
∑
i

∂L

∂tk,next(s
(l)
i )

·

 ∑
tk,last(s

(l)
i )<tm1

(s
(l−1)
j )≤tk,next(s

(l)
i )

w
(l)
ij · h(tk,next − tm1)


−1

· w(l)
ij · h(tk,next − tm), (S11)

where tk,next(s
(l)
i ) is the timing of the next spike fired by neuron i in layer l after the spike s(l−1)

j (tm),

tk,last(s
(l)
i ) is the timing of the last spike fired by neuron i in layer l before the spike s(l−1)

j (tm), and

u
(l)
i (tk,next) is the membrane potential of neuron i in layer l at time tk,next(s

(l)
i ).

Then we return to the gradients of weights. Here we take the approximations same as [1]:
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In the second line, we use equation (S1) to replace u
(l)
i (tk).

Combining formula (S11) (S12), we have
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In summary, equations (S13) and (S11) constitutes the gradient backpropagation formulas in the
continuous form.
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C Time complexity analysis

In this section, we show that the number of operations of the event-driven learning algorithms is less
than the RNN-based learning algorithms when spikes are sparse. For simplicity, we only analyze a
single fully-connected layer with M input neurons and N output neurons. Other layers and the whole
network can be analyzed in a similar way.

During training, RNN-based learning algorithms are forced to unfold through the time axis, as
explained in Figure 1 and Section 2. As a result, the corresponding number of operations is at least
O(TMN), where T is the total time steps and M, N are the number of input and output neurons.
On the other hand, event-based learning algorithms only have to deal with cases where a certain
neuron fires a spike, and record the relevant information. In the forward stage, a spike fired by an
input neuron affects the state itself and all output neurons, which is O(N) in total. In the backward
stage, a spike fired by an output neuron needs to propagate gradient information to all spikes between
this spike and the last spike fired by this neuron (so all input spikes are processed once in this stage).
Therefore, denoting the average firing rate of input and output neurons to be α and β, the number
of operations of this layer is O(T (αMN + βM + αN)) = O(T (αMN + βM)). When spikes are
sparse, event-based learning algorithms certainly have advantages since α+ β ≪ 1 in this case.

D Discrete simulation

Although event-driven learning should be simulated in continuous time by nature, existing deep
learning frameworks are not suitable for continuous-time simulation when one neuron could fire
more than one spike. As a result, we choose to simulate event-driven learning in discrete time steps.
In the discrete-time simulation, some approximation should be made.

There are two major differences between the discrete form and the continuous form: The first is that
in the discrete form, spikes are forced to emit at integer time steps, where some errors might occur.
The second is that the structured spike emitting and the status update in discrete form makes the
formulas easily represented in vector and matrix form.

In the following part, we will deduce forward formulas and backward formulas in discrete form in
detail.

Forward formulas:

u(l)[t] = (ϵ ∗ ((W (l) · s(l−1))[t
(l)
last + 1 : t]))[t], (S14)

s(l)[t] = H(u(l)[t]− θ), (S15)

where u(l)[t] is the membrane potential (before resetting) vector of all neurons in layer l at time t,
t
(l)
last is the vector of last spike time before time t of neurons in layer l, and s(l)[t] represents the

spikes emitted from neurons layer l at time t (which is 1 when a spike is emitted and 0 otherwise).
The length of u(l)[t], s(l)[t], t

(l)
last are all Nl (which is the number of neurons in layer l). The weight

matrix W (l) has a size of Nl ×Nl−1. Notice that [t(l)last + 1 : t] in S14 contains both boundary of the
interval.

To simulate for fewer steps, we make a small modification to the kernel ϵ() into

ϵ(t) =
τm

τm − τs
(e−

t+1
τm − e−

t+1
τs ), (S16)

which makes ϵ(t) > 0 when t ≥ 0.

Backward formulas:

For the gradients of spike timings with respect to the loss in the output layer, we just have to turn
equation (S10) into the discrete form

∂L

∂tk(s
(n)
i )

=
2

NT 2

N target
i −

T∑
tk=1

s
(n)
i [tk]

 . (S17)
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For the rest layers, we can first turn (S11) (S8) into discrete form
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j ]
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i ]

·
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w
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
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i ]
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(l)
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∂t

· ϵ(tk,next − tm). (S19)

Since tm and tk,next are integers here, the definition of tk,next is the smallest number when neuron i
in layer l emits a spike satisfying tk,next ≥ tm. We use ≥ instead of > here since when tk,next = tm,
spike at time tm of neuron j in layer l − 1 can contribute to spike tk,next of neuron i in layer l.

It should be noticed that for the same spike sj [tm], different post-synaptic neuron i can have different
times of next spike tk,next-s. Hence we denote t

(l)
next as a vector of times tk,next for all neuron i in

layer l. In addition, we denote g(tk[s
(l)
i ]) =

∑
tk,last[s

(l)
i ]<tm[s

(l−1)
j ]≤tk[s

(l)
i ]

w
(l)
ij · h(tk − tm). Then

we can turn (S18) (S19) into the vector form

∂L
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= W (l) ·

h(tk − tm)⊙ 1

g(tk)
⊙ ∂L

∂s(l)[tk]

∣∣∣∣∣
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(l)
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 , (S20)

∂L

∂W (l)
=

 T∑
tm=1

s(l−1)[tm] ·

ϵ(tk − tm)⊙ ∂L

∂s(l)[tk]
⊙ −1

∂u(l)[tk]
∂tk

∣∣∣∣∣∣
tk=t

(l)
next


T


T

. (S21)

In the equations above, t(l)next means the time of the last spike of neurons in layer l before time tk.
Meanwhile, ⊙ represents the element-wise multiplication.

E Normalization on weights

Normalizations are often used to stabilize training in both ANNs [2] and SNNs [3]. However,
normalization for spiking neural networks in previous works is often applied to the input current
of neurons in discrete time-step, which might involve non-spikes (time-steps with no inputs) in the
calculation. This property violates the spirit of event-driven learning, which inspires us to explore a
new method to stabilize training.

In this work, we use normalization on weights to stabilize the training of our network. Specifically,
we use parameters W0, γ, β (correspond to normalized weight, scale, and shift correspondingly) to
represent the actual weight W in each layer. We normalize each channel separately, which accords
with the original BatchNorm [2]. Denote the normalized weight, scale and shift in the k- channel to
be W

(k)
0 , γ(k), and β(k), then we calculate the weight W (k) according to the following equations:

Ŵ
(k)
0 =

W
(k)
0 − E[W

(k)
0 ]√

V ar[W
(k)
0 ] + ε

, W (k) = γ(k) · Ŵ (k)
0 + β(k). (S22)
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In backward propagation, we calculate the gradients normally according to the chain rule, similar to
[2]:

∂L

∂x̂i
=

∂L

∂yi
· γ(k), (S23)

∂L

∂µ(k)
=

m∑
i=1

∂L

∂x̂i
· −1√

σ2
(k) + ε

, (S24)

∂L

∂σ2
(k)

=

m∑
i=1

∂L

∂x̂i
·
(
x̂i − µ(k)

)
· −1

2

(
σ2
(k) + ε

)−3/2

, (S25)

∂L

∂xi
=

∂L

∂x̂i
· 1√

σ2
(k) + ε

+
∂L

∂µ(k)
· 1

m
+

∂L

∂σ2
(k)

·
2(xi − µ(k))

m
, (S26)

∂L

∂γ(k)
=

m∑
i=1

∂L

∂yi
· x̂i, (S27)

∂L

∂β(k)
=

m∑
i=1

∂L

∂yi
, (S28)

where W (k) has m elements in total (which equals to the number of neurons in one channel), xi, x̂i,
yi are the i-th element of W (k)

0 , Ŵ (k)
0 , W (k) respectively. In the meantime, µ(k) = E[W

(k)
0 ] and

σ2
(k) = V ar[W

(k)
0 ].

F Input Encoding

In this work, we directly use the real image pixel values as the input of our network, since the image
input is commonly used [4, 5, 6], and encoding methods like Poisson encoding often impede the
performance of SNNs. Meanwhile, not applying any encoding will not decrease the efficiency of a
network for the following reasons [7]. First, in computer vision, the input representation typically
has much fewer channels (e.g., Red, Green, and Blue) than internal representations (e.g., 512). As a
result, the first layer of a ConvNet is often the smallest convolution layer, both in terms of parameters
and computations [8]. Second, it is relatively easy to handle continuous-valued inputs as fixed-point
numbers with m bits of precision. We also try the time-to-first-spike encoding (which is used by [9]),
which achieves 90.33% testing accuracy on the CIFAR10 dataset.

G Implementation Details

We have listed the architecture trained on each dataset in the main text. We use the cosine-annealing
learning rate in training, and add a weight decay of 0.0005 for all datasets. Besides, we clip the
L2-norm of the gradient to 1 when training. In initialization, we initialize models for each dataset
with different average numbers of spikes per neuron. The hyper-parameters we have used are listed
in Table S1. In this table, T is the number of time steps, τm and τs are parameters of the forward

kernel in equation (S16), τgrad is the parameter of the backward kernel h(t) = e
− t

τgrad . N target
correct

and N target
wrong are the target number of spikes for output neurons corresponding to the answer and those

does not correspond to the answer respectively.

H Societal Impact and Limitations

As our work is about training SNN in an event-driven fashion, there is no clear negative social
impact. Our proposed method trains large-scale SNN in a more biologically plausible way (than
RNN-like methods), which has a more positive social impact. Regarding limitations, our method has
not achieved comparable performance to RNN-like approaches. In addition, the event-driven method
has not supported instant synapses since the time derivative is infinity for such a case. It should also
be noticed that there is still a gap between event-driven backpropagation and biological plausible
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Table S1: Values of Hyper-parameters

Dataset Optimizer Learning Rate T Initilization Spike Number
MNIST AdamW 0.0005 5 0.5

Fashion-MNIST AdamW 0.0005 5 0.5
N-MNIST AdamW 0.0005 30 2
CIFAR10 SGD 0.05 12 1
CIFAR100 SGD 0.06 16 1

Dataset τm τs τgrad N target
correct N target

wrong

MNIST 5 3 2.5 5 1
Fashion-MNIST 5 3 2.5 5 1

N-MNIST 8 4 3 15 2
CIFAR10 7 4 3.5 10 1

CIFAR100 10 6 5.5 15 1

learning, since event-driven backpropagation processes the spike train in reverse time, which conflicts
with online learning in the real world. These topics desire further research.
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