
GraphDE: A Generative Framework for Debiased
Learning and Out-of-Distribution Detection on Graphs

Zenan Li, Qitian Wu, Fan Nie, Junchi Yan∗

Department of Computer Science and Engineering and MoE Key Lab of Artificial Intelligence
Shanghai Jiao Tong University

{emiyali, echo740, youluo2001, yanjunchi}@sjtu.edu.cn

Abstract

Despite the remarkable success of graph neural networks (GNNs) for graph rep-
resentation learning, they are generally built on the (unreliable) i.i.d. assumption
across training and testing data. However, real-world graph data are universally
comprised of outliers in training set and out-of-distribution (OOD) testing samples
from unseen domains, which solicits effective models for i) debiased learning and
ii) OOD detection, towards general trustworthy purpose. In this paper, we first
mathematically formulate the two challenging problems for graph data and take
an initiative on tackling them under a unified probabilistic model. Specifically,
we model the graph generative process to characterize the distribution shifts of
graph data together with an additionally introduced latent environment variable as
an indicator. We then define a variational distribution, i.e., a recognition model,
to infer the environment during training of GNN. By instantiating the generative
models as two-component mixtures, we derive a tractable learning objective and
theoretically justify that the model can i) automatically identify and down-weight
outliers in the training procedure, and ii) induce an effective OOD detector si-
multaneously. Experiments on diverse datasets with different types of OOD data
prove that our model consistently outperforms strong baselines for both debiasing
and OOD detection tasks. The source code has been made publicly available at
https://github.com/Emiyalzn/GraphDE.

1 Introduction

For processing ubiquitous graph data, graph neural networks (GNNs) [17, 43] have emerged as
effective approaches for graph representation learning [12], which in turn has spanned a wide range
of applications, from drug discovery [23] to image classification [4].

Despite their success, existing GNNs are generally built on the assumption that both training and
testing data are independently sampled from the identical distribution (i.i.d.), which often does not
hold [45, 22, 49, 48]. Real-world training data is often shown universally mixed with outliers [30, 7],
which specifically may incur large gradient steps in the wrong direction [38], or be overfitted by the
model [3], thereby hurting models’ performance. Besides, testing samples from unseen domains
are also unavoidable when the model is deployed in the wild [2, 19], which may easily be classified
into a wrong class with a high probability [13]. Inevitably, graph data also involve these two
common problems. As illustrated in Fig. 1, we indeed find that vanilla GNNs perform poorly when
encountering large portion of outliers and out-of-distribution (OOD) testing samples, which solicits
effective models for i) debiased learning and ii) OOD detection, towards general trustworthy purpose.

∗Junchi Yan is the corresponding author who is also with Shanghai AI Laboratory.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/Emiyalzn/GraphDE

0 0.05 0.1 0.12 0.15 0.2
Biased Ratio

55

60

65

70

75

80

85

90

95

Te
st

 A
cc

ur
ac

y(
%

)

SAGPool SAGPool GraphDE-a TopKPool TopKPool GraphDE-a

(a) Debiasing results on SPMotif

OOD Score

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

OOD Score

Max Softmax Score Variational Inferred Score

(b) Detection results on MNIST-75sp

Figure 1: Vanilla GNNs’ performance degenerates drastically with a larger number of outliers in the
training dataset. They also assign high softmax scores to OOD data, which may raise trustworthy
concerns. In comparison, our proposed framework can boost performance for both tasks notably.
In (a), GraphDE-a is plugged in the backbone; In (b), the variational inferred score is derived from
GraphDE’s recognition model. We plot MNIST images at corresponding OOD scores for intuition.

However, these two problems still remain less explored for graph data. Generally, identifying graph
outliers (or OOD samples) is inherently hard as the non-Euclidean graph data can own a large number
of node features and additional structural knowledge. The bias may exist in certain node features,
local and global graph structures [29], as well as the underlying relations between features, structures,
and labels [38], preventing trivial applications of traditional machine learning methods [25, 6] from
identifying outliers on graph data.

We argue that training outliers and OOD testing samples can be conceptually unified as they both
represent data drawn from distributions other than the major in-distribution (ID) part of training data.
However, they are inherently different as the training outliers also catch label-related distribution
shifts, e.g. noisy labels [1], while OOD testing samples are solely determined by their features [14]
since we cannot access their ground-truth labels. This difference also explains why many existing
works tend to tackle the two problems independently.

In light of the intrinsic connection between these two types of data, we present GraphDE, a prob-
abilistic generative framework for Graph DEbiased learning and OOD DEtection. Specifically,
we model the generative process to characterize the distribution shifts of graph data, along with
an environment variable as an indicator. Utilizing variational inference [51], we propose to infer
the environment variable during the training procedure of GNN. Our framework consists of three
modules: the recognition model that infers the environment variable based on the input graph data; the
structure estimation model by which we extract an OOD detector on testing dataset; the classification
model which is our target GNN. Following the idea of data resampling [38, 37], we model the latter
two modules by two-component mixtures, with one component for ID data, and the other component
robustifying the model by isolating outliers. Based on this, we derive a tractable learning objective
for our model and theoretically justify its effectiveness for the target tasks. The contributions are:

• We focus on two critical but largely unexplored problems for graph data: debiased learning and
OOD detection, find their fundamental correlations and define them under a probabilistic framework.

• We propose GraphDE with a novel learning objective and theoretically justify that: 1) it can
identify and down-weight outliers during training; 2) it can provide an OOD detector on the testing
set; 3) its constituent modules are optimized in a mutually-promoting manner.

• We evaluate GraphDE with different GNN backbones on diverse datasets of different OOD types,
where GraphDE achieves consistent performance improvements over the baselines. Specifically, as
shown in Fig. 1, for the debiasing task, it yields up to 14.6% accuracy improvement on SPMotif; for
the OOD detection task, it outperforms the strongest baseline by 9.31% on MNIST-75sp.

2 Problem Formulation and Related Works

In typical graph learning problems, given a set of labeled graphs Dtr = {(Gi, yi)}N
tr

i=1 , we need to
train a model fθ : G→ ŷ to predict the labels on the testing datasetDte = {Gi}N

te

i=1 . Specifically, the
input graph G = (A,X) is composed of an adjacency matrix A = {avu|v, u ∈ V } and node features

2

X = {xv|v ∈ V }, where V is the node set. Define G as a random variable of the input graph and
y as a random variable of the graph label, the data-generating process can then be characterized
as p(G,y|e) = p(G|e)p(y|G, e) where we introduce an environment variable e as a potential
unknown indicator for data from particular distributions.

The biased data (we use the form interchangeable to outliers) in the training set and out-of-distribution
(OOD) data in the testing set can both be treated as data drawn from different distributions to the
distribution generating the majority of the training set and testing data of our interests, i.e., the
in-distribution (ID) data so-called. Hence, we can model them by a binary environment variable e,
with e = 1 denoting the ID portion and e = 0 for the biased/OOD portion. Then the training and
testing datasets can be split into Dtr = Dtr

in ∪ Dtr
out and Dte = Dte

in ∪ Dte
out accordingly. Note that

i) the partitions of training/testing data are only for illustration purpose and are strictly unknown in
practice; ii) the testing data and distribution are also strictly unknown during the training process; iii)
here e is mainly used for distinguishing the ID part with the OOD counterpart of datasets. In fact, the
OOD part (e = 0) may consist of data from multiple distributions 2.

Denote the loss on sample (G, y) by L(y, fθ(G)), e.g., cross-entropy loss for classification problems.
Then the standard empirical risk minimization (ERM) objective can be written as

min
θ

Ee∼p(e)

[
E(G,y)∼p(G,y|e=e)[L(y, fθ(G))]

]
. (1)

This objective works based on the i.i.d. assumption across training and testing data. As we aim at
promoting the ID test accuracy (i.e. the performance on Dte

in), however, the updating gradient by
training data drawn from p(G,y|e = 0) will hurt model performance drastically [3]. On the other
hand, for testing data from unseen distributions Dte

out, the model would incline to produce imprecise
results as ptr(e) ̸= pteout(e), which is undesired and should be avoided for the trustworthy purpose.
We next formulate the two problems of our interests.

Task I: Debiased learning for training data. The target is to mitigate outliers’ negative effects
during training, thereby enhancing the performance on ID testing data. We modify the ERM objective:

min
θ

Ee∼p(e)

[
E(G,y)∼p(G,y|e=e)[L(y, fθ(G)|e)]

]
,

where L(y, fθ(G)|e) =
{

L(y, fθ(G)), if e = 1,
L0, if e = 0.

(2)

where the loss function for biased training data is fixed as L0, so the debiasing objective is equivalent
to minimize E(G,y)∼p(G,y|e=1)[L(y, fθ(G))], i.e., the training loss for the ID portion Dtr

in.

Task II: OOD detection for testing data. We aim to obtain an OOD detector g composed of a
trained model fθ : G→ ŷ, a scoring function s and a threshold τ :

g(G; τ, s, fθ) =

{
0 (OOD), if s(G; fθ) ≤ τ,
1 (ID), if s(G; fθ) > τ.

(3)

As we are willing to induce an OOD detector during the training procedure of GraphDE, we leverage
the trained model fθ from task I and what we need is to find the optimal score function s∗ that can
best separate out ID and OOD data (e.g. maximize the AUROC).

Related works on debiased learning. A series of strategies have been proposed to debias the training
dataset in general machine learning [38, 5] and computer vision [30, 7]. Many works propose to
preprocess the dataset by filtering out the outliers [5, 25]. However, these methods cannot capture
label-related distribution variations such as noisy labels [1] and also cannot be easily adapted to deal
with graph data. Another popular strategy is data resampling [38, 37], which relies on the training
loss to identify and down-weight outliers in the training set. However, these methods only capture
bias in the mapping from features to labels, but ignore the variation in feature space. For the first
time to our best knowledge, we formally define and deal with the graph debiased learning problem.

Related works on OOD detection. A trustworthy learning system should not only produce accurate
predictions for ID data, but also distinguish and reject OOD examples without further prediction.

2Since we are not interested in the specific OOD distributions, we model them by a unified distribution
p(G,y|e = 0), which is enough to identify the OOD samples as we will justify later.

3

Recognition	Model

ID: ID:

OOD: OOD:

inferred	e

Generative	
Models

mutually
boost

Generative	
Models

infer infer

ID:

OOD:

ID:

OOD:

computed

=+ +

Recognition	Model

#3(%|',)) #3(+|',))

Training	Stage Testing	Stage

Classification	Model Structure	Estimation	Model Classification	Model Structure	Estimation	Model

Figure 2: The proposed GraphDE framework. Left: During the training stage, the training data is fed
into the recognition model to infer the environment variable, then fed into the generative models to
compute the total loss for training (we omit the source of Lkl in the figure for simplicity). Right: In
the testing stage, the testing data is fed into the structure estimation model for OOD detection, then
fed into the classification model to compute the class probabilities.

Deep learning based OOD detection has achieved promising progress in vision [27, 13]. Besides,
node and edge-level anomaly detection on graphs are also widely studied, some of which are based
on classical network science [26], while others utilize the power of GNNs [36, 9]. In comparison,
only limited works [52, 29] attempt to solve graph-level OOD detection. Specifically, OCGIN [52]
designs a one-class GNN objective to distinguish between ID and OOD data. GLocalKD [29] utilizes
joint random distillation of graph and node representations to learn rich global and local pattern
information of graph-structured data. However, both of them need to be trained individually for the
detection task. In this paper, we extract an OOD detector during the training procedure of the target
GNN, while outperforming all the baselines on 7 out of 9 benchmarks. Appendix B gives more
comprehensive description on related works on GNNs and Trustworthy GNNs.

3 Methodology

3.1 Probabilistic Generative Learning for Debiased Learning and OOD Detection

To improve the ID test accuracy, we want to make the model more robust by automatically identifying
potential outliers during training. Thus, we take a generative perspective on the graph data and adopt
variational inference to infer the environment variable during training.

Generative Process. We model the joint distribution p(X,y,A, e) to capture graph-level distribution
shifts. In line with the homophily principle from random graph theory [33], i.e., linking probability
depends on some inherent properties of nodes, we assume that the graph structure is generated
based on the node features and the environment variable. The graph labels are then generated based
on the graph structure, node features, and the environment. We also assume p(e) and p(X) to be
independent distributions for environments and node features, respectively. We do not specify the
form of p(X), since everything will be conditioned on X in this paper, similar to [28, 44]. We have:

p(X,y,A, e) = p(e)p(X)p(A|X, e)p(y|X,A, e), (4)

where the generative models p(A|X, e) and p(y|X,A, e) could be modeled by some flexible para-
metric distributions pθ(A|X, e) and pθ(y|X,A, e) with parameter θ. These two distributions will
later be instantiated as the structure estimation model and classification model, respectively. We
define the generative models with two-component mixtures. For example, pθ(A|X, e) is composed
of an ID component pθ(A|X), and an OOD component p0(A|X) (the subscript 0 implies a fixed
distribution). The environment variable e ∈ {0, 1} indicates whether the graph should be modeled by
the ID (e = 1) or the OOD (e = 0) component. Specifically, these two terms are decomposed as:

pθ(A|X, e) = pθ(A|X)ep0(A|X)1−e,

pθ(y|X,A, e) = pθ(y|X,A)ep0(y|X,A)1−e.
(5)

4

Recognition Model. As the variables X,A and y are all observed during training, what we need is
to infer the sample-wise environment variable e conditional on these observed variables. Thus, we
resort to variational inference [51] and introduce a recognition model qϕ(e|A,X,y) parameterized
with ϕ to approximate the true posterior pθ(e|A,X,y).

Learning Objective. We train the model parameters θ and ϕ by optimizing the Evidence Lower
BOund (ELBO) of the observed data tuple (A,X, y):

log pθ(A, y|X) ≥ log pθ(A, y|X)−DKL[qϕ(e|A,X, y)||pθ(e|A,X, y)]

=Eqϕ(e|A,X,y)[log(pθ(A|X, e)pθ(y|X,A, e))]

−DKL[qϕ(e|A,X, y)||p(e)] = LELBO.

(6)

Eq. 6 shows that by maximizing the ELBO, we are maximizing the log-likelihood of observed data
log pθ(A, y|X) while minimizing the KL divergence between the recognition model and the true
posterior pθ(e|A,X, y). Finally, the learning objective for the training dataset can be written as:

−L =
1

N tr

Ntr∑
i=1

Eqϕ(ei|Ai,Xi,yi) [ei log pθ(yi|Xi, Ai) + (1− ei) log p0(yi|Xi, Ai)]︸ ︷︷ ︸
Classification Loss Lcls

+
1

N tr

Ntr∑
i=1

Eqϕ(ei|Ai,Xi,yi) [ei log pθ(Ai|Xi) + (1− ei) log p0(Ai|Xi)]︸ ︷︷ ︸
Structure Regularization Loss Lreg

− 1

N tr

Ntr∑
i=1

DKL [qϕ(ei|Ai, Xi, yi)||p(e)]︸ ︷︷ ︸
KL Loss Lkl

.

(7)

Justification of GraphDE. We provide theoretical analysis here to reveal the rationale of GraphDE.
Without loss of generality, we do not take account into the KL loss here for simplicity. The proofs of
the propositions are postponed to Appendix A.

Proposition 1. 1) The learning objective for GraphDE is in a re-weighted form when qϕ(e|A,X,y)
is instantiated as a Bernoulli distribution, with qϕ(ei = 1|Ai, Xi, yi) acting as a weight for the i-th
sample; 2) Given the ideal recognition model q∗ϕ that gives q∗ϕ(e = 1|(A,X, y) ∈ Din) = 1 and
q∗ϕ(e = 1|(A,X, y) ∈ Dout) = 0, the generative models can learn to best fit the ID data.

Prop. 1 reveals how the inferred posterior takes effect on the learning objective. Typically, if
qϕ(e|A,X,y) can assign a higher probability to ID data, our model can thereby learn to ignore the
negative effects of biased training data and better fit the target distribution (i.e. ID).

Proposition 2. 1) Assuming the generative models fit to the ID data, i.e. pθ(A|X ∈ Din) ≥
pθ(A|X ∈ Dout) and pθ(y|(A,X) ∈ Din) ≥ pθ(y|(A,X) ∈ Dout), the recognition model will
learn to predict qϕ(e = 1|(A,X, y) ∈ Din) ≥ qϕ(e = 1|(A,X, y) ∈ Dout); 2) Given optimal
generative models that best fit the ID data and perform randomly on outliers, there exists a recognition
model q∗ϕ which yields the minimal objective while ideally predict the environment variable.

Prop. 2 proves GraphDE’s effectiveness from the recognition model’s perspective. To summarize, the
above two propositions show that qϕ(e|A,X,y), pθ(y|A,X) and pθ(A|X) can mutually promote
each other during training. As deep networks tend to learn simple shared (i.e. ID) patterns first [3],
this positive feedback can guide GraphDE to identify outliers in early epochs and thereby learn better
representations of ID data. Besides, the propositions also suggest that given either of the recognition
model or the generative model optimal, the other can be trained to be optimal, which suggests the
existence of the global optimum. Based on these, we can further understand the implications of the
three loss terms in Eq. 7: i) Lcls is the re-weighted version of the original classification loss; ii) Lreg

acts as graph regularization and will impact the gradient of qϕ(e|A,X,y), weighting ID data higher
than the outliers; iii) the third term Lkl is the KL divergence between the learned posterior and the
fixed prior distribution, ensuring the posterior not go too complex.

Inference on Testing Dataset. For new data, we need to infer the posterior conditional distribution
of e and y given (A,X), i.e. pθ(e|A,X) and pθ(y|A,X), respectively. To compute pθ(e|A,X) is

5

just to do OOD detection. For binary e, we can compute its posterior analytically:

pθ(e|A,X) =
pθ(e,A,X)∑
e pθ(e,A,X)

=
p(e)p(X)pθ(A|X, e)∑
e p(e)p(X)pθ(A|X, e)

. (8)

The posterior can be used as the score function s for the OOD detector, once we have the well-trained
pθ(A|X, e). Subsequently, we can calculate pθ(y|A,X) by the total probability theorem:

pθ(y|A,X) =
∑
e

pθ(y|A,X, e)pθ(e|A,X), (9)

where pθ(y|A,X, e) can also be obtained after training.

3.2 GraphDE Instantiations

We proceed to specify the distributions pθ(A|X, e), pθ(y|X,A, e), p(e) and qϕ(e|A,X,y). We
assume p(e) = Bernoulli(α) where α ∈ [0, 1] represents our prior belief about the cleanliness of the
dataset. A higher α implies a larger portion of ID data in Dtr. It is fixed as a scalar during training.

3.2.1 Instantiations of the Recognition Model

We propose two variants for the recognition model qϕ(e|A,X,y). In the first way, we directly assign
a learnable scalar for each sample in the training dataset, i.e., qϕ(ei|Ai, Xi, yi) = Bernoulli(αi),
where αi ∈ [0, 1] is a trainable parameter jointly optimized with generative models through the ELBO
in Eq. 7. We call this variant GraphDE-v(ariational) as we optimize directly over αi. In the second
way, notice that e is a binary variable by definition, we can compute the posterior analytically by

qϕ(e|A,X,y)
.
= pθ(e|A,X,y) =

pθ(X,y,A, e)∑
e pθ(X,y,A, e)

=
p(e)p(X)pθ(A|X, e)pθ(y|X,A, e)∑
e p(e)p(X)pθ(A|X, e)pθ(y|X,A, e)

.

(10)

We call this variant GraphDE-a(nalytical) and the optimization procedure in this setting is essentially
an EM algorithm [31]: in the E-step, we evaluate the posterior distribution of the latent variable
e by Eq. 10; in the M-step, we optimize the model parameters θ using gradient descent w.r.t. the
objective in Eq. 7. In comparison, GraphDE-v runs more efficiently as it does not need to calculate the
posterior, while GraphDE-a can give a tight approximation log pθ(A, y|X) = LELBO. We compare
the space/time complexity of the algorithms in Appendix F.3.

3.2.2 Instantiations of the Structure Estimation Model

Recall that pθ(A|X, e) is defined by a two-component mixture (Eq. 5), we need to specify pθ(A|X)
and p0(A|X) separately for the structure estimation model. We follow the common practice and
assume that the edges are conditionally independent [28]. Then the conditional probability of A can
be further factorized as pθ(A|X) =

∏
v,u∈V pθ(avu|X).

We next consider two versions for pθ(avu|X). First, we adopt the latent space models (LSM) [15]
where the probability of avu only depends on the representations of nodes v and u:

pθ(avu = 1|xv,xu) = σ([(Uxv)
⊤, (Uxu)

⊤]w). (11)

Eq. 11 can be viewed as a logistic regression model where σ(·) denotes the Sigmoid function, U is a
linear transformation matrix, and w is a learnable vector.

Second, we propose a variant of LSM referred as CosLSM which utilizes the cosine similarity
function to measure the similarity between the node representation pair (xv,xu):

pθ(avu = 1|xv,xu) =
1

m

m∑
i=1

cos (Uixv,Uixu) + 1

2
, (12)

where we harness multi-head [42] linear transformations {Ui}mi=1 for better capacity. Note that if we
train the structure estimation model completely based on the observed edges, the model will yield

6

trivial solutions which predict all edges’ probabilities as 1. To avoid this issue, we randomly sample
one disconnected node pair labeled as avu = 0 for each existing edge during training.

Finally, for p0(a|X), we simply fix it as p0(avu = 1|X) = 1/2. Although more complex distributions
can be used for improving the capacity, our experiment results empirically show that this simple
distribution is enough for a wide range of debiasing and detection tasks on graphs.

3.2.3 Instantiations of the Classification Model

We next specify pθ(y|A,X) and p0(y|A,X) for the classification model. Similar to the structure
estimation model, we fix p0(y|A,X) = K−1 where K denotes the total number of classes. Typically,
a GNN takes (A,X) as input and outputs the probability of y. So for pθ(y|A,X), we adopt two
types of GNN models: the global pooling models [17, 43] and hierarchical pooling models [21, 18].
Denote node v’s neighborhoods by Nv, specifically, common GNN convolutional layers execute
recursive feature propagation along G:

x(l)
v = σ

(
W(l)AGG(l)

(
{x(l−1)

u |u ∈ Nv ∪ {v}}
))

, X(0) = X, (13)

where W(l) denotes weight matrix in the l-th layer and AGG(l) is a permutation-invariant function
that aggregates node representations. In hierarchical pooling GNNs, each convolutional layer is
followed by a pooling layer to filter out nodes for the next convolution operation:

X(l) = X
(l)
idx, A

(l) = A
(l)
idx,idx, (14)

where idx is the selected node indices obtained by operations such as selecting the top-k score
(calculated by a learnable function) nodes. Finally, for both types of GNNs, a global pooling layer
(e.g. max or mean operation over node features) is adopted to extract a graph-level representation h
to be fed into the classifier Φ whose probability is obtained by an output softmax layer:

pθ(y|A,X) = Softmax(Φ(h)),h = GlobalPool(X(n)), (15)

where n denotes the total number of convolutional layers.

4 Experiments

In this section, we conduct extensive experiments to answer the following questions:

• Q1: How effective is GraphDE in debiased learning and OOD detection?
• Q2: How do the composed modules and hyperparameters impact GraphDE’s performance? Besides,

how does GraphDE take effect during the training procedure?

4.1 Experiment Setup

Datasets. One synthetic and three real-world datasets of different OOD types are used for debiasing
and OOD detection tasks. Here we briefly introduce them, leaving details of statistics to Appendix E.

• Spurious-Motif [50] (SPMotif) is a synthetic dataset in which each graph is composed of one
base (denoted by S) and one motif (denoted by C). The graph label y is solely determined by
the motif C. To simulate distribution shifts, we manually construct spurious correlations between
S and y. We use datasets with different spurious correlations to represent ID and OOD data,
respectively. This dataset is unsuitable for typical OOD detection task, as the distribution shift is
dominated by label information, opposed to that the OOD detectors focus on detecting input graphs
with abnormal structures or node features.

• MNIST-75sp [18] converts the MNIST images into super-pixel graphs with at most 75 nodes. For
OOD data, we add Gaussian noise to node features to simulate distribution shift.

• Collab [47] is a social network derived from 3 public collaboration datasets. We use the graph
size to simulate distribution shift, with graphs of no more than 45 nodes denoted as ID data.

• DrugOOD [16] aims to benchmark the OOD generalization performance in the field of AI-aided
drug discovery. We use the provided dataset curator to generate a dataset with different scaffolds,
and treat the largest 6000 molecules as ID data.

7

0.0 0.1 0.2 0.3
Biased Ratio

50

60

70

80

Te
st

 A
cc

ur
ac

y

MNIST-75sp

0.0 0.1 0.2 0.3
Biased Ratio

60

65

70

Te
st

 A
cc

ur
ac

y

Collab

0.0 0.1 0.2 0.3
Biased Ratio

65

70

75

80

Te
st

 A
UR

O
C

Drugood
GCN GAT TopKPool SAGPool Dropedge Grand GraphDE-v GraphDE-a

Figure 3: Debiasing results on real-world datasets. The test mean accuracy (or AUROC for DrugOOD)
on the ID dataset is plotted. GAT is adopted as the backbone.

Table 1: Debiasing results on SPMotif. It records the test mean accuracy and standard deviation on
the ID dataset. The biased ratio is fixed as 10% for fair comparison. Best results are in bold.

Model Backbone DropEdge GRAND GraphDE-v GraphDE-a

GCN [17] 68.67±5.04 65.59±3.16 73.92±3.37 75.10±3.36 76.59±1.92
GAT [43] 65.02±3.31 62.81±0.64 65.27±3.90 66.88±1.30 67.52±1.84
TopKPool [18] 78.43±4.93 82.32±3.85 83.25±3.89 85.11±4.42 88.54±1.72
SAGPool [21] 83.57±4.15 85.72±3.15 86.71±3.49 88.96±2.66 89.41±2.87

Note that during the debiased training stage of GraphDE, we need to mixed a certain number of OOD
data into the training dataset. To prevent potential data leakage [14] during the evaluation of OOD
detection, the OOD testing dataset should be drawn from a different distribution w.r.t. the OOD data
mixed into the training dataset. We denote these two sources of OOD data as the OOD testing dataset
and the OOD mixed dataset, respectively. We leave more details of dataset splits to Appendix E.

GNN backbones. We adopt two types of GNN backbones for debiasing and OOD detection tasks.

• Global pooling backbones. We adopt two popular GNNs: GCN [17] and GAT [43]. To extract the
global graph representation for graph classification, we use a global mean pooling or global max
pooling layer after the GNNs to summarize the node representations.

• Hierarchical pooling backbones. This architecture is comprised of blocks each of which consists
of a graph convolutional layer and a pooling layer. Typically, TopKPool [18] selects local parts of
input graph for propagation by a learnable score function; SAGPool [21] uses the self-attention
mechanism to calculate attention scores, and retain important nodes for propagation.

Debiasing settings. For the debiasing task, we mix the training set with certain ratio of outliers and
compare models’ performance on ID testing data. We evaluate GraphDE’s debiasing performance on
the four datasets. Besides, As far as we know, there are little existing works concerning debiased
learning on graph data. For demonstrating the empirical superiority of our approach, we adopt
two recently proposed methods that claim to enhance the general-purpose robustness of GNNs as
competitors: 3: DropEdge [39] randomly removes a number of edges from the input graph in each
training epoch, and GRAND [11] uses a random propagation strategy to perform graph augmentation.
We study the negative effect of outliers by varying the biased ratio (|Dtr

out|/|Dtr|) of training data.

OOD detection settings. We evaluate GraphDE’s OOD detection performance on three real-world
datasets (with equal number of ID and OOD testing samples), using three widely used metrics [14]:
area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve
(AUPR), and the false positive rate at 95% true positive rate (FPR95). Besides, we consider three types
of baselines: first, we use the backbones’ max softmax score (MSP) [13] as a vanilla baseline; second,
we adopt two-stage graph kernel baselines in [52] (specifically, we adopt WL [40] and PK [34]
kernels, LOF [5] and OCSVM [6] detectors); finally, we use OCGIN [52] and GLocalKD [29] as two
deep learning based detection baselines.

3Notably, they can also be integrated with GraphDE to achieve even better debiasing performance.

8

Table 2: Detection results on real-world datasets. The biased ratio is fixed as 30% for fair comparison.
We report the mean and standard deviation for all the detectors, except the two-stage models, which
are invariant to different random seeds. We use the GraphDE-a variant as the OOD detector.

OOD Detector MNIST-75sp Collab DrugOOD
AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓

MSP [13] 62.37±2.96 60.71±1.83 88.60±2.71 51.37±4.24 53.19±3.68 91.00±2.41 54.57±9.18 52.43±6.85 90.76±4.95

WL [40]+OCSVM [6] 75.35 60.72 32.75 64.61 60.39 64.80 66.84 72.41 81.72
WL [40]+LOF [5] 61.62 57.22 94.20 67.72 62.64 81.40 56.21 49.33 80.80
PK [34]+OCSVM [6] 72.26 59.95 47.80 64.57 62.19 70.60 66.08 61.02 82.60
PK [34]+LOF [5] 61.19 58.51 92.55 64.25 58.76 91.20 57.40 51.42 88.20

OCGIN [52] 65.07±2.55 60.13±2.45 77.39±5.55 70.48±2.72 71.77±1.84 86.70±0.71 68.39±4.77 66.05±5.11 82.80±7.50
GLocalKD [29] 86.22±0.78 87.59±0.87 25.72±5.90 71.82±0.47 72.91±0.24 70.04±1.32 63.42±0.60 58.03±0.64 70.28±1.83

GraphDE 95.53±3.63 94.78±5.09 19.24±9.33 72.15±2.27 71.86±2.54 64.40±0.41 69.15±1.11 67.40±0.51 80.30±0.33

4.2 Main Results (Q1)

We train and evaluate each model under the settings as described in the last section (more hyperparam-
eter and training/testing details in Appendix D). All the experiments are run over 5 different random
seeds. More experimental results can be found in Appendix F. We make the following observations:

Debiasing results. Tab. 1 reports GraphDE’s debiasing performance on SPMotif. In this setting, we
treat the robust GNN baselines and two variants of our GraphDE as plug-in modules and apply them
to all the four backbones for comparison. The results show that GraphDE consistently (for all the
backbones) outperforms the baselines by a large margin along with low variance. Specifically, for
the TopKPool backbone, GraphDE-a surpasses the backbone by 10.11% and the strongest baseline
(GRAND) by 5.29%. Such improvements strongly suggest that GraphDE can achieve better debiasing
performance for various backbones. Besides, the results also show that the GraphDE-a generally
outperforms GraphDE-v, as the EM algorithm can give a tight approximation for the log-likelihood.

Fig. 3 illustrates GraphDE’s performance on three real-world datasets. In this setting, we mainly study
the debiasing performance w.r.t. different biased ratios, so the backbone for robust GNN baselines and
GraphDE are all fixed as GAT. As shown in the figure, GraphDE consistently outperforms baselines
on the three datasets for all the biased ratios. The backbones’ performance drops drastically as the
biased ratio gets higher, and the robust GNN baselines can mitigate this effect to some extend. In
comparison, GraphDE performs much more stable. This advantage is more pronounced when the
biased ratio is large, e.g. GraphDE surpasses all the other baselines by nearly 5% on Collab when the
biased ratio is 0.2. An interesting observation is that GraphDE can also achieve a better test accuracy
when the biased ratio is 0, implying that the pure training set also violates the i.i.d. assumption.

Detection results. Tab. 2 reports GraphDE’s detection performance on three real-world datasets. As
can be seen from the table, the max softmax score (MSP) achieves low detection performance. It
suggests that vanilla GNNs are poorly calibrated [35] and it is of critical need to develop new graph-
level OOD detectors. The results show that GraphDE performs the best on 7 out of 9 benchmarks.
Specifically, on MNIST-75sp, GraphDE surpasses the strongest baseline by approximately 10% for
AUROC, while also pulls down the false positive rate (FPR95).

4.3 Further Study (Q2)

Impact of prior ratio. We select different prior ratios 1 − p(e) to study its impact on debiasing
performance. As shown in the Fig. 4(a), the ID test accuracy doesn’t fluctuate much from 0.05 to 0.7,
but drops drastically when prior ratio goes higher than 0.7. Besides, we also find that the test accuracy
peaks at prior ratio 0.1 for biased ratio 0.1, and 0.2 for biased ratio 0.2, exactly when Lkl becomes 0.

Ablation on Lreg . We remove Lreg in the objective to study the structure estimation model’s impact
on debiasing performance. As illustrated in Fig. 4(b), we can find that the test accuracy drops
obviously at all biased ratios. Specifically, The test accuracy drops over 6% at biased ratio 0.25. The
results prove the structure estimation model’s capability of down-weighting outliers in training data.

Ablation on Lcls. We remove Lcls to study the influence of the classification model on the OOD
detection performance. As shown in Fig. 4(c), we plot the detection AUROC on the testing dataset
w.r.t. different biased ratios. The figure illustrates that the AUROC generally drops as the biased
ratio gets higher, since the outliers will hurt the fitting performance of the structure estimation model.
Typically, we can see that the blue line (without Lcls) is consistently lower than the red line, with the

9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Prior Ratio

30

40

50

60

70

Te
st

 A
cc

ur
ac

y
biased ratio = 0.1
biased ratio = 0.2

(a) Prior Ratio

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Biased Ratio

60

62

64

66

68

Te
st

 A
cc

ur
ac

y

w/ p (A|X, e)
w/o p (A|X, e)

(b) Structure Estimation Model

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Biased Ratio

65

70

75

80

D
et

ec
tio

n
AU

R
O

C

w/ p (y|X, A, e)
w/o p (y|X, A, e)

(c) Classification Model

Figure 4: Sensitivity analysis and ablation studies (on Collab). We use the GraphDE-a variant.

0 25 50 75 100 125
Epoch

30

40

50

60

Te
st

 A
cc

ur
ac

y

SPMotif

0 25 50 75 100 125
Epoch

60

70

80

Te
st

 A
U

R
O

C

DrugOOD
in-distribution out-of-distribution

(a) Training Procedure (b) OOD Score Distribution

Figure 5: Explanatory experiments. We use the GraphDE-a variant and the biased ratio is set as 0.2.

gap getting larger as the biased ratio goes higher. Specifically, the performance gap is approximately
3% when biased ratio is 0.3. The results prove that the classification model can help down-weight
training outliers, thereby promoting the detection performance of the structure estimation model.

Training procedure. We plot GraphDE’s test accuracy after every training epoch on ID and OOD
(i.i.d. to training outliers) datasets. As shown in Fig. 5(a), the ID test accuracy simply fluctuates, rises,
and converges. In comparison, the trend of OOD test accuracy can be divided into two phases. As
separated by the green dashed line, we can see the red line first increases then decreases. Generally,
in the increasing phase, GraphDE is optimized to better fit the outliers in the training data. However,
in the decreasing phase, as the outliers are down-weighted by a large extend, GraphDE focuses on
fitting ID data. This transition prevents overfitting of outliers and promotes the ID test accuracy.

Visualization of inferred probability. We visualize the recognition model’s inferred probability
qϕ(e = 1|A,X, y) on the training dataset. As shown in Fig. 5(b), ID data is assigned with a higher
probability on both datasets. In particular, most outliers are assigned with probability at around 0 on
SPMotif. This directly indicates that the outliers are down-weighted during the training procedure.

5 Conclusion and Outlook

In this paper, we have provided a viable approach to the problem of debiased learning and OOD
detection over graph data. Specifically, a generative process is modeled to capture distribution shifts
of graph data. By introducing a variational recognition model to infer the environment variable and
two-component mixed generative models, the learning objective for GraphDE is derived, which can
identify and down-weight outliers during training, as well as inducing an effective OOD detector on
new data. While our framework is mainly designed for graph data where both the debiased learning
and OOD detection remain relatively under-explored, it can be potentially generalized to other data
formats like images or texts, which we leave for future studies.

Acknowledgement

This work was partly supported by National Key Research and Development Program of China
(2020AAA0107600), National Natural Science Foundation of China (61972250, 72061127003), and
Shanghai Municipal Science and Technology (Major) Project (2021SHZDZX0102, 22511105100).

10

References
[1] G. Algan and I. Ulusoy. Label noise types and their effects on deep learning. CoRR,

abs/2003.10471, 2020.

[2] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz. Invariant risk minimization. arXiv
preprint arXiv:1907.02893, 2019.

[3] D. Arpit, S. Jastrzębski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal, T. Maharaj, A. Fischer,
A. Courville, Y. Bengio, et al. A closer look at memorization in deep networks. In International
conference on machine learning, pages 233–242. PMLR, 2017.

[4] P. H. Avelar, A. R. Tavares, T. L. da Silveira, C. R. Jung, and L. C. Lamb. Superpixel image
classification with graph attention networks. In 2020 33rd SIBGRAPI Conference on Graphics,
Patterns and Images (SIBGRAPI), pages 203–209. IEEE, 2020.

[5] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: identifying density-based local
outliers. In Proceedings of the 2000 ACM SIGMOD international conference on Management
of data, pages 93–104, 2000.

[6] Y. Chen, X. S. Zhou, and T. S. Huang. One-class svm for learning in image retrieval. In
Proceedings 2001 International Conference on Image Processing (Cat. No. 01CH37205),
volume 1, pages 34–37. IEEE, 2001.

[7] T.-J. Chin, Z. Cai, and F. Neumann. Robust fitting in computer vision: Easy or hard? In
Proceedings of the European Conference on Computer Vision (ECCV), pages 701–716, 2018.

[8] E. Dai, W. jIN, H. Liu, and S. Wang. Towards robust graph neural networks for noisy graphs
with sparse labels, 2022.

[9] D. Duan, L. Tong, Y. Li, J. Lu, L. Shi, and C. Zhang. Aane: Anomaly aware network embedding
for anomalous link detection. In 2020 IEEE International Conference on Data Mining (ICDM),
pages 1002–1007. IEEE, 2020.

[10] F. Errica, M. Podda, D. Bacciu, and A. Micheli. A fair comparison of graph neural networks for
graph classification. arXiv preprint arXiv:1912.09893, 2019.

[11] W. Feng, J. Zhang, Y. Dong, Y. Han, H. Luan, Q. Xu, Q. Yang, E. Kharlamov, and J. Tang.
Graph random neural network for semi-supervised learning on graphs, 2020.

[12] W. L. Hamilton, R. Ying, and J. Leskovec. Representation learning on graphs: Methods and
applications. arXiv preprint arXiv:1709.05584, 2017.

[13] D. Hendrycks and K. Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. 2016.

[14] D. Hendrycks, M. Mazeika, and T. Dietterich. Deep anomaly detection with outlier exposure.
arXiv preprint arXiv:1812.04606, 2018.

[15] P. D. Hoff, A. E. Raftery, and M. S. Handcock. Latent space approaches to social network
analysis. Journal of the american Statistical association, 97(460):1090–1098, 2002.

[16] Y. Ji, L. Zhang, J. Wu, B. Wu, L.-K. Huang, T. Xu, Y. Rong, L. Li, J. Ren, D. Xue, et al. Drugood:
Out-of-distribution (ood) dataset curator and benchmark for ai-aided drug discovery–a focus on
affinity prediction problems with noise annotations. arXiv preprint arXiv:2201.09637, 2022.

[17] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

[18] B. Knyazev, G. W. Taylor, and M. R. Amer. Understanding attention and generalization in
graph neural networks, 2019.

[19] D. Krueger, E. Caballero, J.-H. Jacobsen, A. Zhang, J. Binas, D. Zhang, R. Le Priol, and
A. Courville. Out-of-distribution generalization via risk extrapolation (rex). In International
Conference on Machine Learning, pages 5815–5826. PMLR, 2021.

11

[20] D. Lan, X. Yang, Q. Wu, and J. Yan. Variational inference for training graph neural networks
in low-data regime through joint structure-label estimation. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 824–834, 2022.

[21] J. Lee, I. Lee, and J. Kang. Self-attention graph pooling, 2019.

[22] H. Li, X. Wang, Z. Zhang, and W. Zhu. Ood-gnn: Out-of-distribution generalized graph neural
network, 2021.

[23] J. Li, D. Cai, and X. He. Learning graph-level representation for drug discovery. arXiv preprint
arXiv:1709.03741, 2017.

[24] D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social networks. Journal of
the American society for information science and technology, 58(7):1019–1031, 2007.

[25] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation forest. In 2008 eighth ieee international
conference on data mining, pages 413–422. IEEE, 2008.

[26] N. Liu, X. Huang, and X. Hu. Accelerated local anomaly detection via resolving attributed
networks. In IJCAI, pages 2337–2343, 2017.

[27] W. Liu, X. Wang, J. Owens, and Y. Li. Energy-based out-of-distribution detection. Advances in
Neural Information Processing Systems, 33:21464–21475, 2020.

[28] J. Ma, W. Tang, J. Zhu, and Q. Mei. A flexible generative framework for graph-based semi-
supervised learning. Advances in Neural Information Processing Systems, 32, 2019.

[29] R. Ma, G. Pang, L. Chen, and A. van den Hengel. Deep graph-level anomaly detection by glocal
knowledge distillation. In Proceedings of the Fifteenth ACM International Conference on Web
Search and Data Mining. ACM, feb 2022.

[30] H. Masnadi-Shirazi, V. Mahadevan, and N. Vasconcelos. On the design of robust classifiers for
computer vision. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 779–786. IEEE, 2010.

[31] G. J. McLachlan and T. Krishnan. The EM algorithm and extensions, volume 382. John Wiley
& Sons, 2007.

[32] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe.
Weisfeiler and leman go neural: Higher-order graph neural networks. CoRR, abs/1810.02244,
2018.

[33] B. Müller, J. Reinhardt, and M. T. Strickland. Neural networks: an introduction. Springer
Science & Business Media, 1995.

[34] M. Neumann, R. Garnett, C. Bauckhage, and K. Kersting. Propagation kernels: efficient graph
kernels from propagated information. Machine Learning, 102(2):209–245, 2016.

[35] J. Nixon, M. W. Dusenberry, L. Zhang, G. Jerfel, and D. Tran. Measuring calibration in deep
learning. In CVPR Workshops, volume 2, 2019.

[36] Z. Peng, M. Luo, J. Li, L. Xue, and Q. Zheng. A deep multi-view framework for anomaly
detection on attributed networks. IEEE Transactions on Knowledge and Data Engineering,
2020.

[37] S. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, and A. Rabinovich. Training deep neural
networks on noisy labels with bootstrapping. arXiv preprint arXiv:1412.6596, 2014.

[38] M. Ren, W. Zeng, B. Yang, and R. Urtasun. Learning to reweight examples for robust deep
learning. In International conference on machine learning, pages 4334–4343. PMLR, 2018.

[39] Y. Rong, W. Huang, T. Xu, and J. Huang. Dropedge: Towards deep graph convolutional
networks on node classification, 2019.

12

[40] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, and K. M. Borgwardt.
Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.

[41] Y. Sun, S. Wang, X. Tang, T.-Y. Hsieh, and V. Honavar. Adversarial attacks on graph neural
networks via node injections: A hierarchical reinforcement learning approach. In Proceedings
of the Web Conference 2020, pages 673–683, 2020.

[42] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[43] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention
networks, 2017.

[44] H. Wang, C. Zhou, X. Chen, J. Wu, S. Pan, and J. Wang. Graph stochastic neural networks
for semi-supervised learning. Advances in Neural Information Processing Systems, 33:19839–
19848, 2020.

[45] Q. Wu, H. Zhang, J. Yan, and D. Wipf. Handling distribution shifts on graphs: An invariance
perspective. In International Conference on Learning Representations, 2022.

[46] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? CoRR,
abs/1810.00826, 2018.

[47] P. Yanardag and S. Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining, pages 1365–1374,
2015.

[48] C. Yang, Q. Wu, Q. Wen, Z. Z. L. Sun, and J. Yan. Towards out-of-distribution sequential event
prediction: A causal treatment. In Advances in Neural Information Processing Systems, 2022.

[49] N. Yang, K. Zeng, Q. Wu, X. Jia, and J. Yan. Learning substructure invariance for out-of-
distribution molecular representations. In Advances in Neural Information Processing Systems,
2022.

[50] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec. Gnnexplainer: Generating expla-
nations for graph neural networks. Advances in neural information processing systems, 32,
2019.

[51] C. Zhang, J. Bütepage, H. Kjellström, and S. Mandt. Advances in variational inference. IEEE
transactions on pattern analysis and machine intelligence, 41(8):2008–2026, 2018.

[52] L. Zhao and L. Akoglu. On using classification datasets to evaluate graph-level outlier detection:
Peculiar observations and new insights, 2020.

[53] D. Zügner, A. Akbarnejad, and S. Günnemann. Adversarial attacks on neural networks for
graph data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. ACM, jul 2018.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Appendix G.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Appendix G.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]

13

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix A.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See Appendix E
for dataset information. See the supplementary for the codes. They will be released
public upon publication.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix D and Appendix E.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See experiment section.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix D.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Appendix E.
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

	Introduction
	Problem Formulation and Related Works
	Methodology
	Probabilistic Generative Learning for Debiased Learning and OOD Detection
	GraphDE Instantiations
	Instantiations of the Recognition Model
	Instantiations of the Structure Estimation Model
	Instantiations of the Classification Model

	Experiments
	Experiment Setup
	Main Results (Q1)
	Further Study (Q2)

	Conclusion and Outlook
	Proof for Technical Results
	Derivation of the Learning Objective
	Proof for Proposition 1
	Proof for Proposition 2

	More Related Works
	GraphDE Training Procedure
	Implementation Details
	Details for Debiasing Experiments
	Details for Detection Experiments

	Dataset Information
	Dataset Information
	Dataset Preprocessing

	More Experiment Results
	Detection Results
	Further Study
	Algorithm Complexity

	Limitations and Potential Negative Impacts

