A VoiceBlock implementation

A.1 Architecture

We provide additional details of the VoiceBlock architecture used in our experiments.

Phoneme encoder: The phoneme encoder consists of a feedforward network with two hidden
layers of size 256 and ReLU activations, followed by two LSTM layers with hidden size 256. Using
the LibriSpeech "train-clean-100" dataset and aligned phoneme labels provided by Lugosch et al.
[33], we train the phoneme encoder with cross entropy loss for 25 epochs using the Adam optimizer
with learning rate le-3. During training, a linear layer is appended to the phoneme encoder to render
predictions over phoneme labels; we discard this layer after training.

Spectrogram encoder: We pass 64-bin mel-spectrograms through a 1 x 1 convolutional layer and
gated linear unit (GLU) operating along the frequency axis, followed by a two linear layers with leaky
ReLU activations and hidden size 512. The convolution layer upsamples the channel (frequency)
dimension to 1024, from which the GLU obtains a 512-dimensional representation to pass to the
linear layers.

Source speaker conditioning: For each frame of audio, we concatenate the 256-dimensional
output of the phoneme encoder, the 512-dimensional output of the spectrogram encoder, and the one-
dimensional pitch / periodicity / loudness features and linearly project to obtain a 512-dimensional
vector. A fixed 512-dimensional source speaker embedding obtained from the ResNetSE34V2 model
is passed through a 2 linear layers with leaky ReL U activations and hidden size 512, followed by batch
normalization and a final linear layer to obtain a 1024-dimensional vector holding scales and biases
for a feature-wise affine transformation (FiLM) of the encoder output. The affine transformation is
applied and the resulting vector is passed to the bottleneck.

Bottleneck: Our bottleneck consists of two LSTM layers with hidden size 512. The encoder output
is passed through the LSTM layers with a skip connection concatenated at the output. Following the
application of a lookahead convolutional network, the resulting vector is projected linearly to obtain
a 128-dimensional vector of filter controls for the current frame.

Decoder: We perform filtering with 128 bands per frame, and set Lo, bound € = 0.5 to further
constrain deviations from a "neutral" control configuration of 1. We experimented with alternative
methods of regularizing predicted filter controls, such as Lo normalization, but found that simple L,
clipping yielded satisfactory results.

Training: We train both VoiceBlock and the universal baseline attack using the Adam [29]]
optimizer with learning rate 1le—4 for 10 epochs over the LibriSpeech "train-clean-100" subset.

A.2 Auxiliary loss

We briefly summarize the multi-resolution STFT loss of Defosséz et al. [13] used in the training of
our attacks. The loss is given by

Eau:c(ga u) = Estft(uvg(u)) + Hu - g(“)”l (&)

14

where Ly, is given by a sum of magnitude and spectral convergence losses computed over M
spectrogram resolutions:

M
Lagela,d) = D7 [£9(a,b) + Ly (a,0)] ®)

i=1

_ [ISTFT(a)] - [STFT(®)| ||

Lsc(a,b) (N
| [STFT(a)| ||p
Linag(a,b) = || log [STFT(a)| —log [STFT(b)] ||,
®)
Here || - || and || - ||, refer to the Frobenius and L; norms, respectively. Following Defosséz et al.,

we use M = 3 spectrogram resolutions with hop sizes of 50, 120, and 240 samples, FFT lengths of
512, 1024, and 2048, and window lengths of 240, 600, and 1200, respectively.

A.3 Streamer

We implement a version of VoiceBlock for processing audio streams in real time. All components are
modified to support the computation of perturbations on overlapping windows of audio while the
input and output streams process non-overlapping chunks. Where possible, components are complied
to TorchScript to improve performance. Three buffers are added to process a stream of audio into
overlapping chunks:

* Last Frame Input Buffer: Contains the last 128 samples of the last input audio to be appended
to the oncoming chunk, before computing the overlapping windows.

* Lookahead Buffer: Contains overlapping frames to be used as lookahead.

¢ Qutput Buffer: Contains the last 128 samples output by VoiceBlock, to be overlap-added
with the next processed chunk.

Code for our streaming implementation can be found athttps://interactiveaudiolab.github.
io/project/voiceblock.htmll

B Additional experiments

B.1 Ablation study

To better understand the contribution of various aspects of the proposed model architecture and
training procedure, we perform the following ablations. Encoder: We examine the effectiveness of
models using a subset of the encoder components discussed in Section [3.1] Results are presented
in Table [2| Lookahead: we vary the number of lookahead frames passed to the model during
training and inference. At a lookahead of zero, the model operates in a causal manner. We report
model effectiveness and theoretical latency as a function of lookahead in Table [3| Auxiliary loss:
we replace the combined waveform and multi-resolution spectrogram loss of Defosséz et al. [13]
with a waveform-only L loss, the mel-frequency cepstral coefficient cosine-similarity loss used by
O’Reilly et al. [41]], and an ASR feature-matching loss. Results are reported in table d Note that
the latter model variant outperforms the “main" VoiceBlock model presented in this work along all
objective metrics, although we were unable to conduct a subjective evaluation to verify apparent
gains in perceptual quality. For all ablations, we perform attacks on the ResNetSE34 model using the
experimental configuration detailed in Section [4]

B.2 Attack robustness to preprocessing
In real-world settings, user audio may travel through various preprocessing stages before reaching a

speaker recognition model. To simulate the presence of such stages, we perform attacks using the
experiment configuration discussed in Section but pass query utterances through a pretrained

15

https://interactiveaudiolab.github.io/project/voiceblock.html
https://interactiveaudiolab.github.io/project/voiceblock.html

Table 2: Results of ablations on the encoder module. The full VoiceBlock encoder consists of
a spectrogram network ("Spec"); a phoneme predictor network ("PPG"); pitch, aperiodicity, and
A-weighted loudness features ("DSP"); and speaker-conditioning via the embeddings of a pretrained
recognition model ("condition")

Speech Quality Metrics ResNetSe34V2

VoiceBlock Encoder PESQ * STOI 1 T-1) T-104
Spec 341 0.89 0.02 0.10
- Spec + PPG 3.56 0.89 0.03 0.14
Spec + PPG + DSP 3.64 0.90 0.02 0.10
Spec + DSP + Condition 3.67 0.91 0.02 0.11
Spec + PPG + DSP + Condition 3.74 0.92 0.03 0.10

Table 3: Results of varying the lookahead length in frames. We train and evaluate models at
matched lookahead lengths. For each lookahead, we note the minimum theoretical latency required
in milliseconds.

Minimum Latency Speech Quality Metrics ResNetSe34V2

Lookahead ms PESQ * STOI 1 T-1] T-10)
0 16 391 0.93 0.04 0.12
1 24 3.93 0.93 0.03 0.13
2 32 3.83 0.92 0.03 0.15
5 56 3.74 0.92 0.03 0.10

Demucs [13] speech enhancement model en route to the ResNetSE34v2 recognition system; results
are reported in table[5] The speaker recognition system maintains its top-1 and top-10 accuracy on
clean queries. In contrast to Chiquier et al. [10] we do not incorporate the enhancement model into
our adversarial optimization, meaning that Demucs essentially functions as an unseen adversarial
defense. We find that VoiceBlock loses almost no effectiveness when queries are passed through
Demucs; by comparison, the universal attack loses most of its effectiveness, as Demucs is able to
separate the low-magnitue but noisy perturbation from clean speech. Both the white noise and spectral
gating attacks retain their effectiveness, presumably because they degrade audio beyond Demucs’
capability to provide coherent reconstructions of the original speech. We leave as future work the
exploration of the robustness of VoiceBlock against more sophisticated preprocessing pipelines and
adversarial defenses.

Table 4: Results of training VoiceBlock with various auxiliary loss functions. We consider a simple
waveform regression loss ("L;") and the mel-cepstral cosine-similarity loss used by O’Reilly et
al. ("MFCC-cosine") [41] as simple drop-in replacements for the combined waveform/spectrogram
loss of Defosséz et al. [[13] ("L; + MRS"). Additionally, we consider a feature-matching loss on
the acoustic representations produced by a Wav2Vec 2.0 [5] automatic speech recognition model
("ASR"). This loss is computed by taking the L; distance between acoustic feature vectors produced
by the Wav2Vec 2.0 encoder over clean and adversarial utterances, scaled by a factor of 1e 6.

Speech Quality Metrics ResNetSe34V2
Auxiliary Loss PESQ 1 STOI 1 T-1) T-104

Ly 3.49 0.89 0.02 0.07
MFCC-cosine 3.34 0.89 0.02 0.07
ASR 4.08 0.94 0.02 0.09
Ly + MRS 3.74 0.92 0.03 0.10

16

Table 5: Top-1 (T-1) and top-10 (T-10) recognition accuracy of the ResNetSE34v2 system on the
de-identification attacks described in Section4.3|when all query audio is passed through a Demucs
[13] speech enhancement preprocessing stage

ResNetSe34V2 +Demucs
Approach 1| T-10, T1, T-10J

White noise 0.13 0.40 0.02 0.09
Spectral gating ~ 0.02 0.11 0.02 0.11

Universal 0.14 0.22 0.87 0.97
VoiceBlock 0.02 0.10 0.04 0.15
No attack 0.97 0.99 0.96 0.99

Table 6: For sets of 15 clean and adversarial query utterances, we compare the top-1 (T-1) and top-10
(T-10) accuracy of speaker recognition with the ResNetSE34v2 model under three conditions. Clean
profile: 20 clean utterances are enrolled per speaker. Mixed profile: 10 clean and 10 adversarial
(VoiceBlock) utterances are enrolled per speaker. Adversarial profile: 20 adversarial (VoiceBlock)
utterances are enrolled per speaker.

Clean profile = Mixed profile Adversarial profile
Query processing T-1| T-10] T-1| T-104 T-1] T-10 |

VoiceBlock 0.02 0.10 0.51 0.80 0.78 0.93
None 0.97 0.99 0.83 095 0.09 0.28

B.3 Enrollment of adversarial queries

It is possible that adversarially-perturbed query utterances extracted from a VoiceBlock user’s audio
stream may themselves be enrolled by a surveiling speaker recognition system. In such cases, there
are two possibilities:

1. VoiceBlock successfully de-identifies user speech, and adversarial queries are enrolled as a
separate speaker profile from any existing clean utterances of the user

2. VoiceBlock fails to de-identify user speech, and adversarial queries are incorporated into an
existing profile of the user containing clean utterances.

We examine both scenarios, again using the VoiceBlock attack discussed in Section[4.3] Results are
presented in table[§] We find that while VoiceBlock is highly effective at de-identifying users against
a profile constructed from clean (unperturbed) utterances, its de-identification performance suffers
significantly under both of the aforementioned conditions. This suggests that additional work is
required to ensure that a VoiceBlock user remains a "moving target" to surveilling speaker recognition
systems. One possible solution is to leverage targeted rather than untargeted attacks: by proactively
"spoofing" specific (random) locations in the embedding space, VoiceBlock may hamper the creation
of a single matching enrolled profile.

B.4 Word error rate evaluation

To measure the intelligibility of speech processed by the proposed and baseline methods, we evaluate
the word- and character-error rates of each attack described in Section .3] on the LibriSpeech
train-clean-360 subset using a Wav2Vec 2.0 automatic speech recognition model [S]. The
train-clean-360 dataset contains utterances and accompanying transcriptions from 921 speakers
not seen during training. We do not use the VoxCeleb dataset because it does not have the necessary
transcriptions. We partition each speaker’s data into query, enrollment, and conditioning partitions,
as described in Section[4.2] Our results are reported in Table

Our results demonstrate that pure signal-processing attacks such as spectral gating and white noise
result in word- and character-error rates 20+ times that of VoiceBlock. VoiceBlock also outperforms
all methods except spectral gating on the de-ientification task, with which it performs competitively.
This indicates our method’s ability to preserve the intelligibility of speech while adversarially
modifying speaker characteristics.

17

Table 7: De-identification performance of proposed and baseline models over the LibriSpeech
train-clean-360 dataset. To evaluate the intelligibility of the resulting audio, we ASR compute
word- and character-error rates in addition to PESQ and STOI scores.

Speech Quality Metrics ResNetSe34V2 Wav2Vec 2.0

Approach PESQ 1 STOI 1 T1, T-10) WER| CER|]
White noise 1.03 0.52 0.24 0.58 1.00 1.00
Spectral gating 1.13 0.64 0.03 0.18 0.50 0.29
Universal 1.38 0.86 0.09 0.24 0.16 0.08
VoiceBlock 3.72 0.94 0.05 0.22 0.02 0.01
No attack 4.64 0.99 0.99 0.99 0.01 0.01

C Listening Study

The listening study consists of 20 evaluation tasks, where the participants are shown the following
text, along with 5 four second long audio examples and 5 corresponding sliders with values from 0 to
100:

Listen to all recordings of a person speaking. Then, move the sliders to rate the quality of each
audio file from 0 (worst) to 100 (best). The higher-quality audio files are the ones that are
more natural sounding, or have fewer audio artifacts (e.g., clicks, pops, noise, or otherwise
sound ’unnatural’). Note - Each slider cannot be moved until its corresponding audio file has
been listened to in its entirety.

It takes approximately 15 minutes to complete all the evaluation tasks. Participants are also asked to
complete a listening test before proceeding to the audio evaluation. The listening test involves the
participant listening to two audio files, and reporting the number of tones they heard. For each audio
file, the participants are given 3 tries to correctly report the number of tones played. If a participant
succeeds in the listening test and completes the evaluation tasks, then they are paid 3.00 USD, or
equivalently, 12.00 USD / hour. If the participant fails the listening test, then they are paid 0.50 USD.

18

	Introduction
	Related work
	VoiceBlock
	Encoder
	Bottleneck
	Decoder
	Training objective

	Experimental design
	Speaker recognition models
	Datasets
	Attack algorithms
	Objective evaluation
	Subjective evaluation
	Additional experiments

	Ethics
	Conclusions
	VoiceBlock implementation
	Architecture
	Auxiliary loss
	Streamer

	Additional experiments
	Ablation study
	Attack robustness to preprocessing
	Enrollment of adversarial queries
	Word error rate evaluation

	Listening Study

