
A Proofs

Theorem 3.1 (Efficient inference in SPLs). If q(Y;Θ) and cK(Y,X) are two smooth, decomposable
and compatible circuits, then computing Eq. (2) can be done in O(|q||c|) time, where | · | denotes the
circuit size. Furthermore, if they are also deterministic, then computing the MAP state can be done in
O(|q||c|) time. .

We prove the first statement by first showing that the partition function Z(x) in Eq. (2) can solved
exactly in time O(|q||c|). It will then follow from it that computing Eq. (2) can be done in O(|q||c|+
|q|+ |c|) ≈ O(|q||c|) where the last two additive factors derive from evaluating q and c for an input
configuration (x,y).

To do so, we will exploit two ingredients: i) the product of q and c can be represented as a smooth and
decomposable circuit in time O(|q||c|) [75] and ii) any smooth and decomposable circuit guarantees
tractable marginalization in time linear in its size [13]. The next two propositions formalize these
statements.
Proposition A.1 (Tractable product of circuits). Let q(Y;Θ) and cK(Y,X) be two smooth,
decomposable circuits that are compatible over Y then computing their product as a circuit
rΘ,K(X,Y) = q(Y;Θ) · cK(Y,X) that is decomposable over Y can be done in O(|q||c|). If
both q and c are also deterministic, then r is as well.

Proof. The proof directly follows from Theorem 3.2 from Vergari et al. [75].

Note that O(|q||c|) is a loose upperbound and the size of r is in practice smaller [75].
Proposition A.2 (Tractable marginalization of circuits). Let r(X,Y) be a circuit that is smooth and
decomposable over Y with input functions over Y that can be tractably marginalized out. Then
for any variables Y′ ⊆ Y and their assignment y′, the marginalization

∑
y′ r(y′,y′′,x) can be

computed exactly in time linear in the size of r, where Y′′ = Y \Y′.

Proof. The proof follows by considering that i) the input functionals in SPLs are simple distributions
such as Bernoullis and indicators and can be easily marginalized in O(1) and ii) that for every
configuration x of variables X, r(Y,x) is a circuit only over Y and therefore Proposition 2.1 from
Vergari et al. [75] can be directly applied.

Analogously, the second statement of Theorem 3.1 follows from Proposition A.1 and by recalling
that the MAP state of a deterministic circuit can be computed in time linear in its size.
Proposition A.3 (Tractable MAP state of circuits (Choi et al. [13])). Let r(X,Y) be a circuit that
is smooth and decomposable and deterministic over Y then for a configuration x its MAP state
argmaxy r(x,y) can be computed in time O(|r|).

B Compiling logical formulas into circuits

For our experiments we use standard compilation tools to obtain a constraint circuit starting from
a propositional logical formula in conjunctive normal form. Specifically, we use Graphillion1 to
compile the constraints in the Warcraft pathfinding experiment into an SDD. For all other experiments,
we use PySDD2 [1] a python SDD compiler [17, 10].

We now illustrate step-by-step one example of such a compilation for a simple logical formula.
Consider the constraint circuit c in Fig. 3 encoding the constraint

(Ycat =⇒ Yanimal) ∧ (Ydog =⇒ Yanimal). (3)

Intuitively, our aim is to compile the above logical formula into a compact form representing
all possible assignments to Ycat, Ydog, Yanimal satisfying the above constraint. We compile such a
constraint by proceeding in a bottom up fashion, where bottom-up compilation can be seen as
composing Boolean sub-functions whose domain is determined by a variable ordering, also called

1https://github.com/takemaru/graphillion
2https://github.com/wannesm/PySDD

17

vtree (see Sec. 3.3). In this example, we assume the function f(Yanimal, Ycat, Ydog) decomposes as
f1(Yanimal) · f2(Ydog) · f3(Ycat) We therefore start by compiling a constraint circuit that is a function
of Ycat and Ydog, and compose it with a constraint circuit that is a function of Yanimal We first introduce
input functionals representing indicators associated with Ycat, Ydog, Yanimal. We will denote by Yi the
indicator 1{Yi = 1} and by ¬Yi the indicator 1{Yi = 0}.

1{Y1 = 0} 1{Y1 = 1} 1{Y2 = 0} 1{Y2 = 1} 1{Y3 = 0} 1{Y3 = 1}

We start by disjoining the indicator Ycat with ¬Ycat. This corresponds to introducing deterministic
and smooth sum units in our circuits.

1{Y2 = 0}

1{Y2 = 1}

Deterministic sum units represent disjoint solutions to the logical formula, meaning there ex-
ists distinct assignments, characterized by the children, that satisfy the logical constraint e.g.
Ycat, Ydog, Yanimal and ¬Ycat, Ydog, Yanimal are two distinct assignments which satisfy the constraint.

The compilation process proceeds by conjoining the constraint circuits for Ycat ∨ ¬Ycat with Ydog,
Ycat ∨ ¬Ycat with ¬Ydog, and ¬Ycat with ¬Ydog.

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

×

A decomposable product unit decomposes functions over disjoint sets of variables. The above products
represent the Boolean functions (Ycat ∨ ¬Ycat) ∧ Ydog, (Ycat ∨ ¬Ycat) ∧ ¬Ydog, and ¬Ydog ∧ ¬Ycat.
We disjoin (Ycat∨¬Ycat)∧Ydog with (Ycat∨¬Ycat)∧¬Ydog, and ¬Ydog∧¬Ycat with true, the logical
multiplicative identity, guaranteeing alternating sum and product nodes, as mentioned in Sec. 3.1.

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

×

So far, we have compiled constraint circuits for the logical formulas

((Ycat ∨ ¬Ycat) ∧ Ydog) ∨ ((Ycat ∨ ¬Ycat) ∧ ¬Ydog)) (4)

and
¬Ydog ∧ ¬Ycat. (5)

What remains is to conjoin Eq. (4) with Yanimal, and Eq. (5) with ¬Yanimal, and disjoin the resulting
constraint circuits. What we get is a mixture over the possible solutions: If we predict there is a dog
or a cat, or both, in e.g., an image, we better predict that there’s an animal. Conversely, the absence
of a dog and a cat from an image implies nothing as to the presence of an animal in the image.

18

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

×

×

1{Y3 = 1}

×

1{Y3 = 0}

Compilation techniques like the one we illustrated do not, however, escape the hardness of the
problem: the compiled circuit can be exponential in the size of the constraint, in the worst case. In
practice, nevertheless, we can obtain compact circuits because real-life logical constraints exhibit
enough structure (e.g., they encode repeated sub-problems) that can be easily exploited by a compiler.
We refer to the literature of compilation for details on this [18].

C Overparameterizing the single-circuit SPL

As mentioned in Def. 3.8, SPLs can be realized as a single circuit by first compiling a complex logical
constraint into a deterministic constraint circuit, and then parameterizing it using a gating function of
the network embeddings. Intuitively, this parameterization induces a probability distribution over
the possible solutions of a logical formula encoded in the constraint circuit. The expressiveness of
this distribution depends on the number of parameters of the constraint circuit, i.e., the number of
weighted edges associated to sum units. As we would like to endow our single-circuit SPL with the
ability to induce complex distributions, we devise two strategies to introduce more parameters than
what the constraint circuit alone can offer: replication and mixture multiplication.

Replication works by maintaining m copies of the circuit, and taking their weighted average, i.e.,
introducing a sum unit that mixes them [58]. Mixture multiplication, instead, substitutes a single local
marginal distribution encoded by a sub-circuit rooted into a sum unit with k mixture models over the
same scope. In practice, we create k − 1 copies of each sum units and rewire them by computing a
cross product of their inputs as in Peharz et al. [58]. Algorithm 1 formalizes this process.

As mentioned in Def. 3.8, both strategies relax determinism. However, note that they do not alter the
support of the underlying distribution. This guarantees that all the predictions will be consistent with
the encoded constraint (D3) (Sec. 2).

D Additional experimental details

D.1 Simple path prediction and preference learning

In the simple path prediction task, given a source and destination node in an unweighted grid
G = (V,E), the neural net needs to find the shortest unweighted path connecting them. We consider
a 4 × 4 grid. The input (x,y) is a binary vector of length |V | + |E|, with the first |V | variables
indicating the source and destination nodes, and the subsequent |E| variables indicating a subgraph
G′ ⊆ G. Each label is a binary vector of length |E| encoding the unique shortest path in G′. For
each example, we obtain G′ by dropping one third of the edges in the graph G uniformly at random,
filtering out the connected components with fewer than 5 nodes, to reduce degenerate cases, and then
sample a source and destination node uniformly at random from G′. The dataset consists of 1600
such examples, with a 60/20/20 train/validation/test split.

In the preference learning task, given a user’s ranking over a subset of items, the network has to
predict the user’s ranking over the remaining items. We encode an ordering over n items as a binary
matrix Yij , where for each i, j ∈ 1, . . . , n, Yij indicates whether item i is the jth element in the
ordering. The input x consist of the user’s preference over 6 sushi types, and the model has to predict
the user’s preferences (a strict total order) over the remaining 4. We use preference ranking data over
10 types of sushi for 5, 000 individuals, taken from [49], and a 60/20/20 split.

We follow Xu et al. [80] in employing a 5-layer with 50 hidden units each and sigmoid activation
functions, and 3-layer MLP with 50 hidden units each as a baseline for the simple path prediction,

19

Algorithm 1 OVERPARAMETERIZE(c, k, cache, first_call)
1: Input: a smooth, deterministic, and structured-decomposable circuit c over variables X, an

overparameterization factor k, and a cache for memoization, and a flag to denote the first call
2: Output: an overparameterized, smooth, and structured-decomposable circuit c over X
3: if q ∈ cache then
4: return cache [q]
5: if c is an input unit then
6: nodes← [c]
7: else if c is a sum unit then
8: elements← []
9: //For every product unit that is an input of c

10: //recursively overparameterize its inputs,
11: //which are sum units, and take their cross (cartesian) product
12: for (cL, cR) ∈ in(c) do
13: left← OVERPARAMETERIZE(cL, k)
14: right← OVERPARAMETERIZE(cR, k)
15: elements.APPEND([CROSSPRODUCT(left, right)]
16: in(c)← elements
17: nodes = [c] + [COPY(c) for i = 1 to k]
18: if first_call then
19: //Create a sum unit whose inputs are nodes
20: //and whose parameters are 1s.
21: nodes← SUM(nodes, {1}|nodes|i=1)
22: cache(c)← nodes
23: return nodes

and preference learning, respectively. We equip this baselines with a FIL and additionally with the
Semantic Loss [80] (MLP+LSL) or its entropic extension [3] (MLP+NESYENT).

We compile the logical constraints into an SDD [17] and then turn it into a constraint circuit cK
that is used for LSL, NESYENT (Sec. 4) and our 1-circuit implementation of SPLs. To obtain
the results for SPL in Table 2, we perform a grid search over the using the validation set for a
maximum of 2000 iterations, similar to Xu et al. [80]. We search over the learning rates in the range
{1× 10−3, 5× 10−3, 1× 10−4, 5× 10−4}, the overparameterization factor k in the range {2, 4, 8},
as well as the number of circuit mixtures m in the range {2, 4, 8}, evaluating the model with the best
performance on the validation set.

D.2 Hierarchical Multi-Label Classification

We follow the experimental setup of Giunchiglia and Lukasiewicz [32] and evaluate SPL on 12
real-world HMLC tasks spanning four different domains: 8 functional genomics, 2 medical images,
1 microalgea classification, and 1 text categorization. These tasks are especially challenging due
to the limited number of training samples, the large number of output classes, ranging from 56 to
4130, as well as the sparsity of the output space. We used the same train-validation-test splits and
experimental setup as [32]. For numeric features we replaced missing values by their mean, and for
categorical features by a vector of zeros, and standardized all features. We used the validation splits to
determine the number of layers in the gating function in the range {2, 4, 8}, the overparameterization
factor in the range {2, 4, 8}, and the number of mixtures in the range {2, 4, 8}, keeping all other
hyperparameters fixed. The final models were obtained by training using a batch size of 128 and
early stopping with a patience of 20 on the validation set.

D.3 Warcraft pathfinding

We evaluate SPL on the more challenging task of predicting the minimum cost path in a weighted
12× 12 grid imposed over terrain maps of Warcraft II [60]. Our setting differs from the one proposed
by Pogančić et al. [60] in two ways: i) a node only neighbors four nodes as instead of eight, excluding
the diagonals; ii) the neural network predicts the edges in the path, as opposed to the vertices,
resolving ambiguities in the previous task (note that a set of vertices can might ambiguously encode

20

Table 5: A comparison of the performance of single-circuit SPL with different parameters: m,
the number of circuit copies in our replication strategy; gates, the number of layers in the gating
function; and k the overparameterization factor in the mixture multiplication strategy (Algorithm 1).
We report the percentage of exact matches of the predicted labels on the validation set of the
HMLC dataset, highlighting the best numbers in boldface. As can be seen, all datasets benefit from
overparameterization.

DATASET m: 2 m: 4 m: 8

GATES: 2 GATES: 4 GATES: 2 GATES: 4 GATES: 2 GATES: 4

k: 2 k: 4 k: 2 k: 4 k: 2 k: 4 k: 2 k: 4 k: 2 k: 4 k: 2 k: 4

CELLCYCLE 4.25 4.48 4.48 4.01 4.60 4.83 4.25 4.48 4.36 4.13 4.36 4.13
DERISI 2.26 2.02 2.14 2.26 2.49 2.26 2.38 2.38 2.49 2.38 2.26 2.49
EISEN 6.05 6.05 6.05 6.05 5.86 6.43 6.81 6.24 6.43 6.43 6.05 6.43
EXPR 5.42 4.83 5.18 5.30 4.83 5.54 5.54 5.18 5.54 5.42 5.18 5.42
GASCH1 5.56 5.79 5.67 5.91 5.44 5.67 6.03 6.26 5.79 5.79 6.26 6.03
GASCH2 4.00 4.24 4.83 4.95 4.12 4.00 4.12 4.36 4.24 3.53 4.24 4.59
SEQ 7.74 7.74 7.51 7.85 8.19 7.28 7.96 7.17 7.96 7.39 7.51 8.42
SPO 2.27 2.15 2.15 2.51 2.39 2.27 2.51 2.51 2.87 2.27 2.39 2.63
DIATOMS 53.71 54.68 50.16 51.29 53.23 52.10 49.35 48.23 52.90 52.58 46.61 47.26
ENRON 19.53 18.52 17.85 19.87 19.87 20.20 20.54 20.20 19.53 20.20 19.53 19.87
IMCLEF07A 86.97 87.03 86.27 86.60 87.00 87.33 86.50 86.70 87.07 86.90 87.00 86.83
IMCLEF07D 85.93 85.80 85.87 85.73 85.60 86.50 85.87 85.90 85.87 85.83 86.10 85.50

more than one path). Each vertex is assigned a cost corresponding to the type of the underlying
terrain (e.g., earth has lower cost than water). The minimum cost path between the top left and the
bottom right vertices of the grid is encoded as an indicator matrix, and serves as a label.

We use Graphillion3 to compile the path constraint, limiting our constraint to the set of paths whose
length is less than 29, as determined on the training set.

As in [60] we use a ResNet18 [36] with FIL optionally with LSL as a baseline. Given the largest size
of the compiled constraint circuit cK in this case 1010, we use a two-circuit implementation of SPL.
We use the identity function as our gating function and do a grid search over only the number of
mixtures in the range {2, 4, 8} in our model, keeping all other hyperparameters as proposed in [60].

D.4 A study on the effect of overparameterization in SPL

We now illustrate the effect that overparameterization has on the performance of the single-circuit
SPL. To that end, we performed an ablation study, comparing single-circuit SPLs comprising a
different number of circuit copies m for our replication strategy, a different number of layers in the
gating function, denoted by Gates, and the overparameterization factor k as used in Algorithm 1 in
our mixture multiplication strategy.

We report the exact match percentage of the predicted labels on the validation set of the 12 HMLC
datasets in Table 5. As a general trend, we can see that our overparameterization strategies pay off
and in general more mixture nodes help (k = 4) as well as using more replicas (m ≥ 4). The effect of
employing a deeper gating function is less striking instead, with a two-layer gating function achieving
highest performances on 9 datasets.

E Ethical Considerations

SPLs are meant as a module to be added on top of neural networks, and as such it does not significantly
alter the ethical risk of the underlying model and target application. One exception is if the symbolic
constraint is wrong (because e.g. it was encoded by a non-expert), in which case enforcing consistency
- as SPLs do - may lead to mistakes or bias in the model’s predictions.

3https://github.com/takemaru/graphillion

21

GROUND TRUTH RESNET-18 SEMANTIC LOSS SPL (ours)

cost: 55.22 cost:∞ cost:∞ cost: 55.22

cost: 57.31 cost:∞ cost:∞ cost: 58.09

cost: 97.38 cost:∞ cost:∞ cost: 98.38

cost: 30.50 cost:∞ cost:∞ cost: 30.80

cost: 39.31 cost:∞ cost:∞ cost: 45.09

Figure 4: More examples of shortest path predictions in SPLs and competitors. SPLs always
deliver valid paths and even when these do not exact match the ground truth, they are very close in
terms of their global cost. Paths from the baselines might yield a higher Hamming score (as they have
more overlapping edges with the ground truth) but are invalid.

22

F Timings

Table 6: A comparison of the timings of the different methods used throughout our experiments. All
timings are in seconds. The timings for HMLC datasets are obtained by averaging over the timings of
an entire epoch. All other timings are the average over three function calls. An empty cell, denoted
by a dash, indicates the method was not used for that dataset, and therefore its timing is unavailable.

DATASET COMPILATION LSL NESYENT
SPLS

PARAMETERIZE CROSS-ENTROPY MAP

CELLCYCLE 68 - - 0.03 0.41 0.74
DERISI 68 - - 0.01 0.21 0.37
EISEN 29 - - 0.01 0.16 0.28
EXPR 68 - - 0.00 0.11 0.19
GASCH1 68 - - 0.02 0.42 0.77
GASCH2 68 - - 0.03 0.40 0.74
SEQ 66 - - 0.01 0.22 0.36
SPO 67 - - 0.03 0.40 0.74
DIATOMS 8 - - 0.00 0.09 0.14
ENRON 0.04 - - 0.01 0.16 0.28
IMCLEF07A 0.35 - - 0.00 0.06 0.11
IMCLEF07D 0.08 - - 0.00 0.05 0.10
WARCRAFT 457 16.30 - 0.21 14.11 15.59
PREFERENCE [80] 0.024 0.035 0.00 0.00 0.01
SIMPLE PATH [80] 0.34 0.49 0.00 0.13 0.19

23

