
A Table of Notation

T ∈ N Total number of rounds of collection.

V ∗ ∈ R Target performance.

P ∈ N Penalty for failing to reach target performance.

c ∈ N Cost of per-item collection.

qt ∈ N, t ∈ {0, . . . , T} Number of data points in round t.

Dq Data set of size q.

V (D) Valuation of model trained on data set D.

Vq := V (Dq) Short-hand notation for model valuation.

D∗ := argminq {q | Vq ≥ V ∗} The minimum data requirement.

F (q) = P (D∗ < q) The CDF of the minimum data requirement.

f(q) = dF (q)/dq The PDF of the minimum data requirement.

L(q1, . . . , qT ;D
∗) The stochastic objective function for data collection.

dt ≥ 0 Amount of data to collect in round t.

R :=
{
(rqt/R, V (Drqt/R))

}R
r=1

The regression set representing the learning curve of a given model and data set.

K ∈ N Number of data sources in multi-source setting.

qt ∈ NK Vector containing number of data points per-source in round t.

c ∈ NK Vector of per-source costs.

Table 3: Table of notation used throughout paper.

B Learn-Optimize-Collect

Algorithm 1 summarizes the complete workflow of LOC within the data collection problem. Given
a target score V ∗, we collect data until we have met the target or until T rounds have passed. In
this section, we first expand our complete LOC algorithm. We then provide further details on the
regression procedure used to estimate the data requirement distributions. Finally, we introduce a more
practical reformulation of our optimization problem (4), which is what we later use in our numerical
experiments.

B.1 Details on the Learning and Optimizing Approach

Our approach for determining how much data to collect consists of three steps. The first step is to
collect performance statistics by measuring the training dynamics of the current data set Dqt . Here,
we sample subsets of the current data set, train our model on the subset, and evaluate the score.
We repeat this process for up to R subsets, where R denotes the size of our performance statistics
regression data setR.

The second step is to model the data requirement distribution D∗. We perform this by creating
bootstrap samples fromR, and then fitting a regression model v̂(q;θ) that can estimate the model
score as a function of data set size. We then invert this regression function by solving for the minimum
q̂ for which the model will predict that we have exceeded the target performance. We repeat this
process to obtain B bootstrap estimates of D∗. We can then fit any density estimation model to
approximate a probability density and a cumulative density function. In this paper, we focus on
Kernel Density Estimation (KDE) and Gaussian Mixture models since such models can be easily fit
and provide functional forms of the PDF.

Finally in the third step, we solve our optimization problem (4) via gradient descent. This problem
yields the optimal data set sizes q∗1 , . . . , q

∗
T that we should have at the end of each round. Furthermore,

if we are in the t-th round for t > 1, we freeze the values for q1, . . . , qt−1 to the data set sizes that we
have observed in the previous rounds. Upon solving this problem, we then collect data until we have
qt samples, and then re-train our model to evaluate our current state.

15

Algorithm 1 Learn-Optimize-Collect (LOC)
1: Input: Initial data set Dq0 , Sampling distribution p(z), Score function V (D), Target score V ∗, Maximum

rounds T , Cost c, Penalty P , Regression model v̂(q;θ), Regression set size R, Density Estimation model
f(q), Number of bootstrap samples B.

2: Initialize round t = 0, loss L = 0
3: repeat
4: COLLECT PERFORMANCE STATISTICS
5: InitializeR = ∅, D0 = ∅
6: for r ∈ {1, . . . , R} do
7: Sub-sample Dqtr/R ⊂ Dqt by augmenting to Dqt(r−1)/R

8: Evaluate V (Dqtr/R) and updateR ← R∪ {(qtr/R, V (Dqtr/R)}
9: end for

10: end
11: ESTIMATE DATA REQUIREMENT DISTRIBUTION
12: InitializeQ = ∅
13: for b ∈ {1, . . . , B} do
14: Create bootstrapRb by sub-sampling with replacement fromR
15: Fit regression model θ∗ = argminθ

∑
(q,v)∈Rb

(v − v̂(q;θ))2

16: Estimate data requirement q̂b = argminq {q | v̂(q;θ∗) ≥ V ∗}
17: UpdateQ ← Q∪ {q̂b}
18: end for
19: Fit Density Estimation model f(q) using the empirical distributionQ and let F (q) =

∫ q

0
f(q)dq

20: end
21: COLLECT DATA
22: Solve problem (4) using Density Estimation models f(q) and F (q) to obtain q∗1 , . . . , q

∗
T .

23: Sample D̂ ∼ p(z) until |D̂| = qt − qt−1

24: Update loss L← L+ c(qt − qt−1)

25: Update Dqt = Dqt−1 ∪ D̂
26: end
27: Evaluate V (Dqt) and update t← t+ 1
28: until V (Dqt) ≥ V ∗ or t = T
29: if V (Dqt) < V ∗ then
30: Update loss L← L+ P
31: end if
32: Output: Final collected data set Dqt , loss L

B.2 Regression Model for D∗

To estimate the data requirement, we build a regression model of the learning curve and then invert
this curve. The classical learning curve literature proposes using structured functions to regress on
the learning curve. For example with neural scaling laws, the most common function is a power law
model v̂(q;θ) := θ0q

θ1 + θ2 where θ := {θ0, θ1, θ2} [5, 18, 16, 6, 9, 10, 19, 8, 2]. As a result, the
main experiments of our paper use this model.

We fit each regression function by minimizing a least squares problem using the Levenberg-Marquardt
algorithm as implemented by Scipy [48, 49]. The parameters for each function are initialized to either
1 or 0 depending on if they are product or bias terms. To further help fit the data, we use weighted
least squares where each subsequent point is weighted twice as much as the previous point. This
ensures that our regression model is tuned to better fit the curve for larger q.

B.3 Alternate Re-formulation of Problem (4)

Although problem (4) has a differentiable objective function, it includes a set of lower bound
constraints, meaning that a vanilla gradient descent algorithm may not immediately apply. A naive
solution algorithm may be to use projected gradient descent. Instead, we show that the problem can
be reformulated to remove these constraints.

For each t, let dt = qt − qt−1 denote the additional amount of data collected in each round. Note that
we can recursively re-define qt = q0 +

∑t
r=1 dr. Furthermore, the ordering inequality constraints

can all be re-written to non-negativity constraints dt ≥ 0. We now re-write problem (4) using these

16

new variables:

min
d1,···dT

c

T∑
t=1

dt

(
1− F

(
q0 +

t−1∑
r=1

dr

))
+ P

(
1− F

(
q0 +

T∑
r=1

dr

))
s. t. d1, . . . , dT ≥ 0.

The objective in the above formulation remains differentiable. Moreover, the non-negativity con-
straints can be removed by re-writing dt ← softplus(dt) for all t. As a result, we can solve this
problem by using an off-the-shelf gradient descent algorithm. Finally we note that in our experiments,
we implemented a projected gradient descent based on (4) and the above gradient descent algorithm.
We found that the above streamlined approach to generate slightly better final solutions.

C Details on the Main Theory

In this section, we explore mathematical properties and challenges of the optimal data collection
problem. In Section C.1, we discuss the drawbacks of alternative approaches to our modeling
framework. Then in Section C.2, we prove our main theorem demonstrating an analytic solution in
the single-round problem.

C.1 Markov Decision Process Alternatives

The data collection problem requires sequential decision-making in terms of collecting additional
data in each round. A natural modeling approach for such problems is via Markov Decision Processes
(MDPs). However, MDP techniques are challenging for this problem due to (i) the unobservability
of the state, and (ii) an infinite state space. That is, until we have collected enough data to meet the
target, we do not know how much data is the minimum, which can furthermore be arbitrarily large.
Here, we sketch a potential alternative MDP framework and highlight the core challenge.

Our sequential decision-making problem can be written as a Partially Observable Markov Decision
Process (POMDP) [50, 51]. Furthermore, because this state variable is constant throughout the
collection problem, we can write it as an EK ‘Learning-and-Doing’ model [52]. Such POMDPs are
defined by the tuple (Θ,A,S, p, rt), where the state space characterizes the data requirement D∗ ∈
Θ := R+, the action space characterizes the additional data collected dt := (qt − qt−1) ∈ A := R+,
and the observation set S := {0, 1} characterizes a binary variable 1{V (Dqt) ≥ V ∗} = 1{qt ≥ D∗}.
Furthermore, p(·|D∗, dt) is the observation transition probability and rt(·) is the reward function
where rt(qt, qt−1, D

∗) := −c(qt − qt−1) for t ≤ T and rT+1(qt, qt−1, D
∗) := −P1{qT < D∗}.

Because the state variable is unobserved, POMDPs are typically solved by using a belief distribution
of the state variable to average the reward in the value function. When both the state and the action
space of a POMDP are finite, Smallwood and Sondik [53] show that this value function is piecewise-
linear and can be solved by exact methods, albeit under a curse of dimensionality with respect to
these spaces. Unfortunately, for a general POMDP with an infinite state and action space, these
methods do not apply and we most often resort to approximation techniques [54]. Moreover in
our case, approximations based on discretizing the state and action space fall prey to the curse of
dimensionality.

Alternatively, we may naively consider applying reinforcement learning. However, note that real-
world data collection tasks do not contain the requisite sizes of learning data or generalizable
simulation mechanisms that are staples in reinforcement learning techniques. These challenges,
coupled with the goal of delivering practical managerial guidelines for data collection operations,
motivate us to explore easy-to-implement techniques for optimizing data collection.

C.2 Proof of Theorem 1

Our main theorem states that the one-round problem has an analytic solution. However, the proof
requires several auxiliary results. For clarity, we first reproduce the theorem.

Theorem 1 (Repeated). Consider the one-round problem

min
q1

c(q1 − q0) + P (1− F (q1)) s. t. q0 ≤ q1

17

Assume F (q) is strictly increasing and continuous. For any ϵ such that F (q0) < 1 − ϵ, let P :=
c/f(F−1(1 − ϵ)). The optimal solution to the corresponding problem (5) is q∗1 = F−1(1 − ϵ).
Furthermore, the optimal solution satisfies F (q∗1) = 1− ϵ.

The assumption of a strictly increasing and continuous cumulative density function is needed
to ensure that the data requirement distribution has a well-defined quantile function F−1(p) :=
infq{q | F (q) ≥ p}, where the optimal solution for any p ∈ (0, 1) is unique.

The proof for Theorem 1 relies on equating the one-round optimization problem to the following
constrained optimization problem:

min
q1

c(q1 − q0) s. t. F (q1) ≥ 1− ϵ , q0 ≤ q1 (8)

where ϵ > 0 is a pre-determined parameter. This above problem (8) is solving for the least amount of
additional data to collect such that with probability at least 1− ϵ, we collect above the minimum data
requirement. We first characterize the properties of problem (8).
Lemma 1. Problem (8) is a convex optimization problem.

Proof. We only need to prove that the set {q1 | F (q1) ≥ 1− ϵ} is a convex set, since the objective
and remaining constraint are convex. Since F (q) is a monotonically non-decreasing function in q, for
any θ ∈ [0, 1] and q < q̂ that satisfy the CDF constraint, we have

F (θq + (1− θ)q̂) ≥ F (q) ≥ 1− ϵ.

Because the convex combination of any two points is in the set, the set must be convex.

Lemma 2. The optimal solution to problem (8) is

q∗ =

{
F−1(1− ϵ), if F (q) < 1− ϵ

q0 otherwise

Proof. First consider the case where F (q0) ≥ 1− ϵ. Then, q0 is a feasible solution to problem (8).
Furthermore due to the second constraint, any q < q0 is infeasible. Since q0 minimizes the objective,
it is optimal.

Next consider the case where F (q0) < 1− ϵ. Then, let q1 = F−1(1− ϵ) = inf{q | F (q) ≥ 1− ϵ}
be the smallest solution that satisfies the CDF constraint. By the monotonicity of F (q), it follows
that q1 > q0. Therefore, this solution minimizes the objective.

We are now ready to prove Theorem 1.

Proof of Theorem 1. We prove this result by first developing two different characterizations of the
optimal solution set of problem (5) and then applying their equivalence.

First note that problem (5) is an optimization problem with one variable q1 over a constrained domain
[q0,∞). Furthermore, the objective function is continuous everywhere, meaning that there are two
possible scenarios:

• q∗1 satisfies f(q1) = c/P .

• q∗1 := q0 and the optimal value is P (1− F (q0)).

The first scenario is obtained by taking the derivative of the objective function and setting it to 0. The
second scenario comes from the boundary condition. Moreover, note that the objective is unbounded
as q1 → +∞ meaning the above scenario is the only boundary condition that we need to consider.

Next, note that problem (5) is equivalent to the following optimization problem

min
q1,ϵ

c(q1 − q0) + Pϵ

s. t. ϵ ≥ 1− F (q1)

q1 ≥ q0

(9)

18

min
ϵ

c(F−1(1− ϵ)− q0) + Pϵ s. t. ϵ ≥ 1− F (q0)

For any fixed ϵ, problem (9) is equivalent to problem (8), and therefore by Lemma 1, the problem is
convex optimization problem.

We can optimize problem (9) by breaking into two cases. First, for any fixed ϵ ≥ 1− F (q0), setting
q∗1(ϵ) = 0 attains a feasible solution and mnimizes the objective to Pϵ.

Second, for any fixed ϵ ≤ 1− F (q0), Lemma 2 states that q∗1(ϵ) = F−1(1− ϵ) is a corresponding
optimal solution and the objective function reduces to

c
(
F−1(1− ϵ)− q0

)
+ Pϵ.

Moreover, from the original formulation (5), we can substitute q∗1(ϵ) and obtain f(F−1(1−ϵ) = c/P .

Finally, problem (9) is optimized via the second case if and only if there exists a feasible ϵ ≤ 1−F (q0)
that satisfies

c
(
F−1(1− ϵ)− q0

)
+ Pϵ ≤ P (1− F (q0)).

We can rewrite this condition as follows. Let q1 > q0 and assume that (6) holds. Then,

c(q1 − q0) ≤ PF (q1)− PF (q0)

⇒ c(q1 − q0)− PF (q1) ≤ −PF (q0)

⇒ c(q1 − q0) + P (1− F (q1)) ≤ P (1− F (q0)).

Let ϵ = 1 − F (q1). Since F (q1) ≥ F (q0), we have ϵ ≤ 1 − F (q0), meaning that there is a
feasible q1 > q0 to problem (9) with lower objective function value than q0. Thus, assumption
(6) guarantees that problem (9) has an optimal solution q∗1 = F−1(1 − ϵ∗) where ϵ∗ must satisfy
f(F−1(1− ϵ∗) = c/P . Conversely, if (6) is not satisfiable for any q1 > q0, then we can use the same
steps to show that q∗1 = q0 is an optimal solution to the problem.

D Optimal Data Collection with Multiple Sources

The multi-variate data collection problem considers multiple sources delivering different types of
data required to train a model. Consider K data sets with q1, . . . , qK points in each, respectively.
Rather than collecting up to qt data points in each round, we optimize a vector qt ∈ RK

+ where each
element qkt refers to how much data we need from the k-th source. Furthermore, the minimum data
requirement is now a vector D∗.

This problem can be solved using the same general approach outlined in Algorithm 1, but with two
changes. First, we require a multi-variate version of the PDF and CDF of D∗. This necessitates new
neural scaling law regression models for dealing with multiple data sources. Second, we modify the
optimization problem from Appendix B to accommodate decision vectors. We highlight the above
two steps in this section.

D.1 A General Multi-variate Neural Scaling Law

In order to construct a PDF and CDF in the multi-variate setting, we follow the same gen-
eral steps as in Algorithm 1. We first collect a data set of performance statistics R :=
{(qr, V (D1

q1r
,D2

q2r
, · · · ,DK

qKr
)}Rr=1 as before. We then use bootstrap resamples of this data set to fit

parameters θ∗ to a regression model v̂(q1, . . . , qK ;θ) and then solve for

q̂ := argmin
q
{cTq | v̂(q1, . . . , qK ;θ∗) ≥ V ∗}.

Finally, we fit a density estimation model over our data set of q̂.

The key challenge to this approach however is in designing a multi-variate regression function. To the
best of our knowledge, the neural scaling law literature has not explored general power law models
that can accommodate K different types of data for arbitrary tasks.

19

We propose an easy-to-implement baseline regression model by adding the contributions of each data
set being used. Then, our additive regression model is

v̂(q1, . . . , qK ;θ) :=

K∑
k=1

v̂k(q
k;θk)

where v̂k(qk;θk) can be any single-variate regression model for estimating score. For instance,
consider K = 2 data types with power law regression models for each data type. Our multi-variate
regression model becomes

v̂(q1, q2;θ) = θ1,0(q
1)θ1,1 + θ2,0(q

2)θ2,1 + θ3.

We may also incorporate other base models in the same way, such as the logarithmic or arctan
functions introduced in Mahmood et al. [2].

The benefit of this additive regression model is that we can easily fit it via least squares minimization
using a regression data set R := {(q1r , q2r , V (D1

q1r
,D2

q2r
)}Rr=1. Furthermore, additive models are

simple and offer interpretable explanations on the contributions of each data type to performance by
assuming that each data set has an independent effect. Finally, additive models are common in many
other tasks, such as when estimating the valuation of specific data points [55].

We remark that some recent research has explored neural scaling laws for specific tasks with multiple
data types. For instance, Mikami et al. [11] explore a K = 2 power law for transfer learning from
synthetic to real domains, where they use a multiplicative component that captures an interaction
between real and synthetic data sets. Because scaling laws in multi-variate settings remain an open
area of study, if there exist specific structural regression functions for a given application with
different types of data, then such functions should be used in place of the additive model. Moreover,
our downstream optimization model operates independently of the regression model, as long as the
regression model can be re-trained with bootstrap samples in order to facilitate density estimation.

D.2 The Optimization Problem with Multiple Decisions

Just as in the single-variate case, problem (7) has a differential objective function but a series of lower
bound constraints. We can use the same approach highlighted in Appendix B to reformulate this
problem and remove the constraints. We summarize this reformulation below.

For each t, let dt = qt − qt−1 be the additional data collected in each round. Then, we recursively
re-define qt = q0 +

∑t
r=1 dr and re-write the problem to

min
d1,···dT

cT
T∑

t=1

dt

(
1− F

(
q0 +

t−1∑
r=1

dr

))
+ P

(
1− F

(
q0 +

T∑
r=1

dr

))
s. t. d1, . . . ,dT ≥ 0.

The above problem can now be solved using off-the-shelf gradient descent.

E Simulation Experiment Setup

The most intuitive approach of validating our data collection problem is by repeatedly sampling from
a data set, training a model, and solving the optimization problem. However, performing a large set
of such experiments over many data sets becomes computationally intractable. Instead, we follow the
approach introduced in Mahmood et al. [2], which proposes a simulation model of the data collection
problem. This section summarizes the simulation setup.

The simulation replicates the steps in Algorithm 1 except with one key difference. In the simulation,
we replace the score function V (D) with a ground truth function vgt(q) that serves as an oracle which
reports the expected score of the model trained with q data points. Thus, rather than having to collect
data and train a model in each round, we evaluate vgt(qt) and treat this as the current model score.
The optimization and regression models do not have access to vgt(q).

20

E.1 A Piecewise-Linear Ground Truth Approximation

In order to build a ground truth function, we first use the sub-sampling procedure in Algorithm 1
to collect performance statistics over subsets of the entire training data set. Using these observed
statistics, we then build a piecewise-linear model of the ground truth. Below, we first highlight how to
construct a piecewise-linear model when given a set of data set sizes and their corresponding scores.
In the next subsection, we will detail the exact data collection process.

The Single-variate (K = 1) Case. Mahmood et al. [2] develop a ground truth function as follows.
Let q0 ≤ q1 ≤ q2 ≤ · · · be a series of data set sizes and let Dq0 ⊂ Dq1 ⊂ Dq2 ⊂ · · · be their
corresponding sets. Then, consider the following piecewise-linear function:

vgt(q) :=

V (Dq0)

q0
n, q ≤ q0

V (Dqt)− V (Dqt−1
)

qt − qt−1
(q − qt) + V (Dqt−1

), qt−1 ≤ q ≤ qt

This function is concave and monotonically increasing, which follows the general trend of real
learning curves [5]. Furthermore Mahmood et al. [2] show that given sufficient resolution, i.e.,
enough data subsets, this piecewise linear function is an accurate approximation of the true learning
curve V (D).
The Multi-variate (K = 2) Case. In the previous K = 1 case, the ground truth was formed by
taking linear approximations between different subset sizes. When K > 1, we have multiple subsets
that are used to evaluate the score V (D1, . . . ,DK).

We focus specifically on K = 2 in our numerical experiments and propose a generalization of
the previous piecewise-linear function. Here, rather than building lines on the intervals between
subsequent sets, we build planes on triangular intervals. Specifically, let q10 ≤ q11 ≤ q12 ≤ · · · and
q20 ≤ q21 ≤ q22 ≤ · · · be two series of data set sizes, and consider the grid

(q10 , q
2
0) (q11 , q

2
0) (q12 , q

2
0) · · ·

(q10 , q
2
1) (q11 , q

2
1) (q12 , q

2
1) · · ·

(q10 , q
2
2) (q11 , q

2
2) (q12 , q

2
2) · · ·

...
...

...
. . .

For each tuple (q1s , q
2
t) in the above grid, let V (D1

q1s
,D2

q2t
) be the score of a model trained on two data

sets of the corresponding respective sizes.

For each index (s, t) we fit linear models on the corresponding lower right and upper left trian-
gles. First, let (α(s, t), β(s, t), γ(s, t)) be the parameters of the plane defined by the lower triangle
{(q1s−1, q

2
t), (q

1
s , q

2
t−1), (q

1
s , q

2
t)}, i.e., the unique solution to the following linear system:q1s−1 q2t 1

q1s q2t−1 1
q1s q2t 1

α(s, t)
β(s, t)
γ(s, t)

 =

V (D1
q1s−1

,D2
q2t
)

V (D1
q1s
,D2

q2t−1
)

V (D1
q1s
,D2

q2t
)

Thus, for any data set sizes (q1, q2) in this triangle, we evaluate the ground truth by the linear
model α(s, t)q1 + β(s, t)q2 + γ(s, t). Similarly, let (α(s, t), β(s, t), γ(s, t)) be the parameters of
the plane defined by the upper triangle {(q1s , q2t), (q1s+1, q

2
t), (q

1
s , q

2
t+1)}, i.e., the unique solution to

the following linear system: q1s q2t 1
q1s+1 q2t 1
q1s q2t+1 1

α(s, t)
β(s, t)
γ(s, t)

 =

 V (D1
q1s
,D2

q2t
)

V (D1
q1s+1

,D2
q2t
)

V (D1
q1s
,D2

q2t+1
)

Similarly for any (q1, q2) in this triangle, the ground truth is obtained by the linear model α(s, t)q1 +
β(s, t)q2 + γ(s, t).

Finally, we define our ground truth function vgt(q
1, q2). For any q1 ≥ q10 , q

2 ≥ q20 , this function
first identifies the interval [q1s , q

1
s+1]× [q2t , q

2
t+1] in which the point lies. Then, the function assigns a

21

Data set Task Score Full data set size

CIFAR-10 [36] Classification Accuracy 50, 000
CIFAR-100 [36] Classification Accuracy 50, 000
ImageNet [37] Classification Accuracy 1, 281, 167
BDD100K [40] Semantic Segmentation Mean IoU 7, 000
nuScenes [41] BEV Segmentation Mean IoU 28, 130
VOC [43, 44] 2-D Object Detection Mean AP 16, 551

CIFAR-100 [36] Classification Accuracy 25, 000 (Classes 0-49) 25, 000 (Classes 50-99)
BDD100K [40] Semantic Segmentation Mean IoU 7, 000 (Labeled) 70, 000 (Unlabeled)

Table 4: Data sets, tasks, and score functions considered.

score based on whether the point lies in the upper left or the lower right triangle in this interval. We
write this function as

vgt(q
1, q2) :=

α(s, t)q1 + β(s, t)q2 + γ(s, t)

if
∥∥(q1, q2)− (q1s , q

2
t)
∥∥ ≤ ∥∥(q1, q2)− (q1s+1, q

2
t+1)

∥∥ ,
α(s+ 1, t+ 1)q1 + β(s+ 1, t+ 1)q2 + γ(s+ 1, t+ 1)

otherwise,

for q1s ≤ q1 ≤ q1s+1 , q2t ≤ q2 ≤ q2t+1.

For K > 2. The piecewise linear approximations grow increasingly complex as the dimension K
increases. Furthermore, the number of subsets of data set sizes required to create a piecewise linear
approximation increases exponentially with K. Specifically for k ∈ {1, . . . ,K}, let Mk denote the
number of subsets (i.e., |{qk0 , qk1 , . . . , qkMk

}|) of a data set that we consider when creating subsets. For
each combination of K subsets, we must then train a model and evaluate it’s performance to record
V (D1, . . . ,DK). Thus, we must subsample and train our model for O(

∏
k Mk) combinations. This

can quickly become computationally prohibitive.

E.2 Data Collection

We now summarize the data collection and training process used to create the above piecewise-linear
functions for each data set and task. All models were implemented using PyTorch and trained on
machines with up to eight NVIDIA V100 GPU cards. Table 4 details each task and data set size.

Image Classification Tasks. For all experiments with CIFAR-10 and CIFAR-100, we use a
ResNet18 [38] following the same procedure as in Coleman et al. [56]. For ImageNet, we use
a ResNet34 [38] using the procedure in Coleman et al. [56]. All models are trained with cross entropy
loss using SGD with momentum. We evaluate all models on Top-1 Accuracy.

For all experiments, we set the initial data set at q0 = 10% of the data. In data collection,
we create five subsets containing 2%, 4%, · · · , 10% of the training data, five subsets containing
12%, 14%, · · · , 20% of the training data, and eight subsets containing 30%, 40%, · · · , 100% of the
data. Note that we use higher granularity in the early stage as this is where the dynamics of the
learning curve vary the most. With more data, the learning curve eventually has a nearly zero slope.
For each subset, we train our respective model and evaluate performance.

VOC. We use the Single-Shot Detector 300 (SSD300) [45] based on a VGG16 backbone [57],
following the same procedure as in Elezi et al. [58]. All models are trained using SGD with
momentum. We evaluate all models on mean AP.

For all experiments, we set the initial data set at q0 = 10% of the data. In data collection, we sample
twenty subsets at 5% intervals, i.e., 5%, 10%, 15%, · · · , 100% of the training data.

BDD100K. We use Deeplabv3 [39] with ResNet50 backbone. We use random initialization for the
backbone. We use the original data set split from Yu et al. [40] with 7, 000 and 1, 000 data points in
the train and validation sets respectively. The evaluation metrics is mean Intersection over Union
(IoU). We follow the same protocol used in the Image classification tasks to create our subsets of
data.

nuScenes. We use the “Lift Splat” architecture [42], which is used for BEV segmentation from
driving scenes, following the steps from the original paper to train this model. We evaluate on mean

22

Parameter Setting

Optimizer GD with Momentum (β = 0.9), Adam (β0, β1 = 0.9, 0.999)
Learning rate 0.005, . . . , 500
Number of bootstrap samples B 500
Number of regression subsets R See Appendix E.2
Density Estimation Model KDE for K = 1, GMM for K = 2

KDE Bandwidth 20000, . . . , 20000000 for ImageNet
200, . . . , 4000 for all others

GMM number of clusters 4, . . . , 10

Table 5: Summary of hyperparameters used in our experiments.

IoU. Our data collection procedure follows the same steps and percentages of the data set as used for
BDD100K and the Image classification tasks.

CIFAR-100 (2 Types). We partition this data set into two subsets D1 and D2 of 25, 000 images each
containing the first 50 and last 50 classes, respectively. We then train a ResNet18 [38] using different
fractions of the two subsets. We follow the same training procedure as in the single-variate case
except with one difference. Since some of the data sets will naturally be imbalanced (e.g., if we train
with half of the first subset and all of the second subset), we employ a class-balanced cross entropy
loss using the inverse frequency of samples per class.

For each Dk subsets, respectively, we follow the same subsampling procedure used in the single-
variate case. That is, we let q10 = 10% of the first data subset and q20 = 10% of the second data
subset. For each subset, we create 10 subsampled sets at intervals of 2%, 4%, 6%, · · · , 20% of the
respective data subset. We then create eight further subsampled sets at 30%, 40%, · · · , 100% of the
respective data subset. Finally, we train our model and evaluate the score on every combination of the
subsampled subsets of D1 ×D2.

BDD100K (Semi-supervised). For this task, we consider semi-supervised segmentation via pseudo-
labeling the unlabeled data set in BDD100K. The data is partitioned into two subsets D1 and D2

containing 7, 000 labeled and 70, 000 unlabeled scenes. As before, we use the Deeplabv3 [39]
architecture with a ResNet50 backbone. Here however, we:

1. First train with a labeled subset of D1 via supervised learning.

2. Pseudo-label an unlabeled subset of D2 using the trained model.

3. Re-train the model with the labeled subset and the pseudo-labeled subset.

We follow the same procedure as in the single-variate case for both training steps, except we weigh
the unlabeled data by 0.2 to reduce its contribution to the loss.

Training via semi-supervised learning on BDD100K requires long compute times, so we reduce
the number of subsets used in this experiment. For the labeled set D1, we create subsets with
5%, 10%, 15%, 20%, 40%, 60%, 80%, 100% of the data. For the unlabeled set D2, we create subsets
with 0%, 10%, 25%, 50%, 100% of the data. Note that we have five settings of unlabeled data since
we include the case of training with no unlabeled data as well.

E.3 LOC Implementation

For all experiments, we initialize with 10% of the training data set. We consider T = 1, 3, 5 rounds
and sweep a range of V ∗. We provide a summary of parameters in Table 5.

For the experiments with K = 1, we model the data requirement PDF f(q) in each round of the
problem as follows. We first draw B = 500 bootstrap resamples of the current training statisticsR,
whereR = {(rq0/R, V (Drq0/R))}Rr=1 ∪ {(qs, V (Dqs))}ts=1 contains all of the measured statistics
up to the initial data set (e.g., for CIFAR-10, this includes performance with 2%, 4%, · · · , 10%
of the data), and the previous collected data. The latter is obtained by calling our piecewise-
linear ground truth approximation. For each bootstrap resample, we fit a power regression model
v̂(q;θ) = θ0q

θ1 + θ2 and solve for the estimated minimum data requirement. We then use our set of

23

0 10000 20000 30000 40000 50000
q

40

50

60

70

80

90

100

Ac
cu

ra
cy

CIFAR-10

0 10000 20000 30000 40000 50000
q

0

20

40

60

80

Ac
cu

ra
cy

CIFAR-100

0.0 0.2 0.4 0.6 0.8 1.0
q 1e6

0

20

40

60

80

Ac
cu

ra
cy

ImageNet

0 2000 4000 6000 8000 10000
q

60

65

70

75

80

m
AP

VOC

0 2000 4000 6000
q

10

15

20

25

30

m
Io

U

BDD100K

0 5000 1000015000200002500030000
q

0

10

20

30

40

m
Io

U

nuScenes

Figure 5: For a fixed seed, ground truth learning curves (black) and the estimated power law
learning curves (blue) obtained via bootstrapping and ensembling. The shaded region represents the
95 percentile of the ensemble and the dashed blue line represents the mean of the regression functions.
The mean is consistently higher than the unknown ground truth, whereas the shaded region can at
times cover it.

estimates to fit a Kernel Density Estimation (KDE) model after gridsearching for the best bandwidth
parameter.

For the experiments with K = 2, we use the same above procedure but fit Gaussian Mixture Models
(GMM) due to their having an easily computable CDF via the Gaussian erf(·), rather than numerically
integrating the PDF. We grid-search over the number of mixture components for the GMM model.

We optimize over problems (4) and (7) using gradient descent techniques. Depending on the current
state and data set, different hyperparameters perform better. As a result, we perform extensive
hyperparameter tuning every time we need to solve the optimization problem. Here, we sweep over
gradient descent with momentum and Adam with learning rates between 0.005 to 500.

We initialize each problem with qt equal to the baseline regression solution and qt+s = qt/(s+ 1)
for all 1 ≤ s ≤ T − t. That is, we set the initial value for future collection amounts to be fractions
of the initial value of the immediate amount of data to collect. We identified this initialization by
manually inspecting the solutions found by LOC, consequently it improves the conditioning of the
loss landscape relative to other random initialization schemes.

F Additional Numerical Results

This section contains expanded results of our numerical experiments and further ablations. Our key
results include:

• In Appendix F.1, we evaluate the effectiveness of estimating F (q) by plotting the estimated learning
curves as well as the empirical histograms used to model the data requirement distribution.

• In Appendix F.2, we explore the sensitivity of our optimization algorithm to variations in the cost
and penalty parameters. In all except one instance, LOC consistently maintains a low total cost and
failure rate.

• In Appendix F.3, we explore the multi-variate LOC (i.e., K = 2) for problems where we have a
small number of T = 1, 3 rounds. The baseline fails for almost all instances of T = 1, whereas LOC
maintains a low failure rate.

• In Appendix F.4, we consider variants of LOC where we use different regression functions to
estimate the data requirement distribution. Our optimization framework can be deployed on top of
any regression function to reduce the failure rate.

F.1 Estimating the Data Requirement Distribution F (q)

To estimate F (q), we first create an ensemble of estimated learning curves, which we then invert to
obtain an empirical distribution of estimated values for D∗. Figure 5 plots our bootstrap resampled
estimated learning curves versus the ground truth performance for the first round of data collection
when we have access to an initial Dq0 containing 10% of the full data set. As noted in Mahmood
et al. [2], the mean estimated learning curve diverges from the ground truth. However, by bootstrap
resampling an ensemble of learning curves, we can cover the ground truth with some probability.

Figure 6 plots the empirical histograms of estimated D∗ as well as the estimated F (q) obtained
via KDE on CIFAR-10 with three different values for V ∗. Although the mode of the estimated
distribution is far from the ground truth D∗, the estimated distribution assigns some probability to
the ground truth region. LOC optimizes over this estimated F (q), which allows us to conservatively
collect data and reduce the chances of failure.

24

8000 9000 1000011000120001300014000
q

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Re
la

tiv
e

fre
qu

en
cy

CIFAR-100 (V * = 50)

10000 12500 15000 17500 20000 22500
q

0.0000

0.0002

0.0004

0.0006

0.0008

Re
la

tiv
e

fre
qu

en
cy

CIFAR-100 (V * = 60)

15000 20000 25000 30000 35000 40000
q

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

Re
la

tiv
e

fre
qu

en
cy

CIFAR-100 (V * = 70)

Figure 6: For a fixed seed, the histogram of estimates of D∗ from different bootstrapped models
(blue bars), the estimated F (q) (orange curve), and the ground truth D∗ (black dashed line). Each
plot corresponds to a different V ∗ for CIFAR-100 (see Figure 5 for the learning curve). With higher
targets, regression (i.e., collecting the mean of the distribution) will lead to larger under-estimations.

80 85 90
V *

0.4

0.6

0.8

1.0

1.2

Ra
tio

 o
f p

oi
nt

s q
* /

D
*

CIFAR-10 (T=1)

Power Law
c=1e-03
c=1e-02
c=1e-01
c=1e+00

40 50 60 70
V *

0

1

2

3

4

5

Ra
tio

 o
f p

oi
nt

s q
* /

D
*

CIFAR-100 (T=1)

Power Law
c=1e-03
c=1e-02
c=1e-01
c=1e+00

45 50 55 60 65
V *

0.5

1.0

1.5

2.0

2.5

Ra
tio

 o
f p

oi
nt

s q
* /

D
*

Imagenet (T=1)

Power Law
c=1e-03
c=1e-02
c=1e-01
c=1e+00

80 85 90
V *

0.6

0.8

1.0

1.2

Ra
tio

 o
f p

oi
nt

s q
* /

D
*

CIFAR-10 (T=3)

Power Law
c=1e-03
c=1e-02
c=1e-01
c=1e+00

40 50 60 70
V *

1.0

1.5

2.0

Ra
tio

 o
f p

oi
nt

s q
* /

D
*

CIFAR-100 (T=3)

Power Law
c=1e-03
c=1e-02
c=1e-01
c=1e+00

45 50 55 60 65
V *

0.9

1.0

1.1

1.2

1.3

1.4

Ra
tio

 o
f p

oi
nt

s q
* /

D
*

Imagenet (T=3)

Power Law
c=1e-03
c=1e-02
c=1e-01
c=1e+00

66 68 70 72 74
V *

1

2

3

4

5

Ra
tio

 o
f p

oi
nt

s q
* /

D
*

VOC (T=1)

Power Law
c=1e-03
c=1e-02
c=1e-01
c=1e+00

20 22 24 26
V *

0

10

20

Ra
tio

 o
f p

oi
nt

s q
* /

D
*

BDD100K (T=1)

Power Law
c=1e-03
c=1e-02
c=1e-01
c=1e+00

22 24 26 28 30
V *

0.5

1.0

1.5

2.0

2.5

Ra
tio

 o
f p

oi
nt

s q
* /

D
*

nuScenes (T=1)

Power Law
c=1e-03
c=1e-02
c=1e-01
c=1e+00

66 68 70 72 74
V *

10

0

10

20

30

Ra
tio

 o
f p

oi
nt

s q
* /

D
*

VOC (T=3)

Power Law
c=1e-03
c=1e-02
c=1e-01
c=1e+00

20 22 24 26
V *

0

1

2

3

4

5

Ra
tio

 o
f p

oi
nt

s q
* /

D
*

BDD100K (T=3)

Power Law
c=1e-03
c=1e-02
c=1e-01
c=1e+00

22 24 26 28 30
V *

1.0

1.1

1.2

Ra
tio

 o
f p

oi
nt

s q
* /

D
*

nuScenes (T=3)

Power Law
c=1e-03
c=1e-02
c=1e-01
c=1e+00

Figure 7: Mean ± standard deviation of the ratio of data collected q∗T /D
∗ for different V ∗ when

we sweep the cost parameter from 0.001 to 1 and fix P = 107. We show T = 1, 3 and refer to the
main paper for T = 5. The dashed black line corresponds to collecting exactly the minimum data
requirement.

F.2 Robustness to the Cost and Penalty Parameters

Figure 7 expands the cost parameter sweep from Figure 3 (Top row) to the settings of T = 1, 3.
For nearly all settings, LOC remains stable to variations in the cost parameter. Nonetheless, careful
parameter selection becomes important as T decreases. This is due to the fact that for low costs, the

25

80 85 90
V *

0.50

0.75

1.00

1.25

1.50

Ra
tio

 o
f p

oi
nt

s q
* /

D
*

CIFAR-10 (T=1)

Power Law
P=1e+06
P=1e+07
P=1e+08
P=1e+09

40 50 60 70
V *

1

2

3

4

5

Ra
tio

 o
f p

oi
nt

s q
* /

D
*

CIFAR-100 (T=1)

Power Law
P=1e+06
P=1e+07
P=1e+08
P=1e+09

45 50 55 60 65
V *

0.5

1.0

1.5

2.0

Ra
tio

 o
f p

oi
nt

s q
* /

D
*

Imagenet (T=1)

Power Law
P=1e+07
P=1e+08
P=1e+09
P=1e+10

80 85 90
V *

0.6

0.8

1.0

1.2

Ra
tio

 o
f p

oi
nt

s q
* /

D
*

CIFAR-10 (T=3)

Power Law
P=1e+06
P=1e+07
P=1e+08
P=1e+09

40 50 60 70
V *

1.0

1.5

2.0

Ra
tio

 o
f p

oi
nt

s q
* /

D
*

CIFAR-100 (T=3)

Power Law
P=1e+06
P=1e+07
P=1e+08
P=1e+09

45 50 55 60 65
V *

1.0

1.2

1.4

Ra
tio

 o
f p

oi
nt

s q
* /

D
*

Imagenet (T=3)

Power Law
P=1e+07
P=1e+08
P=1e+09
P=1e+10

66 68 70 72 74
V *

1

2

3

Ra
tio

 o
f p

oi
nt

s q
* /

D
*

VOC (T=1)

Power Law
P=1e+06
P=1e+07
P=1e+08
P=1e+09

20 22 24 26
V *

0

10

20

30

Ra
tio

 o
f p

oi
nt

s q
* /

D
*

BDD100K (T=1)

Power Law
P=1e+06
P=1e+07
P=1e+08
P=1e+09

22 24 26 28 30
V *

0.5

1.0

1.5

2.0

2.5

3.0

Ra
tio

 o
f p

oi
nt

s q
* /

D
*

nuScenes (T=1)

Power Law
P=1e+06
P=1e+07
P=1e+08
P=1e+09

66 68 70 72 74
V *

0

5000

10000

Ra
tio

 o
f p

oi
nt

s q
* /

D
*

VOC (T=3)

Power Law
P=1e+06
P=1e+07
P=1e+08
P=1e+09

20 22 24 26
V *

0

2

4

6

Ra
tio

 o
f p

oi
nt

s q
* /

D
*

BDD100K (T=3)

Power Law
P=1e+06
P=1e+07
P=1e+08
P=1e+09

22 24 26 28 30
V *

1.0

1.2

1.4

Ra
tio

 o
f p

oi
nt

s q
* /

D
*

nuScenes (T=3)

Power Law
P=1e+06
P=1e+07
P=1e+08
P=1e+09

Figure 8: Mean ± std of the ratio of data collected q∗T /D
∗ for different V ∗ when we sweep the

penalty parameter from 106 to 109 and fix c = 1. We show T = 1, 3 and refer to the main paper for
T = 5. The dashed black line corresponds to collecting exactly the minimum data requirement.

total amount of data collected increases as T decreases (e.g., c = 0.001 for BDD100K). Furthermore,
Figure 8 expands the penalty parameter sweep from Figure 3 (Bottom row). Here, we observe similar
properties to the cost parameter sweep.

Although LOC is relatively stable on all other data sets, our results demonstrate some extreme results
for VOC, potentially due to noise in the simulation. For example in Figure 8, setting P = 109,
V ∗ = 71, and T = 3 led to collecting 10, 000 times the minimum data requirement. Such a situation
is unrealistic in a production-level implementation, since in a real implementation, we could impose
further constraints onto problem (4), such as upper bounds on the total amount of data permissible.

F.3 The Value of Optimization over Estimation when K = 2

Figure 9 and Figure 10 expand Figure 4 to T = 1, 3 rounds. The results validate the summary
observations from Table 2 in that the baseline has considerably higher failure rates versus LOC. In
particular for BDD100K at T = 1, the baseline fails consistently for four out of five random seeds.
On the other hand, recall that LOC admits a higher cost ratio compared to the baseline when T = 1.
We can observe now that this high cost ratio is due to the method incurring high cost for a few target
V ∗ values. This behavior is similar to the observation above on VOC with high penalties at T = 3.

26

40 50 60 70
V *

10 2

10 1

100

101

102

Co
st

 R
at

io

CIFAR-100 (2 Types) (T=1)
Power Law
c=[0.01 0.005]

40 50 60 70
V *

0

50

100

Fa
ilu

re
 R

at
e

40 50 60 70
V *

10 2

10 1

100

101

102

Co
st

 R
at

io

CIFAR-100 (2 Types) (T=1)
Power Law
c=[0.01 0.002]

40 50 60 70
V *

0

50

100

Fa
ilu

re
 R

at
e

40 50 60 70
V *

10 2

10 1

100

101

102

Co
st

 R
at

io

CIFAR-100 (2 Types) (T=1)
Power Law
c=[0.01 0.001]

40 50 60 70
V *

0

50

100

Fa
ilu

re
 R

at
e

40 50 60 70
V *

10 2

10 1

100

101

102

103

Co
st

 R
at

io

CIFAR-100 (2 Types) (T=1)
Power Law
c=[0.01 0.0005]

40 50 60 70
V *

0

50

100

Fa
ilu

re
 R

at
e

40 50 60 70
V *

10 2

10 1

100

101

102

Co
st

 R
at

io

CIFAR-100 (2 Types) (T=3)
Power Law
c=[0.01 0.005]

40 50 60 70
V *

0

50

100

Fa
ilu

re
 R

at
e

40 50 60 70
V *

10 2

10 1

100

101

102

Co
st

 R
at

io

CIFAR-100 (2 Types) (T=3)
Power Law
c=[0.01 0.002]

40 50 60 70
V *

0

50

100

Fa
ilu

re
 R

at
e

40 50 60 70
V *

10 2

10 1

100

101

102

Co
st

 R
at

io

CIFAR-100 (2 Types) (T=3)
Power Law
c=[0.01 0.001]

40 50 60 70
V *

0

50

100

Fa
ilu

re
 R

at
e

40 50 60 70
V *

10 2

10 1

100

101

102

103

Co
st

 R
at

io

CIFAR-100 (2 Types) (T=3)
Power Law
c=[0.01 0.0005]

40 50 60 70
V *

0

50

100

Fa
ilu

re
 R

at
e

Figure 9: For experiments on CIFAR-100 with two data types, mean ± standard deviation over 5
seeds of the cost ratio cT(q∗

T − q0)/c
T(D∗ − q0)− 1 and failure rate for different V after removing

99-th percentile outliers. We fix c0 = 1 and P = 1013. The rows correspond to T = 1, 3 (see the
main paper for T = 5) and the columns correspond to c1 = c0/2, c0/5, c0/10, c0/20.

36 38 40 42
V *

10 2

10 1

100

101

Co
st

 R
at

io

BDD100K (Semi-supervised) (T=1)
Power Law
c=[1. 0.1]

36 38 40 42
V *

0

50

100

Fa
ilu

re
 R

at
e

36 38 40 42
V *

10 2

10 1

100

101

Co
st

 R
at

io

BDD100K (Semi-supervised) (T=1)
Power Law
c=[1. 0.05]

36 38 40 42
V *

0

50

100

Fa
ilu

re
 R

at
e

36 38 40 42
V *

10 2

10 1

100

101

Co
st

 R
at

io

BDD100K (Semi-supervised) (T=1)
Power Law
c=[1. 0.01]

36 38 40 42
V *

0

50

100

Fa
ilu

re
 R

at
e

36 38 40 42
V *

10 2

10 1

100

101

Co
st

 R
at

io

BDD100K (Semi-supervised) (T=1)
Power Law
c=[1. 0.005]

36 38 40 42
V *

0

50

100

Fa
ilu

re
 R

at
e

36 38 40 42
V *

10 2

10 1

100

101

Co
st

 R
at

io

BDD100K (Semi-supervised) (T=3)
Power Law
c=[1. 0.1]

36 38 40 42
V *

0

50

100

Fa
ilu

re
 R

at
e

36 38 40 42
V *

10 2

10 1

100

101

Co
st

 R
at

io

BDD100K (Semi-supervised) (T=3)
Power Law
c=[1. 0.05]

36 38 40 42
V *

0

50

100

Fa
ilu

re
 R

at
e

36 38 40 42
V *

10 2

10 1

100

101

Co
st

 R
at

io

BDD100K (Semi-supervised) (T=3)
Power Law
c=[1. 0.01]

36 38 40 42
V *

0

50

100

Fa
ilu

re
 R

at
e

36 38 40 42
V *

10 2

10 1

100

101

Co
st

 R
at

io

BDD100K (Semi-supervised) (T=3)
Power Law
c=[1. 0.005]

36 38 40 42
V *

0

50

100

Fa
ilu

re
 R

at
e

Figure 10: For experiments on BDD100K with two data types, mean ± standard deviation over 5
seeds of the cost ratio cT(q∗

T − q0)/c
T(D∗ − q0)− 1 and failure rate for different V after removing

99-th percentile outliers. We fix c0 = 1 and P = 1013. The rows correspond to T = 1, 3 (see the
main paper for T = 5) and the columns correspond to c1 = c0/2, c0/5, c0/10, c0/20.

F.4 LOC with Alternative Regression Functions

Mahmood et al. [2] show that we can use other regression functions instead of the power law to
estimate the data requirement. Moreover, some functions tend to consistently over- or under-estimate
the requirement. LOC can be deployed on top of any such regression function, since the regression
function is only used to generate bootstrap samples.

Table 6 highlights experiments on CIFAR-100 with three alternative regression functions that were
used by Mahmood et al. [2]. For both functions, we observe the same trends seen in Table 1. That is,
LOC reduces the failure rate down to approximately zero, at a marginal relative increase in cost.

Noting that Power Law Regression often leads to failure, Mahmood et al. [2] also propose a correction
factor heuristic wherein they learn a parameter τ such that if the data collection problem requires a

27

Regression Function T Regression LOC

Failure rate Cost ratio Failure rate Cost ratio

Logarithmic v̂(q;θ) = θ0 log(q + θ1) + θ2
1 43% 0.19 2% 1.17
3 37% 0.17 2% 0.54
5 34% 0.16 1% 0.39

Arctan v̂(q;θ) = 200
π arctan(θ0

π
2 q + θ1) + θ2

1 23% 3.31 0% 5.56
3 15% 3.01 0% 3.92
5 12% 2.90 0% 3.60

Algebraic Root v̂(q;θ) = 100q
1+|θ0q|θ1)1/θ1

+ θ2
1 52% 0.11 23% 0.81
3 44% 0.1 2% 0.87
5 44% 0.1 2% 0.54

Table 6: For experiments on CIFAR-100, average cost ratio cT(q∗
T − q0)/c

T(D∗ − q0) − 1 and
failure rate measured over a range of V ∗ and T . We fix c = 1 and P = 107. The best performing
failure rate for each setting is bolded. The cost ratio is measured only for instances that achieve V ∗.
LOC consistently reduces the average failure rate, almost consistently down to 0%.

Data set T Regression With Correction [2] LOC

Failure rate Cost ratio Failure rate Cost ratio

C
la

ss
. CIFAR-100

1 14% 0.94 4% 0.99
3 1% 0.23 3% 0.31
5 0% 0.17 2% 0.19

Imagenet
1 7% 1.03 37% 0.49
3 0% 0.21 5% 0.16
5 0% 0.14 2% 0.10

Se
g.

BDD100K
1 4% 4.03 12% 2.03
3 0% 1.02 0% 0.72
5 0% 0.62 0% 0.35

nuScenes
1 0% 27.2 52% 0.16
3 0% 0.75 0% 0.09
5 0% 0.30 0% 0.04

D
et

.

VOC
1 0% 44.6 25% 0.56
3 0% 7.02 0% 1.10
5 0% 3.98 0% 0.84

Table 7: Comparison
against the correction factor-
based Power Law Regres-
sion of Mahmood et al. [2]
using the same setup as in
Table 1. The best perform-
ing cost ratio is underlined
and the best performing fail-
ure rate for each setting is
bolded. Although the base-
line is designed specifically
to achieve low failure rates,
LOC often can achieve com-
petitive failure rates while
reducing the cost ratios by
an order of magnitude.

target performance V ∗, we should instead aim to collect enough data to meet V ∗ + τ . In order to
learn this correction factor, we require a pre-existing data set upon which we can simulate a data
collection policy. Mahmood et al. [2] suggest setting τ such that we can achieve the data requirement
V ∗ for any V ∗ on the pre-existing data set, and then fixing this parameter for new data sets.

Table 7 compares LOC (i.e., repeating Table 1) with the Correction factor-based Power Law regression
baseline of Mahmood et al. [2]. Following the original paper, we tune τ using CIFAR-10 and apply it
on all other data sets. The correction factor is designed to minimize the failure rate and thus, achieves
nearly 0% failure rate for all settings, but often at high cost ratios. On the other hand, LOC achieves
generally low failure rates and low cost ratios. Specifically, for T = 3, 5, we are competitive with
the baseline on failure rates for most tasks while obtaining up to an order of magnitude decrease in
costs. For T = 1, we typically admit higher failure rates; however for the segmentation and detection
tasks, we obtain up multiple orders of magnitude lower costs. Finally, note that this baseline requires
a similar prior task to be effective. For example, the baseline outperforms us on cost and failure rate
both only on CIFAR-100, since it is tuned on CIFAR-10. On the other hand, LOC does not require
this prior data set to be effective as evidence by its performance on non-classification tasks.

28

	Introduction
	Related work
	Main Problem
	Learn-Optimize-Collect (LOC)
	Optimization Model
	Learning and Optimizing the Data Requirement
	Comparison to mahmood2022howmuch

	Analytic Solutions for the T=1 Setting
	The Multi-variate LOC: Collecting Data from Multiple Sources
	Empirical Results
	Data and Methods
	Main Results

	Discussion
	Table of Notation
	Learn-Optimize-Collect
	Details on the Learning and Optimizing Approach
	Regression Model for D*
	Alternate Re-formulation of Problem (4)

	Details on the Main Theory
	Markov Decision Process Alternatives
	Proof of Theorem 1

	Optimal Data Collection with Multiple Sources
	A General Multi-variate Neural Scaling Law
	The Optimization Problem with Multiple Decisions

	Simulation Experiment Setup
	A Piecewise-Linear Ground Truth Approximation
	Data Collection
	LOC Implementation

	Additional Numerical Results
	Estimating the Data Requirement Distribution F(q)
	Robustness to the Cost and Penalty Parameters
	The Value of Optimization over Estimation when K = 2
	LOC with Alternative Regression Functions

