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Abstract

Modern deep learning systems require huge data sets to achieve impressive per-
formance, but there is little guidance on how much or what kind of data to collect.
Over-collecting data incurs unnecessary present costs, while under-collecting may
incur future costs and delay workflows. We propose a new paradigm for modeling
the data collection workflow as a formal optimal data collection problem that al-
lows designers to specify performance targets, collection costs, a time horizon, and
penalties for failing to meet the targets. Additionally, this formulation generalizes
to tasks requiring multiple data sources, such as labeled and unlabeled data used
in semi-supervised learning. To solve our problem, we develop Learn-Optimize-
Collect (LOC), which minimizes expected future collection costs. Finally, we
numerically compare our framework to the conventional baseline of estimating data
requirements by extrapolating from neural scaling laws. We significantly reduce
the risks of failing to meet desired performance targets on several classification,
segmentation, and detection tasks, while maintaining low total collection costs.

1 Introduction

When deploying a deep learning model in an industrial application, designers often mandate that the
model must meet a pre-determined baseline performance, such as a target metric over a validation
data set. For example, an object detector may require a certain minimum mean average precision
before being deployed in a safety-critical setting. One of the most effective ways of meeting target
performances is by collecting more training data for a given model.

Determining how much data is needed to meet performance targets can impact costs and development
delays. Overestimating the data requirement incurs excess costs from collection, cleaning, and
annotation. For instance, annotating segmentation masks for a driving data set takes between 15
to 40 seconds per object. For 100,000 images the annotation could require between 170 and 460
days-equivalent of time [1, 2]. On the other hand, collecting too little data may incur future costs and
workflow delays from having to collect more later. For example, in medical imaging applications,
this means further clinical data acquisition rounds that require expensive clinician time. In the worst
case, designers may even realize that a project is infeasible only after collecting insufficient data.

The growing literature on sample complexity in machine learning has identified neural scaling laws
that scale model performance with data set sizes according to power laws [3–10]. For instance, Rosen-
feld et al. [6] fit power law functions on the performance statistics of small data sets to extrapolate the
learning curve with more data. In contrast, Mahmood et al. [2] consider estimating data requirements
and show that even small errors in a power law model of the learning curve can translate to massively
over- or underestimating how much data is needed. Beyond this, different data sources have different
costs and scale differently with performance [11–14]. For example, although unlabeled data may
be easier to collect than labeled data, some semi-supervised learning tasks may need an order of
magnitude more unlabeled data to match the performance of a small labeled set. Thus, collecting
more data based only on estimation will fail to capture uncertainty and collection costs.
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Figure 1: In the optimal data collection problem, we iteratively determine the amount of data that
we should have, pay to collect the additional data, and then re-evaluate our model. Our approach,
Learn-Optimize-Collect, optimizes for the minimum amount of data q∗t to collect.

In this paper, we propose a new paradigm for modeling the data collection workflow as an optimal
data collection problem. Here, a designer must minimize the cost of collecting enough data to obtain a
model capable of a desired performance score. They have multiple collection rounds, where after each
round, they re-evaluate the model and decide how much more data to order. The data has per-sample
costs and moreover, the designer pays a penalty if they fail to meet the target score within a finite
horizon. Using this formal framework, we develop an optimization approach for minimizing the
expected future collection costs and show that this problem can be optimized in each collection round
via gradient descent. Furthermore, our optimization problem immediately generalizes to decisions
over multiple data sources (e.g., unlabeled, long-tail, cross-domain, synthetic) that have different
costs and impacts on performance. Finally, we demonstrate the value of optimization over naïvely
estimating data set requirements (e.g., [2]) for several machine learning tasks and data sets.

Our contributions are as follows. (1) We propose the optimal data collection problem in machine
learning, which formalizes data collection workflows. (2) We introduce Learn-Optimize-Collect
(LOC), a learning-and-optimizing framework that minimizes future collection costs, can be solved
via gradient descent, and has analytic solutions in some settings. (3) We generalize the data collection
problem and LOC to a multi-variate setting where different types of data have different costs. To the
best of our knowledge, this is the first exploration of data collection with general multiple data sets
in machine learning, covering for example, semi-supervised and long-tail learning. (4) We perform
experiments over classification, segmentation, and detection tasks to show, on average, approximately
a 2× reduction in the chances of failing to meet performance targets, versus estimation baselines.

2 Related work

Neural Scaling Laws. According to the neural scaling law literature, the performance of a model
on a validation set scales with the size of the training data set q via a power law V ∝ θ0q

θ1 [5, 6, 8–
10, 15–19]. Hestness et al. [5] observe this property over vision, language, and audio tasks, Bahri et al.
[9] develop a theoretical relationship under assumptions on over-parametrization and the Lipschitz
continuity of the loss, model, and data, and Rosenfeld et al. [6] estimate power laws using smaller
data sets and models to extrapolate future performance. Multi-variate scaling laws have also been
considered for some specific tasks, for example in transfer learning from synthetic to real data
sets [11]. Finally, Mahmood et al. [2] explore data collection by estimating the minimum amount
of data needed to meet a given target performance over multiple rounds. Our paper extends these
prior studies by developing an optimization problem to minimize the expected total cost of data
collected. Specifically, we incorporate the uncertainty in any regression estimate of data requirements
and further generalize to multiple data sources with different costs.

Active Learning. In active learning, a model sequentially collects data by selecting new subsets of
an unlabeled data pool to label under a pre-determined labeling budget that replenishes after each
round [20–24]. In contrast, our work focuses on systematically determining an optimal collection
budget. After determining how much data to collect, we can use active learning techniques to collect
the desired amount of data.

Statistical Learning Theory. Theoretical analysis of the sample complexity of machine learning
models is typically only tight asymptotically, but some recent work have empirically analyzed these
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relationships [25, 26]. Particularly, Bisla et al. [10] study generalization bounds for deep neural
networks, provide empirical validation, and suggest using them to estimate data requirements. In
contrast, our paper formally explores the consequences of collection costs on data requirements.

Optimal Experiment Design. The topic of how to collect data, select samples, and design scientific
experiments or controlled trials is well-studied in econometrics [27–29]. For example, Bertsimas
et al. [30] optimize the assignment of samples into control and trial groups to minimize inter-group
variances. Most recently, Carneiro et al. [31] optimize how many samples and covariates to collect in
a statistical experiment by minimizing a treatment effect estimation error or maximizing t-test power.
However, our focus on industrial machine learning applications differs from experiment design by
having target performance metrics and continual rounds of collection and modeling.

3 Main Problem

In this section, we give a motivating example before introducing the formal data collection problem.
We include a table of notation in Appendix A.

Motivating Example. A startup is developing an object detector for use in autonomous vehicles
within the next T = 5 years. Their model must achieve a mean Average Precision greater than V ∗ =
95% on a pre-determined validation set or else they will lose an expected profit of P = $1, 000, 000.
Collecting training data requires employing drivers to record videos and annotators to label the data,
where the marginal cost of obtaining each image is approximately c = $1. In order to manage annual
finances, the startup must plan how much data to collect at the beginning of each year.

Let z ∼ p(z) be data drawn from a distribution p. For instance, z := (x, y) may correspond to
images x and labels y. Consider a prediction problem for which we train a model with a data set D
of points sampled from p(z). Let V (D) be a score function evaluating the model trained on D.

Optimal Data Collection. We possess an initial data set Dq0 := {zi}q0i=1 of q0 points; we omit the
subscript on D referring to its size when it is obvious. Our problem is defined by a target score
V ∗ > V (Dq0), a cost-per-sample c of collection, a horizon of T rounds, and a penalty P for failure.
At the end of each round t ∈ {1, . . . , T}, let qt be the current amount of data collected. Our goal is
to minimize the total collection cost while building a model that can achieve the target score:

min
q1,...,qT

c(qT − q0) + P1{V (DqT ) < V ∗} s. t. q0 ≤ q1 ≤ · · · ≤ qT

= min
q1,...,qT

c

T∑
t=1

(qt − qt−1) + P1{V (DqT ) < V ∗} s. t. q0 ≤ q1 ≤ · · · ≤ qT (1)

The collection cost is measured by the difference in data set size between the final and the 0-th round
c(qT − q0) = c

∑T
t=1(qt − qt−1), Because we collect data iteratively over multiple rounds (see

Figure 1), we break (1) into the sum of differences per round. Specifically in each round, we

1. Decide to grow the data set to qt ≥ qt−1 points by sampling D̂ := {ẑi}qt−qt−1

i=1 ∼ p(z). Pay
a cost c(qt − qt−1) and update D ← D ∪ D̂.

2. Train the model and evaluate the score. If V (D) ≥ V ∗, then terminate.
3. If t = T , then pay the penalty P and terminate. Otherwise, repeat for the next round.

The model score typically increases monotonically with data set size [5, 6]. This means that the
minimum cost strategy for (1) is to collect just enough data such that V (DqT ) = V ∗. We can
estimate this minimum data requirement by modeling the score function as a stochastic process. Let
Vq := V (Dq) and let {Vq}q∈Z+ be a stochastic process whose indices represent training set sizes
in different rounds. Then, collecting data in each round yields a sequence of subsampled data sets
Dqt−1

⊂ Dqt and their performances V (Dqt). The minimum data requirement is the stopping time

D∗ := argmin
q
{q | Vq ≥ V ∗} . (2)

which is a random variable giving the first time that we pass the target. Note that q∗1 = · · · = q∗T = D∗

is a minimum cost solution to the optimal data collection problem, incurring a total cost c(D∗ − q0)
1.

1We assume that c(D∗ − q0) < P , since otherwise the optimal strategy would be to collect no data.
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Estimating D∗ using past observations of the learning curve is difficult since we have only T rounds.
Further, Mahmood et al. [2] empirically show that small errors in fitting the learning curve can cause
massive over- or under-collection. Thus, robust policies must capture the uncertainty of estimation.

4 Learn-Optimize-Collect (LOC)

Our solution approach, which we refer to as Learn-Optimize-Collect (LOC), minimizes the total
collection cost while incorporating the uncertainty of estimating D∗. Although D∗ is a discrete
random variable, it is realized typically on the order of thousands or greater. To simplify our problem
and ensure differentiability, we assume that D∗ is continuous and has a well-defined density.
Assumption 1. The random variable D∗ is absolutely continuous and has a cumulative density
function (CDF) F (q) and probability density function (PDF) f(q) := dF (q)/dq.

In Section 4.1, we first develop an optimization model when given access to the CDF f(q) and PDF
F (q). In Section 4.2, we estimate these distributions and combine them with the optimization model.
Finally in Section 4.3, we delineate our optimization approach from prior regression methods.

4.1 Optimization Model

We propose an optimization problem that for any t, can simultaneously solve for the optimal amounts
of data to collect qt, . . . , qT in all future rounds. Consider t = 1 and to develop intuition, suppose we
know a priori the exact stopping time D∗. Then, problem (1) can be re-written as

min
q1,···qT

L(q1, . . . , qT ;D
∗) s. t. q0 ≤ q1 ≤ · · · ≤ qT (3)

where the objective function is defined recursively as follows

L(q1, . . . , qT ;D
∗) := c(q1 − q0) + 1{q1 < D∗}

(
c(q2 − q1) + 1{q2 < D∗}

(
c(q3 − q2) . . .

· · ·+ 1{qT−1 < D∗}
(
c(qT − qT−1) + P1{qT < D∗}

)
· · ·
))

= c

T∑
t=1

(qt − qt−1)

t−1∏
s=1

1{qs < D∗}+ P

T∏
t=1

1{qs < D∗}

= c

T∑
t=1

(qt − qt−1)1{qt−1 < D∗}+ P1{qT < D∗}.

The objective differs slightly from (1) due to the indicator terms, which ensure that once we collect
enough data, we terminate the problem. The second line follows from gathering the terms. The third
line follows from observing that q1 ≤ q2 ≤ · · · ≤ qT are constrained.

In practice, we do not know D∗ a priori since it is an unobserved random variable. Instead, suppose we
have access to the CDF F (q). Then, we take the expectation over the objective E[L(q1, . . . , qT ;D∗)]
to formulate a stochastic optimization problem for determining how much data to collect:

min
q1,···qT

c

T∑
t=1

(qt − qt−1) (1− F (qt−1)) + P (1− F (qT )) s. t. q0 ≤ q1 ≤ · · · ≤ qT . (4)

Note that the collection variables should be discrete q1, . . . , qT ∈ Z+, but similar to the modeling
of D∗, we relax the integrality requirement, optimize over continuous variables, and round the final
solutions. Furthermore, although problem (4) is constrained, we can re-formulate it with variables
dt := qt−qt−1; this consequently replaces the current constraints with only non-negativity constraints
dt ≥ 0. Finally due to Assumption 1, problem (4) can be optimized via gradient descent.

4.2 Learning and Optimizing the Data Requirement

Solving problem (4) requires access to the true distribution F (q), which we do not have in reality. In
each round, given a current training data set Dqt of qt points, we must estimate these distribution
functions F (q) and f(q) and then incorporate them into our optimization problem.
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Given a current data setDqt , we may sample an increasing sequence of R subsetsDqt/R ⊂ D2qt/R ⊂
· · · ⊂ Dqt , fit our model to each subset, and compute the scores to obtain a data set of the learning
curve R := {(rqt/R, V (Drqt/R))}Rr=1. In order to model the distribution of D∗, we can take B
bootstrap resamples ofR to fit a series of regression functions and obtain corresponding estimates
{D̂b}Bb=1. Given a set of estimates of the data requirement, we estimate the PDF via Kernel Density
Estimation (KDE). Finally to fit the CDF, we numerically integrate the PDF.

In our complete framework, LOC, we first estimate F (q) and f(q). We then use these models to solve
problem (4). Note that in the t-th round of collection, we fix the prior decision variables q1, . . . qt−1

constant. Finally, we collect data as determined by the optimal solution q∗t to problem (4). Full details
of the learning and optimization steps, including the complete Algorithm, are in Appendix B.

4.3 Comparison to Mahmood et al. [2]

Our prediction model extends the previous approach of Mahmood et al. [2], who consider only
point estimation of D∗. They (i) build the set R, (ii) fit a parametric function v̂(q;θ) to R via
least-squares minimization, and (iii) solve for D̂ = argminq{q | v̂(q;θ) ≥ V ∗}. They use several
parametric functions from the neural scaling law literature, including the power law function (i.e.,
v̂(q;θ) := θ0q

θ1 + θ2 [2, 8] where θ := {θ0, θ1, θ2}), and use an ad hoc correction factor obtained
by trial and error on past tasks to help decrease the failure rate. Instead, we take bootstrap samples of
R to fit multiple regression functions, estimate a distribution for D̂, and incorporate them into our
novel optimization model. Finally, we show in the next two sections that our optimization problem
has analytic solutions and extends to multiple sources.

5 Analytic Solutions for the T = 1 Setting

In this section, we explore analytic solutions for problem (4). The unobservable D∗ and sequential
decision-making nature suggest this problem can be formulated as a Partially Observable Markov
Decision Process (POMDP) with an infinite state and action space (see Appendix C.1), but such
problems rarely permit exact solution methods [32]. Nonetheless, we can derive exact solutions for
the simple case of a single T = 1 round, re-stated below

min
q1

c(q1 − q0) + P (1− F (q1)) s. t. q0 ≤ q1 (5)

Theorem 1. Assume F (q) is strictly increasing and continuous. If there exists q1 ≥ q0, ϵ̂ ≥ 0 where

c

P
≤ F (q1)− F (q0)

q1 − q0
, ϵ̂ ≤ 1− F (q0), P = c/f(F−1(1− ϵ̂)) (6)

then there exists an ϵ ≤ 1− F (q0) that satisfies P = c/f(F−1(1− ϵ)) and an optimal solution to
the corresponding problem (5) is q∗1 := F−1(1− ϵ). Otherwise, the optimal solution is q∗1 := q0.

When the penalty P is specified via a failure risk ϵ, the optimal solution to problem (5) is equal to a
quantile of the distribution of D∗. We defer the proof and some auxiliary results to Appendix C.2.

Theorem 1 further provides guidelines on choosing values for the cost and penalty parameters. While
c is the dollar-value cost per-sample, which includes acquisition, cleaning, and annotation, P can
reflect their inherent regret or opportunity cost of failing to meet their target score. A designer can
accept a risk ϵ of failing to collect enough data Pr{q∗ < D∗} = ϵ. From Theorem 1, their optimal
strategy should be to collect F−1(1− ϵ) points, which is also the optimal solution to problem (5).

6 The Multi-variate LOC: Collecting Data from Multiple Sources

So far, we have assumed that a designer only chooses how much data to collect and must pay a
fixed per-sample collection cost. We now explore the multi-variate extension of the data collection
problem where there are different types of data with different costs. For example, consider long-tail
learning where samples for some rare classes are harder to obtain and thus, more expensive [33],
semi-supervised learning where labeling data may cost more than collecting unlabeled data [34], or
domain adaptation where a source data set is easier to obtain than a target set [35]. In this section, we
highlight our main formulation and defer the complete multi-variate LOC to Appendix D.
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Consider K ∈ N data sources (e.g., K = 2 with labeled and unlabeled) and for each k ∈ {1, . . . ,K},
let zk ∼ pk(z

k) be data drawn from their distribution. We train a model with a data setD := ∪Kk=1Dk

where each Dk contains points of the k-th source. The performance or score function of our model is
V (D1, . . . ,DK). For each k, we initialize with qk0 points. Let q0 = (q10 , . . . , q

K
0 )T denote the vector

of data set sizes and let c = (c1, . . . , cK)T denote costs (i.e., ck is the cost of collecting data from
pk(z

k)). Given a target V ∗, penalty P , and T rounds, we want to minimize the total cost of collection

min
q1,...,qT

cT
T∑

t=1

(qt − qt−1) + P1{V (Dq1T
, . . . ,DqKT

) < V ∗} s. t. q0 ≤ q1 ≤ q2 ≤ · · · ≤ qT

We follow the same steps shown in Section 4 for this problem. First, the learning curve is now a
stochastic process {Vq}q∈ZK

+
indexed in K dimensions. Next, the multi-variate analogue of the

minimum data requirement in (2) is the minimum cost amount of data needed to meet the target:

D∗ := argmin
q

{
cTq | Vq ≥ V ∗}

We randomly pick a unique solution to break ties. From Assumption 1, D∗ is a random vector with a
PDF f(q) and a CDF F (q) :=

∫ q

0
f(q̂)dq̂. Finally, the multi-variate analogue of problem (4) is

min
q1,··· ,qT

cT
T∑

t=1

(qt − qt−1) (1− F (qt−1)) + P (1− F (qT )) s. t. q0 ≤ q1 ≤ · · · ≤ qT (7)

The Multi-variate LOC requires multi-variate PDFs, which we can fit in the same way as discussed
in Section 4.2. However, we now need multi-variate regression functions that can accommodate
different types of data. In Appendix D, we propose an additive family of power law regression
functions that can handle an arbitrary number of K sources. In our experiments, we also generalize
the estimation approach of Mahmood et al. [2] to the multi-source setting for comparison.

7 Empirical Results

We explore the data collection problem over two sets of experiments covering single-variate K = 1
(Section 4) and multi-variate K = 2 (Section 6) problems. We consider image classification,
segmentation, and object detection tasks. For every data set and task, LOC significantly reduces the
number of instances where we fail to meet a data requirement V ∗, while incurring a competitive cost
with respect to the conventional baseline of naïvely estimating the data requirement [2].

In this section, we summarize the main results. We detail our data collection and experiment setup in
Appendix E. We expand our full results and experiments with additional baselines in Appendix F .

7.1 Data and Methods

When K = 1, the designer decides how much data to sample without controlling the type of
data. We explore classification on CIFAR-10 [36], CIFAR-100 [36], and ImageNet [37], where we
train ResNets [38] to meet a target validation accuracy. We explore semantic segmentation using
Deeplabv3 [39] on BDD100K [40], which is a large-scale driving data set, as well as Bird’s-Eye-View
(BEV) segmentation on nuScenes [41] using the ‘Lift Splat’ architecture [42]; for both tasks, we
desire a target mean intersection-over-union (IoU). We explore 2-D object detection on PASCAL
VOC [43, 44] using SSD300 [45], where we evaluate mean average precision (mAP).

When K = 2, the designer collects two types of data with different costs. We first divide CIFAR-100
into two subsets containing data from the first and last 50 classes, respectively. Here, we assume
that the first 50 classes are more expensive to collect than the last; this mimics a real-world scenario
where collecting data for some classes (e.g., long-tail) is more expensive than others. We then explore
semi-supervised learning on BDD100K where the labeled subset of this data is more expensive than
the unlabeled data; the cost difference between these two types is equal to the cost of data annotation.

We use a simulation model of the deep learning workflow following the procedure of Mahmood
et al. [2], to approximate the true problem while simplifying the experiments (see Appendix E for
full details). To avoid repeatedly sampling data, re-training a model, and evaluating the score, each
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Figure 2: Mean± standard deviation of 5 seeds of the ratio of data collected q∗T /D
∗ for different V ∗.

The rows correspond to T = 1, 3, 5 and the columns to different data sets. The black line corresponds
to collecting exactly the minimum data requirement. LOC almost always remains slightly above the
black line, meaning we rarely fail to meet the target.

simulation uses a piecewise-linear approximation of a ‘ground truth’ learning curve that returns
model performance as a function of data set size. In our problems, we initialize with q0 = 10% of the
full data set (we use 20% for VOC). Then in each round, we solve for the amount of data to collect
and then call the piecewise-linear learning curve to obtain the current score.

We compare LOC against the conventional estimation approach of Mahmood et al. [2] who fit a
regression model to the learning curve statistics, extrapolate the learning curve for larger data sets,
and then solve for the minimum data requirement under this extrapolation. There are many different
regression models that can be used to fit learning curves [15, 17, 5, 8]. Since power laws are the most
commonly studied approach in the neural scaling law literature, we focus on these. In Appendix F.4,
we show that our optimization approach can be incorporated with other regression models.

7.2 Main Results

We consider T = 1, 3, 5 rounds and V ∗ ∈ [V (Dq0) + 1, V (D)] targets, where D is the entire data
set. We evaluate all methods on (i) the failure rate, which is how often the method fails to achieve
the given V ∗ within T rounds, and (ii) the cost ratio, which is the suboptimality of an algorithm for
solving problem (4), i.e., cT(q∗

T −q0)/c
T(D∗−q0)− 1. Note that the suboptimality does not count

the penalty for failure since this would distort the average metrics. For K = 1, we also measure
the ratio of points collected q∗T /D

∗. Although there is a natural trade-off between low cost ratio
(under-collecting) and failure rate (over-collecting), we emphasize that our goal is to have low cost
but with zero chance of failure.

The Value of Optimization over Estimation when K = 1. Figure 2 compares LOC versus the
corresponding power law regression baseline when c = 1 and P = 107 (P = 106 for VOC and
P = 108 for ImageNet). If a curve is below the black line, then it failed to collect enough data to
meet the target. LOC consistently remains above this black line for most settings. In contrast, even
with up to T = 5 rounds, collecting data based only on regression estimates leads to failure.

Table 1 aggregates the failure rates and cost ratios for each setting. To summarize, LOC fails at less
than 10% of instances for 12/18 settings, whereas regression fails over 30% for 15/18 settings. In
particular, regression nearly always under-collects data when given a single T = 1 round. Here, LOC
reduces the risk of under-collecting by 40% to 90% over the baseline. While this leads to a marginal
increase in costs, our cost ratios are consistently less than 0.5 for 12/18 settings, meaning that we
spend at most 50% more than the true minimum cost.

We remark that previously, Mahmood et al. [2] observed that incorrect regression estimates necessi-
tated real machine learning workflows to collect data over multiple rounds. Instead, with LOC, we
can make significantly improved data collection decisions even with a single round.

Robustness to Cost and Penalty Parameters (see Appendix F.2 for details). Figure 3 evaluates
the ratio of points collected for T = 5 when the cost and the penalty of the optimization problem are
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Data set T Power Law Regression LOC

Failure rate Cost ratio Failure rate Cost ratio

C
la

ss
.

CIFAR-10
1 100% − 60% 0.19
3 95% 0.00 32% 0.05
5 86% 0.00 29% 0.03

CIFAR-100
1 56% 0.12 4% 0.99
3 48% 0.10 3% 0.31
5 48% 0.10 2% 0.19

Imagenet
1 99% 0.00 37% 0.49
3 75% 0.01 5% 0.16
5 56% 0.01 2% 0.10

Se
g.

BDD100K
1 77% 0.03 12% 2.03
3 31% 0.00 0% 0.72
5 23% 0.01 0% 0.35

nuScenes
1 95% 0.00 52% 0.16
3 71% 0.01 0% 0.09
5 62% 0.00 0% 0.04

D
et

.

VOC
1 36% 1.24 25% 0.56
3 8% 0.88 0% 1.10
5 6% 0.86 0% 0.84

Table 1: Average cost ratio
cT(q∗

T −q0)/c
T(D∗−q0)−1

and failure rate measured over
a range of V ∗ for each T and
data set. We fix c = 1 and P =
107 (P = 106 for VOC and
P = 108 for ImageNet). The
best performing failure rate for
each setting is bolded. The cost
ratio is measured only for in-
stances that achieve V ∗. LOC
consistently reduces the aver-
age failure rate, often down to
0%, while keeping the average
cost ratio almost always below
1 (i.e., spending at most 2× the
optimal amount).
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Figure 3: Mean ± standard deviation of 5 seeds of the ratio of data collected q∗T /D
∗ for different

V ∗ and fixed T = 5. Rows 1 & 3: We sweep the cost parameter from 0.001 to 1 and fix P = 107.
Rows 2 & 4: We sweep the penalty parameter from 106 to 109 and fix c = 1. The dashed black line
corresponds to collecting exactly the minimum data requirement. See Appendix F for all T .
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Figure 4: Mean ± standard deviation over 5 seeds of the cost ratio cT(q∗
T − q0)/c

T(D∗ − q0)− 1
and failure rate for different V ∗, after removing 99-th percentile outliers. The columns correspond to
scenarios where the first set c1 costs increasingly more than the second c2. See Appendix F for all T .

varied. Our algorithm is robust to variations in these parameters, as LOC retains the same shape and
scale for almost every parameter setting and data set. Further, LOC consistently remains above the
horizontal 1 line, showing that even after varying c and P , we do not fail as frequently as the baseline.
Finally, validating Theorem 1, the penalty parameter P provides natural control over the amount of
data collected. As we increase P , the ratio of data collected increases consistently.

The Value of Optimization over Estimation when K = 2 (Appendix F.3). Figure 4 compares
LOC versus regression at T = 5 with different costs, showing that we maintain a similar cost ratio to
the regression alternative, but with lower failure rates. Table 2 aggregates failure rates and cost ratios
for all settings, showing LOC consistently achieves lower failure rates for nearly all settings of T .
When T = 5, LOC also achieves lower cost ratios versus regression on CIFAR-100, meaning that
with multiple rounds of collection, we can ensure meeting performance requirements while paying
nearly the optimal amount of data. However, solving the optimization problem is generally more
difficult as K increases, and we sometimes over-collect data by large margins. In practice, these
outliers can be identified from common sense (e.g., if a policy suggests collecting more data than
we can reasonably afford, then we would not use the policy suggestion). Consequently, we report
these results after removing the 99-th percentile outliers with respect to total cost for both methods.
Nonetheless, this challenge remains when T = 1, particularly for CIFAR-100.

8 Discussion

We develop a rigorous framework for optimizing data collection workflows in machine learning
applications, by introducing an optimal data collection problem that captures the uncertainty in
estimating data requirements. We generalize this problem to more realistic settings where multiple
data sources incur different collection costs. We validate our solution algorithm, LOC, on six data
sets covering classification, segmentation, and detection tasks to show that we consistently meet
pre-determined performance metrics regardless of costs and time horizons.

Our approach relies on estimating the CDF and PDF of the minimum data requirement, which is
a challenging problem, especially with multiple data sources. Nonetheless, LOC can be deployed
on top of future advances in estimating neural scaling laws. Further, we allow practitioners to input
problem-specific costs and penalties, but these quantities may not always be readily available. We
provide some theoretical insight into parameter selection and show that LOC is robust to these
parameters. Finally, our empirical analysis focuses on computer vision, but we expect our approach
to be viable in other domains governed by scaling laws.
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Data set T Cost Power Law Regression LOC

Failure rate Cost ratio Failure rate Cost ratio

C
IF

A
R

-1
00

(2
Ty

pe
s) 1

(0.01, 0.0005) 62% 0.89 40% 41.80
(0.01, 0.001) 58% 1.19 46% 9.85
(0.01, 0.002) 56% 1.55 54% 6.98
(0.01, 0.005) 54% 1.65 33% 4.43

3

(0.01, 0.0005) 43% 3.47 30% 4.88
(0.01, 0.001) 45% 1.22 43% 1.31
(0.01, 0.002) 45% 1.47 44% 1.21
(0.01, 0.005) 38% 1.31 36% 1.17

5

(0.01, 0.0005) 38% 3.31 24% 5.19
(0.01, 0.001) 35% 1.22 24% 0.79
(0.01, 0.002) 37% 1.33 38% 0.90
(0.01, 0.005) 36% 1.30 24% 0.82

B
D

D
10

0K
(S

em
i-

su
pe

rv
is

ed
)

1

(1, 0.005) 86% 0.11 44% 7.02
(1, 0.01) 79% 0.15 30% 13.47
(1, 0.05) 72% 0.19 49% 1.02
(1, 0.1) 70% 0.19 65% 0.40

3

(1, 0.005) 23% 0.18 7% 1.20
(1, 0.01) 21% 0.15 7% 2.57
(1, 0.05) 26% 0.18 23% 0.50
(1, 0.1) 26% 0.21 30% 0.15

5

(1, 0.005) 16% 0.22 2% 1.91
(1, 0.01) 21% 0.15 2% 0.86
(1, 0.05) 16% 0.17 9% 0.27
(1, 0.1) 16% 0.20 7% 0.32

Table 2: Average cost ratio
cT(q∗

T−q0)/c
T(D∗−q0)−1

and failure rate over different
V ∗ for each T and c, after re-
moving 99-th percentile out-
liers. We fix P = 1013 for
CIFAR-100 and P = 108 for
BDD100K. The best perform-
ing failure rate for each set-
ting is bolded. The cost ra-
tio is measured over instances
that achieve V ∗. LOC con-
sistently reduces the average
failure rate, and for T > 1,
preserves the cost ratio. Fur-
ther, LOC is more robust to
uneven costs than regression.

Improving data collection practices yields potentially positive and negative societal impacts. LOC
reduces the collection of extraneous data, which can, in turn, reduce the environmental costs of
training models. On the other hand, equitable data collection should also be considered in real-world
data collection practices that involve humans. We envision a potential future work to incorporate
privacy and fairness constraints to prevent over- or under-sampling of protected groups. Finally,
our method is guided by a score function on a held-out validation set. Biases in this set may be
exacerbated when optimizing data collection to meet target performance.

There is a folklore observation that over 80% of industry machine learning projects fail to reach
production, often due to insufficient, noisy, or inappropriate data [46, 47]. Our experiments verify
this by showing that naïvely estimating data requirements will often yield failures to meet target
performances. We believe that robust data collection policies obtained via LOC can reduce failures
while further guiding practitioners on how to manage both costs and time.
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Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi:
10.1038/s41592-019-0686-2.

12

https://www.gartner.com/en/newsroom/press-releases/2018-02-13-gartner-says-nearly-half-of-cios-are-planning-to-deploy-artificial-intelligence
https://www.gartner.com/en/newsroom/press-releases/2018-02-13-gartner-says-nearly-half-of-cios-are-planning-to-deploy-artificial-intelligence
https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/
https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/


[50] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley &
Sons, 2014.

[51] Dimitri Bertsekas. Dynamic programming and optimal control: Volume I, volume 1. Athena scientific,
2012.

[52] David Easley and Nicholas M Kiefer. Controlling a stochastic process with unknown parameters. Econo-
metrica: Journal of the Econometric Society, pages 1045–1064, 1988.

[53] Richard D Smallwood and Edward J Sondik. The optimal control of partially observable markov processes
over a finite horizon. Operations research, 21(5):1071–1088, 1973.

[54] Eric Zhao, Anqi Liu, Animashree Anandkumar, and Yisong Yue. Active learning under label shift. In
International Conference on Artificial Intelligence and Statistics, pages 3412–3420. PMLR, 2021.

[55] Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning. In
International Conference on Machine Learning, pages 2242–2251. PMLR, 2019.

[56] Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy Liang,
Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep learning. In
International Conference on Learning Representations, 2020.

[57] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. International Conference on Learning Representations, 2015.

[58] Ismail Elezi, Zhiding Yu, Anima Anandkumar, Laura Leal-Taixe, and Jose M Alvarez. Not all labels
are equal: Rationalizing the labeling costs for training object detection. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See the Conclusion.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See the

Conclusion.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Assump-
tion 1 and the theorem statements.

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix C.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [No] The code
is proprietary. The data is publicly available. See Algorithm 1 and Appendix F for
implementation details.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix E and F for details.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] All experiments were over five seeds. See the for standard
deviation ranges.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix E.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite all data sets

and model architectures in Appendix E.
(b) Did you mention the license of the assets? [N/A] All data sets and models are publicly

available.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

13



(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14


	Introduction
	Related work
	Main Problem
	Learn-Optimize-Collect (LOC)
	Optimization Model
	Learning and Optimizing the Data Requirement
	Comparison to mahmood2022howmuch

	Analytic Solutions for the T=1 Setting
	The Multi-variate LOC: Collecting Data from Multiple Sources
	Empirical Results
	Data and Methods
	Main Results

	Discussion
	Table of Notation
	Learn-Optimize-Collect
	Details on the Learning and Optimizing Approach
	Regression Model for D*
	Alternate Re-formulation of Problem (4)

	Details on the Main Theory
	Markov Decision Process Alternatives
	Proof of Theorem 1

	Optimal Data Collection with Multiple Sources
	A General Multi-variate Neural Scaling Law
	The Optimization Problem with Multiple Decisions

	Simulation Experiment Setup
	A Piecewise-Linear Ground Truth Approximation
	Data Collection
	LOC Implementation

	Additional Numerical Results
	Estimating the Data Requirement Distribution F(q)
	Robustness to the Cost and Penalty Parameters
	The Value of Optimization over Estimation when K = 2
	LOC with Alternative Regression Functions


