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Abstract

In this paper, we study multi-block min-max bilevel optimization problems, where
the upper level is non-convex strongly-concave minimax objective and the lower
level is a strongly convex objective, and there are multiple blocks of dual variables
and lower level problems. Due to the intertwined multi-block min-max bilevel
structure, the computational cost at each iteration could be prohibitively high,
especially with a large number of blocks. To tackle this challenge, we present
two single-loop randomized stochastic algorithms, which require updates for only
a constant number of blocks at each iteration. Under some mild assumptions
on the problem, we establish their sample complexity of O(1/ϵ4) for finding an
ϵ-stationary point. This matches the optimal complexity for solving stochastic non-
convex optimization under a general unbiased stochastic oracle model. Moreover,
we provide two applications of the proposed method in multi-task deep AUC (area
under ROC curve) maximization and multi-task deep partial AUC maximization.
Experimental results validate our theory and demonstrate the effectiveness of our
method on problems with hundreds of tasks.

1 Introduction

We consider multi-block min-max bilevel optimization problem of the following formulation

min
x∈Rdx

max
α∈Am

F (x,α) :=
1

m

m∑
i=1

{fi(x, αi, yi(x)) := Eξ∈Pi
[fi(x, αi, yi(x); ξ)]} (upper)

s.t. yi(x) = argmin
yi∈Rdy

gi(x, yi) := Eζ∈Qi [gi(x, yi; ζ)], for i = 1, 2, . . . ,m. (lower)
(1)

where fi and gi are smooth functions and A ⊂ Rdα is a convex set. In particular, in this paper
we assume that for each i ∈ {1, . . . ,m}, fi(x, αi, yi) is strongly concave in the dual variable αi

but can be nonconvex in the primal variable x, and gi(x, yi) is strongly convex in yi. The upper
problem minx∈Rdx maxα∈Am F (x,α) is a min-max optimization problem where the lower problems
{yi(x) = argminyi∈Rdy gi(x, yi)}mi=1 are involved as variables. For each block i, the upper-level
objective fi(x, αi, yi) and the lower-level objective gi(x, yi) depend only on its corresponding block
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of variables α and y, i.e. αi and yi. This problem has important applications in machine learning,
e.g., multi-task deep AUC maximization as presented in section 3.

Tackling problem (1) is challenging as it involves solving a min-max problem with coupled multiple
minimization problems simultaneously. The naive way for solving it is to do multiple gradient ascents
and descents for α and y, respectively, to ensure a good estimation of the gradient for updating x.
However, this approach has two major drawbacks. As the algorithm involves a double loop structure,
it can be computationally expensive and give suboptimal theoretical complexity. On the other hand,
the multi-block structure requires data sampling from distributions Pi,Qi for all blocks, which may
lead to an impractical demand for memory.

1.1 Related work
Min-max Bilevel optimization. To the best of our knowledge, the only existing work that provides a
stochastic algorithm with provable convergence guarantee on min-max bilevel problems is [9]. They
propose a single loop bi-time scale stochastic algorithm based on gradient descent ascent, and prove
that it converges to an ϵ-stationary point with an oracle complexity of O(ϵ−5). Nevertheless, this
convergence result is established for a special case where f(x, ·, y) is a linear function.
Stochastic Nonconvex Strongly Concave Min-max Problems. The considered problem is also
closely related to non-convex strongly concave min-max problems, which have been studied ex-
tensively recently. To the best of our knowledge, [30] establishes the first result on non-smooth
nonconvex concave min-max problems. They prove a convergence to nearly stationary point of the
primal objective function with an oracle complexity in the order of O(ϵ−4) for non-convex strongly
concave min-max problems with a certain special structure. The same order of oracle complexity is
achieved in [36] without relying on any special structure. These two works use two-loop algorithms.
There are some studies focusing on single-loop algorithms. [25] analyzes a single-loop stochastic
gradient descent ascent (SGDA) method for smooth nonconvex strongly concave problem, which
achieves O(ϵ−4) complexity but with a large mini-batch size. In [12], the same order of complexity
is achieved without large mini-batch by employing the stochastic moving average estimator. Some
recent works improve the sample complexity to O(ϵ−3) under the Lipschitz continuous oracle model
for the stochastic gradient using less practical variance reduction techniques [16, 28, 31]. [41]
establishes lower complexity bounds for non-concex strongly concave min-max problem under
both general and finite-sum setting and proposes accelerated algorithms that nearly match the lower
bounds.
Stochastic Nonconvex Bilevel optimization. The considered problem belongs to a general family
of non-convex bilevel optimization problems. Non-asymptotic convergence results for nonconvex
stochastic bilevel optimization (SBO) with a strongly convex lower problem has been established
in several recent studies [4, 8, 12, 14, 19]. As the one who gives the first results for this problem,
[8] proposes a double-loop algorithm with O(ϵ−6) oracle complexity for finding an ϵ-stationary
point of the objective function. [19] improves the complexity order to O(ϵ−4), but suffers from
a large mini-batch size. [14] proposes a single-loop algorithm with two time-scale updates that
achieves an oracle complexity of Õ(ϵ−5). Recently, [12] improves the oracle complexity to the
state-of-the-art oracle complexity Õ(ϵ−4) by proposing a single-loop algorithm based on a moving-
average estimator. [5] presents a new analysis for (double-loop) SGD-type updates showing that
an improved sample complexity O(ϵ−4) can be achieved. There are studies that further improve
the complexity to O(ϵ−3) by leveraging the Lipschitz continuous conditions of stochastic oracles
[4, 10, 21]. [24] considers bilevel optimization under distributed setting and proposed algorithms
achieving state-of-the-art complexities. However, none of these works tackle multi-block min-max
bilevel optimization problems directly.
Multi-block Bilevel Optimization. There are some recent studies considering bilevel optimization
with multi-block structure. [10] extends their single-block bilevel optimization algorithm to multi-
block structure. Their algorithm requires two independently sampled block batches and for all
sampled blocks, each variable needs update using variance reduction technique STORM [6]. For
unsampled blocks, an update involving constant factor multiplication is also required. Under Lipschitz
continuous conditions on stochastic oracles, the complexity is no worse thanO(m/ϵ3) with m blocks.
A more recent work [29] considers top-K NDCG optimization, which is formulated as a compositional
bilevel optimization with multi-block structure. Their method simplifies the updates by sampling only
one block batch in each iteration and requires updates only for the sampled blocks. Their method
achieves complexity of O(m/ϵ4). We use a similar approach as the latter work for estimating the
hessian inverse in a block-wise manner. However, this paper differs from [29] in that we tackle a more
general multi-block min-max bilevel problems without assuming a particular form of the objective.

2



1.2 Our Contributions
In Section 2.1, we present two simple single loop single timescale stochastic methods with randomized
block-sampling for solving a general form of multi-block min-max bilevel optimization problem under
the nonconvex strongly concave (upper) strongly convex (lower) setting. Both methods employ SGD
for updating selected yi for their corresponding lower-level problems, employs SGA for updating the
selected αi, and employs a momentum update for the primal variable x based on the sampled αi, yi.
Then we show in Section 2.2, theoretically, that they converge to ϵ-stationary point with complexity
O(ϵ−4) under a general unbiased stochastic oracle model. Our result for the single-block setting
matches the lower bound for solving smooth, potentially nonconvex optimization through queries to
an unbiased stochastic gradient oracle under a bounded variance condition [1]. Finally, in section 3
we present two applications of multi-block min-max bilevel optimization in deep AUC maximization:
multi-task deep AUC maximization and multi-task deep partial AUC maximization. In section 4,
empirical results show the effectiveness of the proposed methods.

2 Proposed Algorithms and convergence Analysis
Notations. Let ∥ · ∥ denote the Euclidean norm of a vector or the spectral norm of a matrix.
For a twice differentiable function f : X × Y → R, ∇xf(x, y) (resp. ∇yf(x, y)) denotes its
partial gradient taken w.r.t x (resp. y), and ∇2

xyf(x, y) (resp. ∇2
yyf(x, y)) denotes the Jacobian

of ∇xf(x, y) w.r.t x (resp. ∇yf(x, y) w.r.t y). We let f(·;B) represent the unbiased stochastic
oracle of f(·) with a sample batch B as the input. The unbiased stochastic oracle is said to have
bounded variance σ2 if E[∥f(·;B) − f(·)∥2] ≤ σ2. A mapping f : X → R is C-Lipschitz
continuous if ∥f(x) − f(x′)∥ ≤ C∥x − x′∥ ∀x, x′ ∈ X . Function f is L-smooth if its gradient
∇f(·) is L-Lipschitz continuous. A function g : X → R is λ-strongly convex if ∀x, x′ ∈ X ,
g(x) ≥ g(x′) +∇g(x′)T (x − x′) + λ

2 ∥x − x
′∥2. A function g : X → R is λ-strongly concave if

−g(x) is λ-strongly convex. Let ΠA denote a projection function onto a convex set A. For notation
simplicity, we use S to denote the set of all block indices, i.e. S = {1, . . . ,m}.
We state the definition of ϵ-stationary point as following.
Definition 2.1. Consider a differentiable function F (x), a point x is called ϵ-stationary if ∥∇F (x)∥ ≤
ϵ. A stochastic algorithm is said to achieve an ϵ-stationary point if E[∥∇F (x̄t)∥] ≤ ϵ, where x̄t is
the algorithm output at the t-th iteration and the expectation is taken over the randomness of the
algorithm until the iteration t.
Assumptions. Before presenting our algorithm, we make the following well-behaving assumptions.
Assumption 2.2. For functions fi and gi, we assume that the following conditions hold for all i ∈ S

• fi(x, αi, yi) is µf -strongly concave in terms of αi. gi(x, yi) is µg-strongly convex in terms of yi.

• fi is Cf -Lipschitz continuous in terms of both x and yi, and fi, gi are Lf , Lg-smooth respectively.

• ∥∇2
xygi(x, yi)∥2 ≤ C2

gxy ,∇2
yygi(x, yi; ζ) ⪰ µgI .

• ∇2
xygi(x, yi),∇2

yygi(x, yi) are Lgxy, Lgyy-Lipschitz continuous respectively.

We remark that the Lipschitz continuity condition of fi in terms of x can be removed when there is
only one block. Other Lipschitz continuity conditions are stadnard in bilevel optimization literature.
Moreover, the gradients of functions fi and gi can only be accessed through unbiased oracles with
bounded variance.
Assumption 2.3. The unbiased stochastic oracles ∇xfi(x, αi, yi;B), ∇αfi(x, αi, yi;B),
∇yfi(x, αi, yi;B), ∇ygi(x, yi;B), ∇2

xygi(x, yi;B), ∇2
yygi(x, yi;B) have variances bounded by σ2

|B|
for all i ∈ S, where |B| denotes the size of the sampled batch B.
These assumptions are similar to those made in many existing works for SBO [4, 8, 14, 19].

Moving average gradient estimator. Algorithms based on moving average estimators have achieved
the state-of-the-art oracle complexity in both min-max and bilevel optimizations [11]. Here we
give a brief introduction to the moving average estimator. For solving a nonconvex minimization
problem minx∈Rd F (x) through an unbiased oracle OF (x), i.e. E[OF (x)] = ∇F (x), the stochastic
momentum method (stochastic heavy-ball method) that employs moving average updates is given by

vt+1 = (1− β)vt + βOF (xt), xt+1 = xt − ηvt+1,
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Algorithm 1 A Stochastic Algorithm for Multi-block Min-max Bilevel Optimization (v1)
Require: α0, y0, H0, z0, x0

1: for t = 0, 1, . . . , T do
2: Sample tasks It ⊂ S . Sample data batches Bti ⊂ Pi, B̃ti ⊂ Qi of batch size B for each i ∈ It.
3: for sampled blocks i ∈ It do
4: αt+1

i = ΠA[α
t
i + η1∇αfi(xt, αt

i, yti;Bti)]
5: yt+1

i = yt
i − η2∇ygi(xt, yti; B̃ti)

6: end for
7: Update estimator Ht+1 of [∇2

yygi(xt, yt
i)]

−1 by (2)
8: Update gradient estimator ∆t+1 of ∇xF (xt) by (3)
9: zt+1 = (1− β0)zt + β0∆

t+1

10: xt+1 = xt − η0zt+1

11: end for

where β and η are momentum parameter and learning rate, respectively. As a moving average of the
historical gradient estimator, the sequence of vt+1 could achieve an effect of variance diminishing
across a long run ([32]).

2.1 The Proposed Algorithms

First, we propose a simple single loop stochastic algorithm 1 to solve the multi-block min-max bilevel
optimization problem. At the beginning of each iteration, we first sample a set of blocks It and data
batches Bti , B̃ti for each selected block i ∈ It. Then we update estimators of αi(xt) and yi(xt) for all
selected blocks i ∈ It using one step of SGA and SGD. Then, we compute an estimator of the hessian
inverse Ht+1 of the lower-level objective and compute a gradient estimator ∆t+1 of the upper-level
objective. Finally, we compute the moving average estimator zt+1 of ∇F (xt) and update xt+1. Note
that the design of our algorithm on the min-max bilevel optimization part is inspired by [11], and it is
similar to their momentum-based algorithms PDSM (for min-max problem) and SMB (for bilevel
problem) in their paper. In fact, if we set the number of blocks to be one and remove y and the lower
level problems, then Algorithm 1 is the same as PDSM. Similarly, if the number of blocks is one
and the dual variables in the upper level problem are removed, then the proposed algorithm becomes
similar as SMB except for the hessian inverse update with reasons explain shortly. In other words,
our proposed method is a generalized form of momentum-based algorithm for min-max and bilevel
optimization problems. Additionally, Algorithm 1 only updates O(1) blocks of dual variables αi and
the variables yi of the lower-level problems. These make the analysis of Algorithm 1 much more
involved.

To further understand Algorithm 1, we first define the objective function F (x) :=
1
m

∑
i∈S fi(x, αi(x), yi(x)), where yi(x) = argminyi gi(x, yi) and αi(x) :=

argmaxαi
fi(x, αi, yi(x)), so that the Problem (1) can be rewritten as minx F (x). The up-

dates for αt+1
i ’s and yt+1

i ’s are intuitive since the gradient estimations of ∇αfi(xt, αt
i, yti) and

∇ygi(xt, yti) are directly available from the unbiased stochastic oracles. However, since functions
yi(x) and αi(x) are implicit, estimating the gradient∇F (x) is difficult. In fact, one may apply the
corollary of Theorem 1 in [3] to get:

∇F (x) = 1

m

∑
i∈S

(∇xfi(x, αi(x), yi(x)) +∇yi(x)∇yfi(x, αi(x), yi(x))) .

A standard approach in bilevel optimization literature [8] for computing∇yi(x) is to derive∇yi(x) =
−∇2

xygi(x, yi(x))[∇2
yygi(x, yi(x))]−1 from the optimality condition of yi(x). Therefore, the gradient

we are looking for is given by

∇F (x) = 1

m

∑
i∈S
∇xfi(x, αi(x), yi(x))−∇2

xygi(x, yi(x))[∇2
yygi(x, yi(x))]

−1∇yfi(x, αi(x), yi(x)).

All components in this gradient can be easily obtained from unbiased stochastic oracles except
for the inverse of hessian [∇2

yygi(x, yi(x))]−1 for all blocks. This could be problematic in the
sense of theory and practical implementation. For practical implementation, we do not want to
update the hessian inverse estimators for all blocks, which is prohibitive when the number of
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blocks is large. A common approach used in the literature of SBO is to use Neumann series [8]
Ht+1

i = kt

Cgyy

∏q
j=1

(
I − 1

Cgyy
∇2

yygi(xt, yti; ξti)
)

, where q is chosen from {1, . . . , kt} randomly

and kt is the number of samples {ξti}
kt
i=1 for estimating the hessian inverse. This estimator is a biased

one and its error w.r.t to∇2
yygi(xt, yti)−1 is controlled by the number of samples kt [8]. However, it

is problematic to employ the above estimator for only the sampled blocks i ∈ It because the error
for those not sampled cannot be controlled. To address this issue, we use a different approach for
estimating the hessian inverse by only updating the estimators for those sampled blocks [29]. The
idea is to maintain a momentum term st+1

i for each block that stores historical information on the
hessian estimator∇2

yygi(xt, yti; B̃ti). And the hessian inverse is approximated by directly computing
the inverse of st+1

i , i.e., for sampled i ∈ It,

st+1
i = (1− β1)sti + β1∇2

yygi(xt, yti; B̃ti), Ht+1
i = [st+1

i ]−1 (2)

In terms of theoretical analysis, we are not bounding the individual error Ht+1
i −∇2

yygi(xt, yti)−1 for
all blocks, but the cumulative error for all blocks across all iterations. This is exhibited in Lemma 2.6.
As the conclusion of the above discussion, the gradient estimator of∇F (wt) is given by

∆t+1 =
1

|It|
∑
i∈It

{
∇xfi(xt, αt

i, y
t
i;Bti)−∇xygi(xt, yti; B̃ti)Ht

i∇yfi(xt, α
t
i, y

t
i;Bti)

}
. (3)

We maintain a moving average estimator zt+1 for ∆t+1 and finally update xt+1 using zt+1. The
detailed steps are presented in Algorithm 1.

Nevertheless, such method is not suitable for problems with a high dimensionality of yi, since
computing the Hessian inverse could be computationally expensive. To this end, we propose the
second method, Algorithm 2, for problems with high dimensionality of yi. The main idea is to treat
[∇2

yygi(x, yi)]
−1∇yfi(x, αi, yi) as the solution to a quadratic function minimization problem. As

a result, [∇2
yygi(x, yi)]−1∇yfi(x, αi, yi) can be approximated by SGD. Such method for Hassian

inverse computation has been studied for solving single-block bilevel optimization problems in some
previous works [7, 23]. However, none of them has applied this method in multi-block scenario.

Define quadratic function γi and its minimum point as following

vi(x, αi, yi) := argmin
v∈Rdy

γi(v, x, αi, yi) :=
1

2
vT∇2

yygi(x, yi)v − vT∇yfi(x, αi, yi)

Then we have the gradient ∇vγi(v, x, αi, yi) = ∇2
yygi(x, yi)v − ∇yfi(x, αi, yi), which im-

plies that the unique solution is given by vi(x, αi, yi) = [∇2
yygi(x, yi)]−1∇yfi(x, αi, yi). Note

that due to the smoothness of g and Lipschitz continuity of f with respect to y in Assump-
tion 2.2, one may define constant Γ =

Cf

µg
so that ∥vi(x, αi, yi)∥2 ≤ Γ2. Considering the

updates in Algorithm 2, we have ∥vt
i∥2 ≤ Γ2 for all i, t. Define the stochastic estimator

∇vγi(v, x, αi, yi;Bi, B̃i) := ∇2
yygi(x, yi; B̃i)v − ∇yfi(x, αi, yi;Bi), then it has bounded vari-

ance, of which the proof is deferred to Appendix B. Here we enlarge the value of σ so that
EBt

i
[∥∇vγi(vti, xt, yt

i;Bti , B̃ti) − ∇vγi(vti, xt, yt
i)∥2] ≤ σ2

B . It is worth to note that the projection
in the updates of vt+1

i is necessary in order to bound the variance of∇vγi(vti, xt, yti;Bti , B̃ti). Instead
of taking projection, previous works [7, 23] treat the variance boundedness as an assumption, which
is not guaranteed without using projection.

2.2 Convergence Analysis
In this section, we present brief convergence analysis of Algorithm 1 and Algorithm 2. The detailed
theorems and proofs are deferred to the appendix.

2.2.1 Convergence analysis of Algorithm 1
The key point of this analysis is the gap between the true gradient∇F (xt) and its estimator zt+1. To
this end, we define

∇F (xt,αt, yt) :=
1

m

∑
i∈S

{
∇xfi(xt, αt

i, y
t
i)−∇2

xygi(xt, y
t
i)Et[H

t
i ]∇yfi(xt, αt

i, y
t
i)
}
.
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Algorithm 2 A Stochastic Algorithm for Multi-block Min-max Bilevel Optimization (v2)
Require: α0, y0, v0, z0, x0

1: for t = 0, 1, . . . , T do
2: Sample tasks It ∈ S . Sample data batches Bti ⊂ Pi, B̃ti ⊂ Qi of batch size B for each i ∈ It.
3: for sampled blocks i ∈ It do
4: αt+1

i = ΠA[α
t
i + η1∇αfi(xt, αt

i, yti;Bti)]
5: yt+1

i = yt
i − η2∇ygi(xt, yti; B̃ti)

6: vt+1
i = ΠΓ

[
vt
i − η3

[
∇2

yygi(xt, yti; B̃ti)vti −∇yfi(xt, α
t
i, yti;Bti)

]]
7: end for
8: Update gradient estimator ∆t+1 = 1

|It|
∑

i∈It

[
∇xfi(xt, αt

i, yti;Bti)−∇2
xygi(xt, yti; B̃ti)vti

]
9: zt+1 = (1− β0)zt + β0∆

t+1

10: xt+1 = xt − η0zt+1

11: end for

One may notice that the estimator ∆t+1 is in fact approximating∇xF (xt,αt, yt) instead of∇xF (xt).
We exploit the moving average formulation of zt+1 and decompose the gap into two parts, ∥∆t+1 −
∇xF (xt,αt, yt)∥2 and ∥∇xF (xt,αt, yt) − ∇xF (xt)∥2. These two gaps are determined by how
well yt, αt and Ht

i approximate y(xt), α(xt) and [∇2
yygi(xt, yti)]−1, respectively. In other words,

we aim to bound the following three errors, ∥y(xt) − yt∥2 =: δy,t, ∥α(xt) − αt∥2 := δα,t and
∥[∇2

yygi(xt, yt
i)]

−1 −Ht
i ∥2.

We first bound the variance E[δy,t] by proving the following lemma.
Lemma 2.4. Consider the updates for yt in Algorithm 1, under Assumption 2.2 and 2.3, with
η2 ≤ min{ µg

L2
g
, 2m
|It|µg

} we have

T∑
t=0

E[δy,t] ≤
2m

|It|η2µg
δy,0 +

4mη2Tσ
2

µgB
+

8m3C2
yη

2
0

|It|2η22µ2
g

T−1∑
t=0

E[∥zt+1∥2]

One may also bound the second variance E[δα,t] based on the previous variance E[δy,t] following a
similar strategy.
Lemma 2.5. Consider the updates for αt in Algorithm 1, under Assumption 2.2, 2.3, with η1 ≤
min

{
µf

L2
f
, 1
µf
, 4m
µf |It|

}
, we have

T∑
t=0

Et[δα,t] ≤
4m

η1µf |It|
δα,0 +

24L2
f

µ2
f

T−1∑
t=0

E[δy,t] +
8mµfη1σ

2T

B
+

32m3C2
αη

2
0

η21µ
2
f |It|2

T−1∑
t=0

E[∥zt+1∥2].

Due to the lower bound assumption of ∇2
yygi(x, yi; ζ) in Assumption 2.2, the error in Hessian

approximation can be bounded by bounding δgyy,t :=
∑

i∈S ∥sti −∇2
yygi(xt, yi(xt))∥2. We prove

the following lemma.
Lemma 2.6. Under Assumption 2.2,2.3, considering the momentum method (2) for the update of
hessian, with β1 ≤ 1 we have

T∑
t=0

E[δgyy,t] ≤
4mδgyy,0
|It|β1

+ 32L2
gyy

T−1∑
t=0

E[δy,t] +
8mβ1Tσ

2

B
+

32m3L2
gyy(1 + C2

y)η
2
0

|It|2β2
1

T−1∑
t=0

E[∥zt+1∥2].

It then follows the convergence theorem for Algorithm 1.
Theorem 2.7. Under Assumption 2.2, 2.3 and with a proper settings of parameters η1, η2, β1 =

O
(
Bϵ2

)
, β0 = O

(
min{|It|, B}ϵ2

)
and η0 = O

(
min

{
min{|It|, B}ϵ2, B|It|ϵ2

m

})
, Algorithm 1

ensures that after T = O
(
max

{
m

|It|Bϵ4 ,
1

min{|It|,B}ϵ4

})
iterations we can find an ϵ-stationary

solution of F (x), i.e., E[∥∇F (xτ )∥2] ≤ ϵ2 for a randomly selected τ ∈ {0, . . . , T}.
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2.2.2 Convergence analysis of Algorithm 2
Similarly, to bound the gap between the true gradient ∇F (xt) and its estimator zt+1 in
Algorithm 2, we aim to bound the following three errors, δy,t, δα,t and

∑
i∈S ∥vti −

[∇2
yygi(xt, yi(xt))]−1∇yfi(xt, αi(xt), yi(xt))∥2 =: δv,t. We follow the same strategy for δy,t and

δα,t to what has been discussed in the previous section. To deal with δv,t, we first note that by its
construction, γi(v, x, yi) is µg-strongly convex and Lg-smooth with respect to v. At a result, similarly
to Lemma 2.5, one may bound the error of the estimators vti. Then it follows the convergence theorem
for Algorithm 2.

Theorem 2.8. Considering Algorithm 2, under Assumption 2.2, 2.3 and with a
proper settings of parameters η1, η2, η3 = O

(
Bϵ2

)
, β0 = O

(
min{|It|, B}ϵ2

)
and η0 = O

(
min

{
min{|It|, B}ϵ2, B|It|ϵ2

m

})
, Algorithm 1 ensures that after T =

O
(
max

{
m

|It|Bϵ4 ,
1

min{|It|,B}ϵ4

})
iterations we can find an ϵ-stationary solution of F (x),

i.e., E[∥∇F (xτ )∥2] ≤ ϵ2 for a randomly selected τ ∈ {0, . . . , T}.

Remark. In Theorem 2.7 and Theorem 2.8, there is no condition on the sizes of data batches Bti , B̃ti
nor block batch It for the algorithm to converge. Hence, their sizes can be as small as one. The
order of complexity is O(1/ϵ4), which matches the optimal complexity for nonconvex optimization
under a general unbiased stochastic oracle model. In addition, there is parallel speed up by increasing
batch sizes for data samples and task samples due to the scaling in terms of |It| and B in the iteration
complexity.

3 Applications in Multi-task Deep (Partial) AUC Maximization

In this section, we present two applications of multi-block min-max bilevel optimization: multi-task
deep AUC maximization and deep partial AUC maximization. (partial) AUC is a performance measure
of classifiers for imbalanced data. Recent studies have shown great success of deep AUC maximization
in various domains (e.g., medical image classification and molecular property prediction) [26, 33, 40].
However, efficient algorithms for multi-task deep (partial) AUC maximization have not been well
developed. For multi-task deep AUC maximization, we solve an existing formulation by our algorithm.
For multi-task deep partial AUC maximization, we propose a new bilevel formulation and solve it by
our algorithm.

3.1 Muti-task Deep AUC maximization

Following the previous work [26, 40], deep AUC maximization problem can be formulated as a
non-convex strongly concave min-max optimization problem minw,a,b maxα∈A LAUC(w, a, b, α).
However, training a deep neural network from scratch by optimizing AUC loss does not necessarily
lead to a good performance[39]. To address this issue, [39] proposed a compositional training strategy
for deep AUC maximization:

min
w,a,b

max
α∈R+

LAUC(w− η̃∇LCE(w), a, b, α),

where LCE denotes the cross-entropy loss. The outer objective remains to be the AUC loss, while
the inner objective is a gradient descent step of minimizing the traditional cross-entropy loss. This
method has shown superior performance on various datasets [39]. We extend this formulation to
multi-task problems and reformulate it into a multi-block min-max bilevel optimization:

min
(wl,wh),a,b

max
α∈Rm

+

m∑
i=1

LAUC(ui(wl,wh), a
i, bi, αi)

s.t. ui(wl,wh) = argmin
ui

1

2

∥∥ui − ((wl,wi
h)− η̃∇LCE(wl,wi

h))
∥∥2 ,

where wl denotes the weight for the encoder network that is shared for all tasks, and wh =
(w1

h, . . . ,wm
h ) denote the task-owned classification heads. The upper objective is strongly con-

cave in terms of dual variables αi and the lower level objective is strongly convex in terms of ui.
The hessian of the lower-level objective is the identity matrix. Hence, there is no need to track and
estimate the hessian matrix.

7



3.2 Multi-task Deep Partial AUC Maximization

Some real-world applications (e.g., medical diagnosis [2]) cannot tolerate a model with a high False
Positive Rate (FPR) even though it has significant performance in AUC. Hence, a measure of interest
is one-way partial AUC (pAUC), which puts a restriction on the range of FPR (i.e., FPR∈ [ρl, ρ],
where 0 ≤ ρl ≤ ρ ≤ 1). Below, we focus on the case ρl = 0. However, our method can be easily
extended for handling ρl > 0. Let D+,D− denote the set of positive and negative data for a binary
classification task, respectively. Let D−[K] denote the top-K negative examples according to their
prediction scores. Let n+, n− denote the number of positive and negative samples respectively. Then
we have partial AUC optimization with a pairwise square loss formulated as following [37]:

min
w

1

n+

∑
xi∈D+

1

n−ρ

∑
xj∈D−[K]

(hw(xj)− hw(xi) + c)2,

where K = n−ρ, c is a constant and hw(·) denotes the prediction score on a data. A key challenge for
solving the above problem is to deal with the non-differentiable top-K selector xj ∈ D−[K], which
depends on the model parameters w. This challenge has been recently tackled in [38, 42]. We focus
on the comparison with the first work as it is optimization oriented similar to ours and also has the
state-of-the-art performance. They formulate the problem into either a weakly convex minimization
or approximate it by a smooth objective in a compositional form. A caveat of their algorithms (named
SOPA, SOPA-s) is that they need to maintain and update n+ auxiliary variables with one for each
positive data. If we apply their algorithms for multi-task problems, one needs to maintain and update∑m

i=1 n
i
+ auxiliary variables, which could dramatically slow down the convergence.

To address this problem, we first transform it into a min-max optimization problem. Let a(w) =
1
n+

∑
xi∈D+

hw(xi) and b(w) = 1
n−ρ

∑
xj∈D−[K] hw(xj). Then we can write the problem as (cf.

Appendix B for a derivation)

min
w,a,b

1

n+

∑
xi∈D+

(hw(xi)− a)2 +
1

n−ρ

∑
xj∈D−

I(xj ∈ D−[K])(hw(xj)− b)2 + (b(w)− a(w) + c)2.

To tackle non-continuous non-differentiable indicator function I(·) we can replace it by a sigmoid
function. To tackle non-differentiability of the top-K selector xj ∈ D−[K], we follow [29] and
formulate it as lower-level optimization problem, i.e., xj ∈ D−[K] is equivalent to hw(xj) > λ(w),
where λ(w) represents the K + 1-th largest scores among all negative examples, which can be
approximated by a solution from a smooth strongly convex minimization problem as following:

λ(w) = argmin
λ∈R

L(λ,w) :=
K + ε

n−
λ+

τ2
2
λ2 +

1

n−

∑
x∈D−

τ1 ln(1 + exp((hw(x)− λ)/τ1)),

where ε, τ1, τ2 are small constants. Based on above, the multi-task deep partial AUC minimization
problem can be formulated as a multi-block min-max bilevel optimization problem give by:

min
w,a,b

max
α∈Rm

m∑
k=1

{
1

nk+

∑
xi∈Dk

+

(hw(xi; k)− ak)2 +
1

nk−ρ

∑
xj∈Dk

−

ϕ(hw(xj ; k)− λk(w))(hw(xj ; k)− bk)2

+ 2αk

(
1

nk−ρ

∑
xj∈Dk

−

ϕ(hw(xj ; k)− λk(w))hw(xj ; k)−
1

nk+

∑
xi∈Dk

+

hw(xi; k) + c

)
− α2

k

}

λk(w) = argmin
λ∈R

Lk(λ,w) :=
K + ε

n−
λ+

τ2
2
λ2 +

1

n−

∑
xj∈Dk

−

τ1 ln(1 + exp((hw(xj ; k)− λ)/τ1)),

where Dk
+/− denote the positive/negative data set of the k-th task, hw(x; k) denote the prediction

score for the k-th classifier, and ϕ(s) = 1
1+exp(−s) is the sigmoid function. The upper-level objective

is strongly concave in terms of αk and the lower-level objective is strongly convex in terms of λk.

We develop a tailored algorithm based on Algorithm 1 for solving the above formulation of multi-task
pAUC maximization as shown in Algorithm 3 in Appendix C. For the hessian update, the momentum
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Table 1: The testing AUC scores on four datasets.
Method\DataSet CIFAR100 CheXpert CelebA ogbg-molpcba
mAUC (baseline) 0.9044 (0.0015) 0.8084( 0.1455) 0.9062 (0.0042) 0.7793(0.0028)
mAUC-CT (ours) 0.9272 (0.0014) 0.8198(0.1495) 0.9192 (0.0004) 0.8406(0.0044)

update (2) is efficient due to that the each lower-level problem is only one-dimensional. For simplicity
of implementation, we define a loss Gt+1 38 in the Appendix C, on which auto-differentiation can be
directly applied for computing a gradient estimator. We refer readers to Appendix C for a detailed
explanation and derivation of Gt+1.

4 Experiments

4.1 Multi-task Deep AUC Maximization with Compositional Training

Data. We use four datasets, namely CIFAR100, CheXpert, CelebA and ogbg-molpcba. CIFAR-100
[22] is an image dataset consisting of 60, 000 32×32 color images in 100 classes. Hence, there are 100
tasks for CIFAR100. We follow 45, 000/5, 000/10, 000 split to construct training/validation/testing
datasets. CelebA [27] is a large-scale face attributes dataset with more than 200K celebrity images,
each with 40 attribute annotations (i.e., 40 tasks). We use the recommended training/validation/testing
split as 162, 770/19, 866/19, 961. CheXpert [18] is a dataset that contains 224,316 chest radiographs
with 14 observations. Since the official testing dataset is not open to public, we take the official
validation set as the testing data, and take the last 1000 images in the training dataset for validation.
Due to the absence of positive samples for the observation Fracture in the testing dataset, we ignore
this label and only consider the rest 13 observations (i.e., 13 tasks). The last dataset ogbg-molpcba is
a molecular property prediction graph dataset [15]. It consists of 437,929 graphs with 128 labels (i.e.,
128 tasks). We follow scaffold splitting procedure as recommended in [34].
Models. We use ResNet18 [13] for CIFAR-100 and CelebA, and ImageNet pretrained DenseNet121
[17] for CheXpert. For ogbg-molpcba, we use Graph Isomorphism Network (GIN) [35].
Setup. We compare our method for optimizing the multi-task AUC maximization with compositional
training denoted by mAUC-CT (ours) with a baseline that directly optimizes multi-task min-max
AUC loss denoted by mAUC (baseline). We do not compare with other straightforward baselines
(e.g., optimizing the CE loss and the focal loss) since they have been shown to be inferior than AUC
maximization methods for imbalanced data in many previous works [40, 42]. For both methods, the
learning rates η2, η1, η0 are set to be the same and tuned in {0.01, 0.03, 0.05, 0.07, 0.1}. The learning
rates decay by a factor of 10 at the 4th and 30th epoch for CheXpert and CelebA, respectively. No
learning rate decay is applied for CIFAR-100 and ogbg-molpcba. The moving average parameter
β0 and η̃ in the lower level problem of mAUC-CT (ours) are tuned in {0.1, 0.5, 0.9}. Regarding the
task sampling, for datasets CIFAR-100 and ogbg-molpcba, 10 tasks are sampled to be updated in
each iteration, and for each sampled task, we independently sample a data batch of size 128. For the
other two datasets with fewer tasks, CheXpert and CelebA, we sample one task at each iteration. The
batch size for data samples is 32 for CheXpert, and 128 for CelebA. We run both methods the same
number of epochs which varies on different data, 2000 epochs for CIFAR100, 6 epochs for CheXpert,
40 epochs for CelebA and 100 epochs for obgb-molpcba.
Results. In Table 1, we report the testing AUC score with the model selected according to the
best performance on validation datasets. Comparing with optimizing AUC loss directly, mAUC-CT
(ours) achieves better performance on all tested datasets. We show the results of an ablation study in
Figure 3, which verifies convergence has a parallel speed-up effect on both the batch sizes of data
samples and task samples. The algorithm converges faster as either the data or task sample batch size
increases. In Figure 2 (left two), we compare our method with the baseline in terms of convergence
speed on the training data of two datasets, which demonstrate that our method converges faster. More
results on training convergence are included in the appendix.

4.2 Multi-task Deep Partial AUC Maximization

Setup. For this task, we use the same datasets and the same networks for the image datasets and
graph datasets as in the previous subsection. For baselines, we compare with a naive mini-batch based
method (MB) for pAUC maximization [20], and a state-of-the-art pAUC maximization method SOPA-
s [42]. Following previous works [40, 42], for pAUC maximization methods we use a pretrained
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(a) Varying B (b) Varying I (c) Varying B (d) Varying I

Figure 1: Convergence of our method vs data sample batch sizes B and vs task sample batch size
I := |It| for multi-task deep AUC maximization.

Figure 2: Comparison of Convergence on training data for multi-task deep AUC maximization (left
two) and multi-task deep pAUC maximization (right two) on the CelebA and ogbg-molpcba datasets.

encoder network by optimizing the CE loss as the initial encoder and learn the whole network by
maximizing pAUC. We also report the performance of optimizing the CE loss for a refernece. For
all methods, the learning rate is tuned in {0.0001, 0.0005, 0.001, 0.005, 0.01}. The hyperparameters
selection of MMB-pAUC are: η1 and η2 ∈ {0.5, 0.1, 0.01}, β1 ∈ {0.99, 0.9, 0.5, 0.1, 0.01} and β0 ∈
{0.9, 0.99}. For Focal loss we select gamma from {1, 2, 4} and alpha from {0.25, 0.5, 0.75}. The
momentum parameters in SOPA-s are tuned in the same range and their λ parameter in {0.1, 1, 10}
as in [42]. The margin parameter in the surrogate loss (e.g., c) is set to be 1. Regarding the task
sampling, we sample one task at each iteration for ogbg-molpcba and CheXpert, sample 10 tasks for
CIFAR100, and sample 4 tasks for CelebA. The data sample batch size is 32 for CheXpert, and 64
for others. For smaller datasets (CIFAR100 and ogbg-molpcba), we run 100 epochs for each, and we
decay the learning rate by a factor of 10 at the 50-th epoch. For larger datasets (CelebA, CheXpert),
we run 50 and 5 epochs respectively.
Results. The partial AUC scores with FPR≤ 0.1 on the testing data of different methods are shown
in Table 2. From the results, we can see that our methods perform better than baseline methods with
a significant margin. In Figure 2 (right two), we compare our method with the baselines in terms of
convergence speed on the training data of two datasets, which demonstrate that our method converges
faster. More results on training convergence are included in the appendix.

Table 2: The testing partial AUC scores on the four datasets.
Method\DataSet CIFAR100 CelebA CheXpert ogbg-molpcba

CE 0.8895 (0.0009) 0.8024 (0.0026) 0.6606 (0.0159) 0.6576 (0.0010)
Focal 0.8966 (0.0007) 0.8064 (0.0011) 0.6646 (0.0132) 0.6453 (0.0021)
MB 0.9188 (0.0006) 0.8304 (0.0005) 0.6759 (0.0160) 0.7213 (0.0018)

SOPA-s 0.9251 (0.0003) 0.8336 (0.0001) 0.6682 (0.0156) 0.7290 (0.0019)
Ours 0.9262 (0.0005) 0.8360 (0.0003) 0.6827 (0.0183) 0.7374 (0.0015)

5 Conclusion and Future Work
We have developed two simple single loop randomized stochastic algorithms for solving multi-block
min-max bilevel optimization problems. These algorithms require updates for only constant number
of blocks in each iteration. We showed that both of them achieve an oracle complexity of O(ϵ−4),
which matches the optimal complexity order for solving stochastic nonconvex optimization under a
general unbiased stochastic oracle model. At the same time, we hope our work inspires others to find
more novel applications of our idea.
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