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A Supplement for experimental settings

A.1 Evaluation metric

H-score was proposed in CMU [4], which emphasizes the importance of both abilities of UniDA
methods. Inspired by F1-score, H-score is defined as the harmonic mean of the instance accuracy on
common class aC and and accuracy on the “unknown” class aC̄t

as:

H-score =
2

1/aC + 1/aC̄t

= 2 ·
aC · aC̄t

aC + aC̄t

. (S1)

H-score is high only when both the aC and aC̄t
are high, and has applied as a fair evaluation metric in

UniDA [4, 6, 2].

A.2 Dataset split.

We follow the dataset split in [4, 10] to conduct experiments. Here we present more details about
the dataset split. As we state in Section 2, we denote C = Cs ∩ Ct as the common label set shared
by both domains and let Cs = Cs\C and Ct = Ct\C represent label sets of source private and target
private, respectively.

Office. UAN [10] uses the 10 classes shared by Office-31 and Caltech-256 as the common label set
C, then in alphabetical order, the next 10 classes are used as the Cs = Cs\C, and the reset 11 classes
are used as the Ct = Ct\C. Office-Home. In alphabet order, UAN [10] uses the first 10 classes as C,
the next 5 classes as Cs = Cs\C and the rest 55 classes as Ct = Ct\C. VisDA. UAN [10] uses the
first 6 classes as C, the next 3 classes as Cs = Cs\C and the rest as Ct = Ct\C. DomainNet. CMU
[4] uses the first 150 classes as C, the next 50 classes as Cs = Cs\C and the rest as Ct = Ct\C.

B Additional results

H3-score on VisDA and DomainNet. Tab. S1 shows the comparison of H3-score between UniOT
and the state-of-the-arts for VisDA and DomainNet. Our UniOT surpasses the other methods by a
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large margin, especially for VisDA. We omit H3-score for TNT [2] and DCC [6] since they did not
release code or hyper-parameters for these two datasets.

H-score with standard deviation. We report error bars after running the experiments three times for
UniOT. As shown in Tab. S2, we report the averaged H-score results as well as standard deviation
(std) for Office and Office-Home. We observe that the std values are generally close to zero for all
transfer tasks, which demonstrates the stability of our method.

VisDA DomainNet
P2R R2P P2S S2P R2S S2R Avg

ResNet[5] 34.55 36.21 33.15 30.84 31.50 30.76 35.53 33.00
UAN[10] 30.05 38.39 37.62 39.65 34.84 33.17 49.54 38.87
DANCE[8] 6.33 42.45 42.91 50.03 45.35 42.50 44.09 44.56

UniOT 47.23 46.85 51.75 47.00 47.98 58.56 58.56 51.78

Table S1: H3-score(%) on VisDA and DomainNet.

Office
A2D A2W D2A D2W W2A W2D Avg

86.97±1.08 88.48±0.66 88.35±0.56 98.83±0.22 87.60±0.35 96.57±0.00 91.13±0.23

Office-Home
Ar2Cl Ar2Pr Ar2Rw Cl2Ar Cl2Pr Cl2Rw

67.27±0.19 80.54±0.42 86.03±0.27 73.51±0.58 77.33±0.64 84.28±0.14

Pr2Ar Pr2Cl Pr2Rw Rw2Ar Rw2Cl Rw2Pr Avg
75.54±0.45 63.33±0.74 85.99±0.19 77.77±0.56 65.37±0.25 81.92±0.22 76.57±0.17

Table S2: Averaged H-score with standard deviation (after three runs) for Office and Office-Home.

Effect of Common Class Detection (CCD). To show that our CCD can effectively detect common
samples as the training progresses, we present the evolution of Recall [7] and Specificity [7] values
for D2W of Office. Recall measures the fraction of common samples that are retrieved as correct
common class, while specificity measures the fraction of private samples that are not retrieved. As
shown in Fig. S1(a), our CCD guarantees high recall rate and low specificity rate, which verifies that
our CCD can detect common samples for domain alignment and avoid misalignment for target-private
samples.

Sensitivity to hyper-parameters. Fig. S1(b) shows the sensitivity of γ, where γ is the rough
boundary for splitting positive and negative in adaptive filling. For the cosine similarity of two
ℓ2-normalized features, the similarity value is limited from −1 to 1, where higher value indicates
higher similarity. To rough split positive and negative, the boundary γ should be high enough. We
can observe that the performance is not sensitive to the different γ.

Fig. S1(c) shows the sensitivity of moving average factor µ in Eq. 9. When µ = 1, the performance is
not good since µ = 1 means no adaptive update for the marginal probability vector, which cannot fit
actual budget for source prototypes. When µ < 1, the performance does boost and it is not sensitive
to different µ, which demonstrates the positive effects of adaptive update for the marginal probability
vector.

Fig. S1(d) shows the sensitivity of the overall loss weight factor λ in Eq. 15 , which demonstrates
that our method is not sensitive to the different selection of λ varying from 0.1 to 0.5.

H-score H3-score
VisDA P2S R2P S2P VisDA P2S R2P S2P

LCCD + Lglobal + LSwAV 44.57 43.20 45.97 45.39 44.62 37.96 43.91 41.91
LCCD + LSimSiam 53.49 44.31 45.43 45.71 44.65 38.49 44.09 42.25
LCCD + LPCD 57.32 51.79 47.79 46.81 60.33 47.00 51.75 47.98

Table S3: Effect of local neighbor for representation learning.
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Figure S1: (a) The evolution of Recall and Specificity on D2W of Office. (b) Sensitivity to the rough
boundary γ for adaptive filling on Office-Home. (c) Sensitivity to the moving average factor µ for
adaptive update of marginal probability vector on Office. (d) Sensitivity to the overall loss weight
factor λ on Office.

Effect of local neighbor for representation learning. To show that the local neighbor consistency
does benefit the representation learning in target domain, we conduct experiments with small-batch
self-supervised learning methods, such as SimSiam [3] and SwAV [1]. Such self-supervised learning
methods encourage the consistency between two augmentations of one image. We conduct the
experiments on VisDA and three transfer tasks on DomainNet. For SimSiam, we replace LPCD with
the SimSiam loss LSimSiam. For SwAV, we replace Llocal with the SwAV loss LSwAV . Notably,
Tab. S3 shows that directly combining self-supervised methods with domain adaptation barely makes
a contribution. One possible interpretation is that the self-supervised methods mainly contribute to
the case without any supervision but fail to benefit under the powerful source supervision. Therefore,
learning from local neighbor performs better than augmentation-based self-supervised learning
methods for UniDA.

Feature visualization for the significance of Private Class Discovery. We use t-SNE [9] to
visualized the both source and target features for Rw2Pr of Office-Home for our UniOT. Notably,
Office-Home is a more challenging dataset where there are 50 target-private categories but only 10
common categories. Source and target common categories are printed as colourful 0-9 digits, 5
source-common categories are printed as brown capitalized letters A-E, and the left 50 target-private
categories are printed as grey triangles for simplicity. As shown in Fig. S2, we can observe that
our Private Class Discovery (PCD) encourages more compact representation for common classes,
which can improve accuracy for common classes, such as class-2 in the figure. Moreover, learning
without PCD presents disordered representation around source-private classes, which will cause acute
mis-classification for target-private samples, such as class-A, class-B, class-E printed in brown. Our
PCD refines this situation significantly by encouraging self-supervision for target-private samples
instead of over-reliance on source supervision.
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(b) UniOT

Figure S2: Feature visualization for both source and target domain on Rw2Pr of Office-Home.
Source-common set: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, source-private set: {A, B, C, D, E}, target-common
set: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, target-private samples are printed as ▲. Private Class Discovery (PCD)
helps UniOT learn more compact representation for target domain, which improves the accuracy of
both common classes and target-private classes.
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Figure S3: Qualitative illustration of similarity matrix Sst for batch target samples and source
prototypes on A2W in Office. The display images for source prototypes are chosen by finding
the nearest source instance of the prototype. In A2W task, 0-9 are common classes, 10-19 are
source-private classes and 20-30 are target-private classes.
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Figure S4: Qualitative illustration of UOT coupling matrix Qst for batch target samples and source
prototypes on A2W in Office. The display images for source prototypes are chosen by finding
the nearest source instance of the prototype. In A2W task, 0-9 are common classes, 10-19 are
source-private classes and 20-30 are target-private classes.
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(a) Office (Amazon common mini-clusters)

(b) Office-Home (Art common mini-clusters)

(c) DomainNet (Painting common mini-clusters)

(d) VisDA (common mini-clusters)

Figure S5: Examples of common mini-clusters. Top-16 nearest neighbors of common target proto-
types are presented and we show 2 mini-clusters of 2 common classes for each dataset.
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(a) Office (Amazon target-private mini-clusters)

(b) Office-Home (Art target-private mini-clusters)

(c) DomainNet (Painting target-private mini-clusters)

(d) VisDA (target-private mini-clusters)

Figure S6: Examples of target-private mini-clusters. Top-16 nearest neighbors of target-private
prototypes are presented and we show one mini-clusters of 4 target-private classes for each dataset
(except for VisDA which owns 3 target-private classes only).
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Qualitative illustration for cross-domain mapping matrix. To better illustrate the process of
mapping from target samples to source prototypes in our UOT-based Common Class Discovery, we
display the mini-batch based similarity matrix and UOT coupling matrix with more detailed mapping
data display in Fig.S3 and Fig.S4. To visualize source prototypes, we select the nearest samples to the
source prototypes as prototype images. The visualization is conducted on A2W in Office, in which
0-9 classes are common, 10-19 are source-private and 20-30 are target-private. As shown in Fig.S4,
the diagonal of UOT coupling matrix of first 10 classes are more clear than others and the others are
mapped slightly, which demonstrates that our partial alignment is applicable and accords with the
ground-truth labels.

Qualitative results of target cluster examples. To better illustrate the target prototypes, we show
some examples of top-16 nearest target neighbors of target-common and target-private prototypes.
As shown in Fig. S5, we show common mini-clusters of 2 classes per domain. And our OT-based
clustering method can help learn a more fine-grained mini-cluster, such as one backpack mini-cluster
(left 1) is mainly dark and the other mini-cluster (left 2) is more colorful in Fig. S5(a).

Moreover, we show some examples of target-private clusters in Fig. S6. Although target-private
samples lack supervision, our Private Class Discovery can also help them learn representation in a
self-supervised manner.
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