
Appendix for
Multiagent Q-learning with Sub-Team Coordination

Contents

A Related Work 2

B Omitted Proofs and Discussions 3

B.1 Discussions about Monotonic Value Function Factorization 3

B.2 Discussion on Different Team Reward Functions 4

B.3 General Cases for Sub-team Coordination Patterns 5

B.4 Proof of Proposition 1 . 5

B.5 Base Architecture and the IGM Condition . 6

B.6 Sub-Team Factorization for Advantage Functions 6

B.7 QMIX in Coordination Hierarchy . 7

B.7.1 Partially Observable Settings . 7

B.7.2 Fully Observable Settings . 8

B.8 QPLEX in Coordination Hierarchy . 9

C Experimental Setup 9

C.1 Testing Domains . 9

C.2 Implementation Details . 10

D The StarCraft Multi-Agent Challenge 10

D.1 Task Description . 10

D.2 Empirical Results . 10

E Additional Experiments 10

E.1 Additional Results for Predator-Prey . 10

E.2 Ablation Study on QSCAN’s Layers . 12

E.3 Additional Comparison with QPLEX . 13

E.4 Additional Results in a Super-Hard SMAC Task 13

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

A Related Work

Value factorization architectures. Decentralizing the agents’ joint policy has long been a central
issue of the value-based cooperative MARL in the popular CTDE paradigm [1]. It allows each agent
has an individual action-value function while the whole team’s global action-value function could
be trained in a centralized way. Sunehag et al. [2] introduced a linear action-value factorization
architecture, called value decomposition network (VDN), whereby the global action value is just a sum
of the individual action values. The greedy joint policy could thus be obtained by maximizing each
agent’s individual action-value function simultaneously. QMIX [3] improves this linear architecture
by introducing a monotonic mixing network, which connects the global action value with the
individual action values. The monotonic function class increases the representational capacity of value
factorization architectures. Son et al. [4] analyzed the properties of previous factorization frameworks
and proposed a general condition on the factorization, called individual-global-max (IGM), ensuring
the agents’ individually optimal actions are consistent with the optimal joint actions. QPLEX [5]
leverages the duplex dueling structure Q = V + A [6] to achieve the complete expressiveness of
the IGM function class. The duplex dueling structure allows the architecture to maintain the largest
capacity of representation in the IGM function class.

Related training schemes. In addition to identifying suitable value factorization architectures,
various training schemes have been proposed to enhance the applicability of the structures. For
instance, WQMIX [7] uses a projection operator to project the actual global action-value function into
QMIX function space. In this way, WQMIX transfers the challenging task into an easily factorizable
one that QMIX could factorize. Similar conclusions about QTRAN [4] can be drawn. We regard
these methods as training schemes because other architectures could also use the same projection
operators to train. Since we are interested in value factorization architectures in this paper, we did not
compare our methods with the structures exploiting these training schemes.

Organizational paradigms. The organization of a multiagent system is the structure of relationships
that govern the agents’ behavior. Substantial evidence suggests that employing domain-dependent
organizational structures could significantly affect the performance of the system [8]. Various
organizational paradigms, including coalitions and teams, have emerged and been applied to numerous
domains. A coalition formed by a subset of agents can be treated as a single atomic entity, whose
utility is the summation of individual agents’ utilities. Several MARL approaches using coalitions
and Shapley values [9–11] aim to derive agents’ marginal contribution to the grand team for achieving
a “fair” credit assignment. A team of agents [12, 13] would coordinate with each other toward a
common goal. Within a team, the coordination patterns could be various, and generally, each agent
could belong to different sub-teams. In contrast to the competitive “coalitions”, all “sub-teams” have
a common goal that is to maximize the utility of the grand team. Typically, an agent should exactly
belong to one coalition, while the agent can belong to several sub-teams concurrently. Numerous
teamwork structures have emerged in previous works [12, 14]. In this paper, rather than deriving the
marginal contributions of the agents via coalitions, we employ sub-team structures to characterize
coordination patterns among cooperative agents.

Relationship to VAST [11]. VAST is a multiagent actor-critic learning algorithm, which employs
the time-variable coalition as its organization and uses a centralized critic to factorize the global
value into individual values for training actors. At one particular time step, VAST divides agents
into several groups where each agent belongs to exactly one group (same as one coalition) at one
particular time step. In contrast, an agent might belong to different groups at different time steps.
After dividing, a coalition value is the sum of the individual values of its agents, and the coalition
values pass the centralized critic to obtain the global value. In the VAST paper [11], VAST employs
the mixing function of QMIX or QTRAN as its centralized critic. When focusing on one time step,
we can view VAST’s factorization as a subclass of QMIX’s monotonic factorization (as QTRAN
projects the actual global action-value function into the additive function). In this viewpoint, the
VAST algorithm allows the input order of agents’ individual values to vary over time rather than
introducing a new factorization method.

Graph neural networks and self-attention in cooperative MARL. In cooperative MARL, Graph
Neural Networks (GNNs, [15]) are typically used to characterize the dependence of graphs by
message passing between the nodes in the graphs. Self-attention [16] is an attention mechanism
that could be used to compute a representation of a sequence of entities. Therefore, both GNNs and

2

self-attention could be used to characterize the global information of the team in the cooperative
MARL, which is conditioned on the observations and the actions of the agents. Previous works in
MARL use GNNs and self-attention mechanisms to extract neighboring agents’ features from the
individual side [17–19], or build a centralized critic or a mixing network from the team side [20–22].
Since we are interested in value factorization architectures, we focus on related works that use GNNs
and self-attention as centralized critics or mixing networks. In contrast to our implementation of
QSCAN which employs self-attention mechanisms to characterize coordination patterns, previous
works [20–22] only consider employing GNNs and self-attention to extract features of the whole
team for a representation of the global action-value function.

B Omitted Proofs and Discussions

B.1 Discussions about Monotonic Value Function Factorization

In the mainbody of our work, we point out that the monotonic value function factorization like
QMIX may limit the representation capacity of the global action-value function. An immediately
interesting issue arises that if we care only about the optimal global action-value function, whether
this monotonic factorization could have enough representation capacity to characterize the optimal
solution. We will show in the following that this is true and the optimal global action-value function
of the task can always be factorized by some monotonic function. However, this kind of solution may
not be practical because it is pretty hard for the architecture to learn the solution.

We consider a fully observable setting where each agent’s observations are the full state in this
subsection. This setting is equivalent to a multiagent Markov decision process (MMDP) [23]. We
focus on the mixing function f which takes individual action values and the global state as input, i.e.,
Qtot(s,a) = f (Q1(s, a1), . . . , Qn(s, an), s). We show that for any MMDP, there exists a mixing
function and a series of individual action-value functions, such that the output of the mixing function
satisfies the Bellman optimality equation. In addition, we show that the output of this mixing function
and those individual action-value functions satisfy the IGM condition. For convenience, we let
V ∗ : S → R denote the optimal state value function for an MMDP.
Lemma 1. For any MMDP, there exists a mixing function f : Rn×S → R and a series of individual
action-value functions [Qi]

n
i=1 where Qi : S ×A → R contains a unique maximum point, such that

Qtot(s,a) = f(Q1(s, a1), . . . , Qn(s, an), s) with a = (a1, . . . , an) satisfies the Bellman optimality
equation

∀s ∈ S, V ∗(s) = max
a

Qtot(s,a), (1)

in the meantime [Qi]
n
i=1 satisfy the IGM condition for Qtot.

Proof. Without loss of generality, we only consider a specific state s. Suppose that a∗ = (a∗1, . . . , a
∗
n)

is the optimal joint action and V ∗(s) is the optimal state value for state s. For any ϵ > 0, we can
create a series of individual action-value functions [Qi]

n
i=1 with

Qi(s, ai) =

{
sgn(V ∗(s)) if ai = a∗i ,

sgn(V ∗(s))− ϵ otherwise.
, (2)

where sgn(·) is the sign function. Obviously, each Qi contains a unique maximum point a∗i . We can
then assemble a global action-value function Qtot by

Qtot(s,a) =

[
1

n

n∑
i=1

Qi(s, ai)

]
|V ∗(s)|. (3)

It would be easy to verify that [Qi]
n
i=1 satisfy IGM for Qtot. Since for any agent i, a∗i is the maximum

point of Qi(s, ·), we have

∀a, Qtot(s,a) ≤ Qtot(s,a
∗) =

[
1

n

n∑
i=1

sgn(V ∗(s))

]
|V ∗(s)| = V ∗(s), (4)

which completes the proof.

Remark 1. It should be noted that our construction of Qtot in Eq. (3) tries to match the true global
action-value function over just one choice of joint actions in each state, even if the true global
function may have multiple optimal actions.

3

B.2 Discussion on Different Team Reward Functions

In this section, we will discuss several types of team reward: c-degree polynomial functions, c-clause
functions, and hypergraphical functions. We will represent the formulation of team reward types and
then show the existence of the hierarchical structures for each reward function.

First, we will discuss the c-degree polynomial functions. A c-degree polynomial function is a
polynomial function with a degree at most c for individual value functions, which can be used as a
c-polynomial approximation for some other types of team reward. The mathematical formulation of
a c-degree polynomial function is

Qtot =
∑

d:d∈{0,1}n,
∑n

i=1 di≤c

wd

n∏
i=1

Qdi
i .

It is trivial that a c-degree polynomial function can be represented by c-member sub-teams as

QST =
∑

d:d∈{0,1}n,
∑n

i=1 di≤c

{
1(
n

c−
∑n

i=1 di

)wd

n∏
i=1

Qdi
i ·

n∏
i=1

1[di = 0 ∨ i ∈ ST]

}
,

Qtot =
∑

|ST |=c

QST ,

where ST is a k-member sub-team. Notice that a c-degree polynomial function is also a (c + 1)-
degree polynomial function so that it can be represented by (c+ 1)-member sub-teams, which shows
a hierarchical structure.

Second, we move to c-clause functions. A c-clause function is a CNF-like Boolean function with
each clause corresponding to at most c individual values. This type of team reward indicates that the
task is done by accomplishing all sub-tasks, each of which is represented by a clause. Specifically,

Qtot =
∏

1≤x1<x2<···<xc′n,c
′≤c

fx(Qx1 , Qx2 , . . . , Qxc′),

where fx is a Boolean function. Since all fx is either 0 or 1, a c-clause function can be represented
by c-member sub-teams as

QST =
∏

x:1≤|x|=c′≤c,x⊆ST

fx(Qx1
, Qx2

, . . . , Qxc′),

Qtot =
∏

|ST |=c

QST .

Since c-clause functions can be viewed as a special case of (c+ 1)-clause functions, (c+ 1)-member
sub-teams can represent those functions. Therefore, a hierarchical structure is built upon coefficient c.

Finally, we consider the hypergraphical functions. A hypergraphical function is a team reward
function of a cooperative hypergraphical game [24], where the team reward is the summation of
the utilities of several hyperedges. The hypergraphical function can be viewed as a graphical
approximation of other team reward function. Formally, the team reward is

Qtot =
∑

e=(x1,x2,...,x|e|)∈E

ue(a1, a2, . . . , a|e|),

where E is the set of hyperedges and ue is the utility function of the hyperedge e. When each e ∈ E
satisfying |e| ≤ k, the hypergraphical function can be represented by k-member sub-teams as

QST =
∑

e:e∈E,e⊆ST

[
1(
n

k−
∑n

i=1 di

)ue(a1, a2, . . . , a|e|)

]
,

Qtot =
∑

|ST |=k

QST ,

4

where e ⊆ ST means that each agent in hyperedge e is also a member of sub-team ST . The
construction for a representation based on (k + 1)-member sub-teams is similar, which means the
coordination patterns in k-member sub-team can be viewed as those in (k + 1)-member sub-team. A
hierarchical structure based on the maximal size of hyperedges can be built up.

Although c-degree polynomial functions, c-clause functions, and hypergraphical functions are differ-
ent approximations for other team reward functions, they all form a hierarchical structure with the
sub-team representation. This fact indicates that the hierarchical structure for team reward functions
with the sub-team representation could exist in several general cases.

B.3 General Cases for Sub-team Coordination Patterns

In this section, we show that the coordination patterns within a team of n agents form a natural
hierarchical structure based on the size k of sub-teams when k ≤ n

2 . This result is only based on the
assumption of the monotonic sub-team factorization of k-member sub-teams.
Theorem 1. Given a team of n agents and a sub-team size k (1 ≤ k ≤ n

2), consider a monotonic
factorization for a set of k-member sub-teams Ak, s.t. ∀ST ∈ Ak : ∂Qtot

∂QST
≥ 0 and ∀ST /∈ Ak :

∂Qtot

∂QST
= 0. Then there exists a set of k+1-member sub-teams Ak+1, s.t. ∀ST ′ ∈ Ak+1 : ∂Qtot

∂QST ′
≥ 0

and ∀ST ′ /∈ Ak+1 : ∂Qtot

∂QST ′
= 0.

Proof. The idea to prove the theorem is to map each k-member sub-team ST to a corresponding
(k + 1)-member sub-team ST ′ so that we can construct QST ′(·,aST) ≡ QST (aST). Notice that,
when each member in ST is also a member in ST ′, that is, ST ′ is a super-set of ST , QST ′ can be
equivalent to QST by simply ignoring the information of the member ST ′ \ ST .

To construct the mapping, we will build up a bi-part graph of k-member and (k + 1)-member
sub-teams, and then show the existence of such mapping via Hall’s marriage theorem Hall [25].

Consider a bi-part graph G = (A,B, E), where A,B are the sets of k-member sub-teams and
(k + 1)-member sub-teams, respectively. E is the set of edges, where ∀(ST ,ST ′) ∈ E if and only if
ST ∈ A, ST ′ ⊂ B, and ST ⊂ ST ′. The degree for each ST ∈ A is (n− k), while that for each
ST ∈ B is (k). Since k ≤ n

2 , we have n− k ≥ k. Then size of the neighbours for each A′ ⊆ A is at
least

|A| · n− k

k
≥ |A|.

By Hall’s marriage theorem, there exists a perfect matching in graph G for A side. With this
perfect matching, we can construct Ak+1 by Ak and corresponding Q-functions QST ′ . Since
QST ′(·,aST) ≡ QST (aST), we still satisfy the condition ∂Qtot

∂QST ′
≥ 0. For the sub-teams outside

Ak+1, we can set their Q-functions as zeros. Then we have

∂Qtot

∂QST ′
≥ 0 ∀ST ′ ∈ Ak+1,

and
∂Qtot

∂QST ′
= 0 ∀ST ′ /∈ Ak+1,

which concludes the proof.

For the case that k > n
2 , this proof is no longer applicable. However, we do not know whether the

hierarchical structure remains with the same assumption ∂Qtot

∂QST
≥ 0 or some counterexamples exist.

It might be an open problem.

B.4 Proof of Proposition 1

Proposition 1. Consider a fixed mixing function f : Rn ×S → R. If Qtot(s, ·) = f(Q1, . . . , Qn, s),
where Qtot and [Qi]

n
i=1 satisfy the IGM condition consistently for any function Qi(s, ·) which

contains a unique maximum point, then f should satisfy ∀i ∀xi ∈ R, ∂f(x1,...,xn,s)
∂xi

≥ 0.

5

We show that the mixing function f satisfying those requirements should be monotonic.

Without loss of generality, we only consider a specific state s ∈ S. For any agent i, let a∗i be the
optimal action for its individual action-value function, specifically

a∗i = argmax
ai∈Ai

Qi(s, ai). (5)

Denote the vector of these optimal actions by a∗ = (a∗1, . . . , a
∗
n). Due to the uniqueness of the

optimal actions, we immediately have Qi(s, a
∗
i) > Qi(s, ai) for any i and ai ̸= a∗i . Since Qi can be

an arbitrary function, without loss of generality, for any ϵ > 0 and some ai ̸= a∗i , we could create a
function Qi satisfying Qi(a

∗
i)−Qi(ai) = ϵ. For convenience, we define a helper function h̃i

h̃i(xi) = f(Q1(s, a
∗
1), . . . , Qi−1(s, a

∗
i−1), xi, Qi+1(s, a

∗
i+1), . . . , Qn(s, a

∗
n), s). (6)

According to the IGM condition, a∗ is a maximum point of Qtot(s, ·). Therefore, we have
h̃i(Qi(s, a

∗
i)) ≥ h̃i(Qi(s, ai)). It follows that

∂f(x1, . . . , xn, s)

∂xi

∣∣∣∣
∀i, xi=Qi(s,a∗

i)

(7)

= lim
ϵ→0

h̃i(Qi(s, a
∗
i))− h̃i(Qi(s, a

∗
i)− ϵ)

ϵ
(8)

= lim
ϵ→0

h̃i(Qi(s, a
∗
i))− h̃i(Qi(s, ai))

ϵ
(9)

≥0 (10)

Since Qi can be arbitrary, the partial deviates should be non-negative in the whole domain, which
completes the proof.

B.5 Base Architecture and the IGM Condition

We show that our base architecture guarantees the IGM condition.

Proposition 2. The base network guarantees the IGM condition.

For any (Qtot, [Qi]
n
i=1) that base network can represent and any histories [τi]ni=1, we let

a∗ = (a∗1, . . . , a
∗
n) =

(
argmax
a1∈A1

Q1(τ1, a1), . . . , argmax
an∈An

Qn(τn, an)

)
(11)

denote a vector of individual optimal actions. Due to the positive transformations and the monotonic
function f in the mixing network, it is quite straightforward to obtain ∀i, ∀ai ̸= a∗i ,

Qi(τi, a
∗
i) = max

a′
i

Qi(τi, a
′
i) (12)

⇒ (Positive linear transformation w > 0) Qi(τ , a
∗
i) = max

a′
i

Qi(τ , a
′
i) (13)

⇒ (Ai(τ , ai) = Qi(τ , ai)−Qi(τ , a
∗
i)) Ai(τ , a

∗
i) = 0 and Ai(τ , ai) < 0

(14)
⇒ (Positive weights [λi]

n
i=1 and the monotonic function f) Atot(τ ,a

∗) = 0 and Atot(τ ,a) < 0
(15)

⇒ (Qtot(τ ,a) = Atot(τ ,a) + Vtot(τ)) Qtot(τ ,a
∗) = max

a′
Qtot(τ ,a

′).

(16)

Therefore, a∗ is the optimal joint action of Qtot(τ , ·), which satisfies the Definition 1.

B.6 Sub-Team Factorization for Advantage Functions

For a particular joint history τ , consider the global advantage Atot = Qtot − Vtot, an action value
QST of sub-team ST , and a individual advantage Ai = Qi − Vi of agent i.

6

When other agents’ policies are fixed, QST can be treated as a function of Qi. Taking the first order
approximation,

QST ≈ g̃ST
i Qi + C̃ST

i

, where g̃ST
i and C̃ST

i are the coefficients for the first order approximation. For the individual
advantage Ai,

QST ≈ g̃ST
i Ai + (C̃ST

i + g̃ST
i Vi). (17)

Then we will consider the relationship between Atot and Ai. With discussion about whether Qtot =
Vtot or not, it is easy to show ∂Qtot

∂QST
≥ 0 =⇒ ∂Atot

∂QST
≥ 0. Recall that (17) shows that QST is

monotonic with g̃ST
i Ai. Atot is monotonic with the value vector {g̃ST ′

i Ai}ST ′:i∈ST ′ . The value
vector size depends on the number of different sub-teams and grows exponentially with the size of
sub-teams. One approximation is to encode the value vector into a single value so that the single
value remains monotonic with Atot. A simplest solution is to take the summation of each elements
in the value vector

∑
ST ′:i∈ST ′

(
g̃ST ′

i Ai

)
. However, this might not characterize the monotonicity

between the Atot and the value vector. An improvement is to take the weighted summation of each
elements, that is, ∑

ST ′:i∈ST ′

(
ĝST ′

i Ai

)
, where ĝST ′

i is a multiplication of the summation weight and g̃ST ′

i . With this approximation, Atot

is monotonic with
∑

ST ′:i∈ST ′ (ĝST ′

i Ai) for agent i. We take the first order approximation of Atot

and slightly expand the representation of the coefficient:

Atot ≈
∑
i

[∑
ST ′:i∈ST ′

(gST ′

i Ai)

]
, (18)

where gST ′

i is a coefficient combining ĝST ′

i and the first order approximation coefficient of Atot. In
the approximation (18), we derive the individual advantages from the global advantage.

B.7 QMIX in Coordination Hierarchy

Proposition 3. QMIX is equivalent to QSCAN0 in the Dec-POMDP setting, while they are equivalent
to QSCAN1 in the fully observable settings.

We write the function class represented by the QMIX architecture in partially observable settings as

QMIX =

{
Qtot | Qtot(τ ,a) = f̃(Q1(τ1, a1), . . . Qn(τn, an), τ),

∂Qtot

∂Qi
≥ 0, Qi(τi, ai) ∈ R

}
.

(19)

Similarly, we use QSCANk and QPLEX to denote the corresponding function classes respectively.

In this subsection, we show that in the partially observable environment (Dec-POMDP),
QMIX=QSCAN0; while in the fully observable environment (MMDP), QMIX=QSCAN0=QSCAN1.

B.7.1 Partially Observable Settings

We prove QMIX=QSCAN0 in the partially observable environment.

QSCAN0 ⊆ QMIX From the architecture of QSCAN, we can see that QSCAN0 assembles Qtot

by

Qtot(τ ,a) = f(λ1(τ)A1(τ , a1), . . . , λn(τ)An(τ , an), τ) +

n∑
i=1

Vi(τ), (20)

7

where f is non-decreasing with respect to Ai. It is quite straightforward to have ∀i, ∀ai ̸= a′i,

Qi(τi, ai) < Qi(τi, a
′
i) (21)

⇒ (Positive linear transformation w > 0) Qi(τ , ai) < Qi(τ , a
′
i) (22)

⇒ (Ai(τ , ai) = Qi(τ , ai)−Qi(τ , a
∗
i)) Ai(τ , ai) < Ai(τ , a

′
i) (23)

⇒ (Positive λi(τ) is identical for different actions) λi(τ)Ai(τ , ai) < λi(τ)Ai(τ , a
′
i) (24)

⇒ (Monotonic function f) Qtot(τ , (. . . , ai, . . .)) < Qtot(τ , (. . . , a
′
i, . . .)).
(25)

Therefore,

∀i, ∂Qtot

∂Qi
≥ 0. (26)

Thus, we have QSCAN0 ⊆ QMIX.

QMIX ⊆ QSCAN0 For any Qtot represented by QMIX, specifically

Qtot(τ ,a) = f̃(Q1(τ1, a1), . . . Qn(τn, an), τ), (27)

we can reconstruct it via the QSCAN0 architecture. Since f̃ is a monotonic function, we use f̃∗(τ)
to denote its maximum value

f̃∗(τ) = f̃(max
a1

Q1(τ1, a1), . . . ,max
an

Qn(τn, an), τ). (28)

For each individual action-value function Qi, we can derive the individual value function Vi and the
advantage function Ai by

Vi(τi) = max
a′
i

Qi(τi, a
′
i), Ai(τi, ai) = Qi(τi, ai)− Vi(τi). (29)

According to Eq. (20) and the transformation module in the mixing function, QSCAN0 actually
assembles Qtot by

Qtot(τ ,a) = f(λ1(τ)w1(τ)A(τ1, a1), . . . , λn(τ)wn(τ)A(τn, an), τ) +

n∑
i=1

wi(τ)Vi(τi) + bi(τ).

(30)

If we set the parameters as follows

∀i, wi(τ) = 1, λi(τ) = 1, bi(τ) = −Vi(τi) +
1

n
f̃∗(τ), (31)

and build our monotonic function f from the target function f̃ as

∀i, ∀xi ∈ (−∞, 0], f(x1, . . . , xn, τ) = f̃(x1 + V1(τ1), . . . , xn + Vn(τn), τ)− f̃∗(τ), (32)

then we could rebuild Qtot in Eq. (27) from our QSCAN0 architecture. It could be easy to verify that
f satisfies the constraints of QSCAN, f(0, τ) = 0 and maxx f(x, τ) = 0. Therefore, we obtain
QMIX ⊆ QSCAN0.

Combining QMIX ⊆ QSCAN0 and QMIX ⊇ QSCAN0, we obtain QMIX=QSCAN0 in the partially
observable environment.

B.7.2 Fully Observable Settings

For the fully observable environments, we can see that Qtot represented by QSCAN1 is

Qtot(s,a) = f(λ1(s, a1)A1(s, a1), . . . , λn(s, an)An(s, an), s) +

n∑
i=1

Vi(s) (33)

= f(A1(s, a1), . . . , An(s, an), s) +

n∑
i=1

Vi(s). (34)

This Qtot can be characterized exactly by QSCAN0. Therefore, in the fully observable scenarios,
QSCAN1 degenerates to QSCAN0. As we have already proved that QMIX=QSCAN0, we finally
obtain QMIX=QSCAN0=QSCAN1 in the fully observable environment.

8

Remark 2. (i) In the partially observable environment, QMIX ⊊ QSCAN1. (ii) In the fully observable
environment, it should be noted that although QSCAN1 is equivalent to QSCAN0 in representing
Qtot, they are different in the space of (Qtot, [Qi]

n
i=1) because the mixing function of QSCAN1 can

be non-monotonic by adjusting the weight λi(τ , ai).

B.8 QPLEX in Coordination Hierarchy

Proposition 4. QPLEX is equivalent to QSCANn. Therefore, QSCANn can represent the whole IGM
function space.

We show that QPLEX=QSCANn.

In the mixing network of QSCANn, we could implement the monotonic function f with a simple
sum operator and this is just QPLEX. Thus, QPLEX ⊆ QSCANn.

On the other hand, we could prove QPLEX ⊇ QSCANn by the help of the IGM function space.
Since QPLEX is proved to be a superset of the IGM function space [5] and we have proved that
QSCAN guarantees the IGM condition in Proposition 2, we obtain QPLEX ⊇ IGM function space ⊇
QSCANn.

C Experimental Setup

C.1 Testing Domains

Matrix game is a prototype of all games. We can convert every one-shot game with discrete actions
to a matrix game. We construct a matrix game where the optimal solution and the sub-optimal
solution are a pair of opposite points. The slope is sharper near the optimal solution than that near the
sub-optimal one. The improper coordination, e.g. isolated individuals or the whole team, may lead to
the sub-optimal solution rather than the optimal one. This game shows the importance of sub-team
coordination.

Predator prey is a cooperative environment proposed by [26]. It is a coordination task that unco-
operative actions cause punishment. The predators coordinate to capture the prey while they take
a punishment when only one predator captures the prey. This task forces at least two predators to
coordinate to capture the prey. In this paper, we set the punishment as −0.5 and consider 3 different
settings shown in Fig 2: 6 vs 6, 8 vs 8, and 10 vs 10.

Switch4 is a cooperative task in MA-Gym [27]. It is a coordination task with several different settings.
In this paper, we consider the default partial observation task addressed as Switch4-v0. Each agent
wants to move to its corresponding home in this task while it can only observe its position. The
agents coordinate to take turns to pass the narrow corridor. We address the details of the environment
parameters in Table 1.

SMAC [28] is a common-used environment to evaluate current state-of-art MARL approaches. In the
SMAC environment, the enemy units are controlled by a built-in AI and the reinforcement learning
agents need to defeat all enemy units by controlling each ally unit individually. The units in ally and
enemy groups may be asymmetric. At each time step, each agent chooses one action for each unit
from the discrete action space consisting of move[direction], attack[enemy_id], stop, and
no-op. After that, a global reward is received by the MARL agents, which is calculated according to
the damage point, the enemy unit kills, and a bonus for winning.

Table 1: Environment parameters of Switch4 game
Environment parameter Value Description

n_agent 4 Number of agents
n_action 5 Left, right, up, down, stay
max_step 50 Max time step in a game

full_observation False Partial or full observation
step_cost −0.1 Additional reward for each step

reward_done 1.25 Reward for an agent reaching its home

9

C.2 Implementation Details

We adopt PyMARL [28] to run all experiments. The implementations and hyper-parameters of QMIX
[3], QTRAN [4], and QPLEX [5] are the same as what they referred in their papers and their source
codes. The hyper-parameters of our approaches used for Predator-Prey[26], MA-Gym [27], and
SMAC [28] are the same. As Table 2 shows, our approach QPAIR uses similar hyper-parameters as
QPLEX [5]. Our approach QSCAN employees a 1-layer self-attention with hyper-parameters in Table
3 implemented with PyTorch [29], while other common hyper-parameters are the same as those in
QPAIR.

General hyper-parameters We use the ϵ-greedy exploration process in [7] for our approaches and
all baselines. The default hyper-parameters are shown in Table 4.

D The StarCraft Multi-Agent Challenge

D.1 Task Description

In the experiments, We evaluate our methods on a wide-range of SMAC scenarios, including
homogeneous and heterogeneous agents. We briefly introduce these SMAC challenge tasks in Table
5.

Besides QMIX and QPLEX, we compare our methods with a state-of-the-art baseline QTRAN.
Sufficient experiments show that our methods can achieve competitive performance with these SOTA
baseline approaches.

D.2 Empirical Results

We follow the original experimental settings without any hyper-parameter tuning. Fig 1 plots the
median training performance of the test win rate across all the six scenarios. From the result, we
can see that QSCAN and QPAIR are superior to QMIX and QTRAN in most scenarios. Moreover, our
methods reveal a competitive performance compared with the SOTA baseline QPLEX, which uses
the joint action in the mixing function.

E Additional Experiments

E.1 Additional Results for Predator-Prey

QPLEX fails to learn a policy which achieves positive rewards in 8 vs 8 and 10 vs 10, although
it finds some effective policies in 6 vs 6. The large number of joint actions and the lack of the

Table 2: The network configurations of QPAIR’s architecture.
QPAIR’s architecuture configurations For matrix game For others

The number of MLP layers in Transformation 3 1
The number of heads in the multi-head attention 10 4

Unit number in middle layers 64 ∅
Activation in the middle layers ReLU ∅

Activation in the last layer of multi-head attention Sigmoid Sigmoid
Activation in the last layer of λ,w ReLU ReLU

Table 3: The network configurations of QSCAN’s architecture.
QSCAN’s architecuture configurations For matrix game For others

Embedding dimensions of input 64 64
The number of heads in the self-attention 10 4

Dimension of hidden layer in self-attention 64 64

10

Table 4: Default hyper-parameters.
Hyper-parameter Value Description

n_runs 6 Number of training runs for each task
learning_rate 0.0005 Learning rate used by Adam optimizer

replay_buffer_size 5000 Maximum number of samples to store in memory
minibatch_size 32 Number of samples to use for each update
n_test_episode 32 Number of episodes for evaluation
discount_factor 0.99 Importance of future rewards

target_update_period 200 Target network update period to track learned network

Table 5: SMAC challenges.

Map Name Ally Units Enemy Units

2s_vs_1sc 2 Stalkers 1 Spine Crawler
2s3z 2 Stalkers, 3 Zealots 2 Stalkers, 3 Zealots
3s5z 3 Stalkers, 5 Zealots 3 Stalkers, 5 Zealots

1c3s5z 1 Colossus, 3 Stalkers, 5 Zealots 1 Colossus, 3 Stalkers, 5 Zealots
2c_vs_64zg 2 Colossi 64 Zerglings
5m_vs_6m 5 Marines 6 Marines

27m_vs_30m (Super-Hard) 27 Marines 30 Marines

(a) 2s_vs_1sc (b) 2s3z (c) 3s5z

(d) 1c3s5z (e) 2c_vs_64zg (f) 5m_vs_6m

Figure 1: Median performance of the test win percentage in SMAC.

generalisation prevent QPLEX from extracting the correct coordination of “capture” actions. The
performance of QMIX improves in 8 vs 8 and 10 vs 10. With the agent number increasing, the
probability of successful capture increases. As a result, the issue of relative overgeneralization eases
and QMIX finally realizes that “capture” is better than doing nothing. However, as shown in Fig 2b,
the performance of QMIX drops finally. QMIX still suffers the issue of relative overgeneralization.
As for QPAIR, it performs better than QMIX in 6 vs 6, while it behaves worse in 8 vs 8 and 10 vs
10. One reason is that QPAIR is forced to learn only the pairwise coordination without learning each
individual’s local information. Although this local information can be encoded into the pairwise
coordination, the enforcement constraints hurts the stability of the optimization process. Thing
will aggravate even further when the number of agent increases. For QSCAN, it outperforms for all
three scenarios due to its adaptive balance of the pairwise coordination and each individual’s local
information.

11

(a) 8 vs 8 (b) 10 vs 10

Figure 2: Learning curves in two additional Predator-Prey tasks.

(a) Predator-Prey 6 vs 6. (b) Switch.

Figure 3: Learning curves of QSCAN with different numbers of self-attention layers.

E.2 Ablation Study on QSCAN’s Layers

We examine our approach QSCAN with different numbers of self-attention layers in two different tasks:
Predator-Prey 6 vs 6 and Switch. QSCAN-WITH-2-LAYER has 2 self-attention layers and emphasizes
the sub-team coordination with size at most 4.

Ablation experiments for Predator-Prey 6 vs 6.

Our ablation experiments in Fig 3a show that the sub-team coordination with size at most 4 is more
suitable for this task. QSCAN-WITH-2-LAYER achieves better performance than QSCAN with minor
variance. Although the pairwise coordination is enough for accomplishing this 6 vs 6 task, the
sub-team coordination with a larger size can do better. The pairwise coordination can only organize
one “capture” while the sub-team coordination with size 4 can schedule more “capture”s effectively.

Ablation experiments for Switch.

Our ablation experiments in Fig 3b show that the sub-team coordination with size at most 4 performs
worse than the sub-team coordination with size at most 2 in this task, whereas they achieve similar
final performance. Since the one-agent wide corridor has only two entrances and there are precisely
two agents at each side of the corridor, the pairwise coordination is enough for the coordination at
each side and the organization of the side-by-side passing process. The sub-team coordination with
size at most 4 enlarges the model complexity and makes the learning process more complicated than
that of the pairwise coordination.

Summary

The two different ablation experiments above show that encoding the sub-team coordination with a
suitable size into the network would bring about higher sample efficiency and lower variance in the
training process. With proper prior knowledge of a task, we can choose a suitable coordination level.

12

Predator-Prey Task Approach # Parameters Final Score

8 vs 8

QPAIR 51.720K 6.50
QSCAN 417.745K * 37.86
QPLEX 61.572K 0.00
QPLEX-Large 784.058K 0.00

10 vs 10

QPAIR 54.404K 24.16
QSCAN 418.517K * 48.32
QPLEX 67.512K 0.00
QPLEX-Large 794.598K 0.00

Table 6: Ablation on Number of Parameters

E.3 Additional Comparison with QPLEX

The self-attention module of QSCAN uses a large number of parameters. For a fair comparison, we
additionally run a larger QPLEX version (QPLEX-Large) that can be found in origin QPLEX code.
Table 6 shows the numbers of parameter and the final score of each approach for two Predator-Prey
tasks (8 vs 8, and 10 vs 10).

For each tasks, QPAIR uses similar number of parameters with the origin QPLEX, and QSCAN uses
similar number of parameters with the larger QPLEX. Both of our approaches outperform the
corresponding version of QPLEX.

E.4 Additional Results in a Super-Hard SMAC Task

We additionally compare our approach QSCAN with the SOTA baselines QPLEX and QMIX in a
super-hard SMAC task, 27m_vs_30m. Fig 4 shows that QSCAN strikes a better trade off between
the complexity of the hypothesis space and the capacity of the representation, and outperforms two
baselines.

Figure 4: Median performance of the test win percentage on 27m_vs_30m

References
[1] Afshin OroojlooyJadid and Davood Hajinezhad. A review of cooperative multi-agent deep

reinforcement learning. arXiv preprint arXiv:1908.03963, 2019.

[2] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi,
Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-
decomposition networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296,
2017.

[3] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep
multi-agent reinforcement learning. arXiv preprint arXiv:1803.11485, 2018.

13

[4] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran:
Learning to factorize with transformation for cooperative multi-agent reinforcement learning.
arXiv preprint arXiv:1905.05408, 2019.

[5] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. arXiv preprint arXiv:2008.01062, 2020.

[6] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas.
Dueling network architectures for deep reinforcement learning. In International conference on
machine learning, pages 1995–2003. PMLR, 2016.

[7] Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: Expanding
monotonic value function factorisation. arXiv preprint arXiv:2006.10800, 2020.

[8] Jay R. Galbraith. Organization design. 1977.

[9] Jianhong Wang, Yuan Zhang, Tae-Kyun Kim, and Yunjie Gu. Shapley q-value: a local reward
approach to solve global reward games. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 7285–7292, 2020.

[10] Jiahui Li, Kun Kuang, Baoxiang Wang, Furui Liu, Long Chen, Fei Wu, and Jun Xiao. Shapley
counterfactual credits for multi-agent reinforcement learning. arXiv preprint arXiv:2106.00285,
2021.

[11] Thomy Phan, Fabian Ritz, Lenz Belzner, Philipp Altmann, Thomas Gabor, and Claudia Linnhoff-
Popien. Vast: Value function factorization with variable agent sub-teams. Advances in Neural
Information Processing Systems, 34, 2021.

[12] Milind Tambe. Towards flexible teamwork. Journal of artificial intelligence research, 7:83–124,
1997.

[13] G. Beavers and H. Hexmoor. Teams of agents. 2001 IEEE International Conference
on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace
(Cat.No.01CH37236), 1:574–582 vol.1, 2001.

[14] Victor Lesser, Keith Decker, Thomas Wagner, Norman Carver, Alan Garvey, Bryan Horling,
Daniel Neiman, Rodion Podorozhny, M Nagendra Prasad, Anita Raja, et al. Evolution of the
gpgp/taems domain-independent coordination framework. Autonomous agents and multi-agent
systems, 9(1):87–143, 2004.

[15] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, pages 6000–6010, 2017.

[17] Jiechuan Jiang, Chen Dun, Tiejun Huang, and Zongqing Lu. Graph convolutional reinforcement
learning. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=HkxdQkSYDB.

[18] Yong Liu, Weixun Wang, Yujing Hu, Jianye Hao, Xingguo Chen, and Yang Gao. Multi-agent
game abstraction via graph attention neural network. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 7211–7218, 2020.

[19] Siyi Hu, Fengda Zhu, Xiaojun Chang, and Xiaodan Liang. Updet: Universal multi-agent rein-
forcement learning via policy decoupling with transformers. arXiv preprint arXiv:2101.08001,
2021.

[20] Sheng Li, Jayesh K Gupta, Peter Morales, Ross Allen, and Mykel J Kochenderfer. Deep implicit
coordination graphs for multi-agent reinforcement learning. arXiv preprint arXiv:2006.11438,
2020.

14

https://openreview.net/forum?id=HkxdQkSYDB
https://openreview.net/forum?id=HkxdQkSYDB

[21] Navid Naderializadeh, Fan H Hung, Sean Soleyman, and Deepak Khosla. Graph convolutional
value decomposition in multi-agent reinforcement learning. arXiv preprint arXiv:2010.04740,
2020.

[22] Yaodong Yang, Jianye Hao, Ben Liao, Kun Shao, Guangyong Chen, Wulong Liu, and Hongyao
Tang. Qatten: A general framework for cooperative multiagent reinforcement learning. arXiv
preprint arXiv:2002.03939, 2020.

[23] Frans A Oliehoek, Christopher Amato, et al. A concise introduction to decentralized POMDPs,
volume 1. Springer, 2016.

[24] Christos H Papadimitriou and Tim Roughgarden. Computing correlated equilibria in multi-
player games. Journal of the ACM (JACM), 55(3):1–29, 2008.

[25] Philip Hall. On representatives of subsets. Classic Papers in Combinatorics, pages 58–62,
1987.

[26] Wendelin Böhmer, Vitaly Kurin, and Shimon Whiteson. Deep coordination graphs. In Interna-
tional Conference on Machine Learning, pages 980–991. PMLR, 2020.

[27] Anurag Koul. ma-gym: Collection of multi-agent environments based on openai gym. https:
//github.com/koulanurag/ma-gym, 2019.

[28] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr, Jakob Foerster, and Shimon
Whiteson. The StarCraft Multi-Agent Challenge. In arXiv:1902.04043 [cs, stat], February
2019. URL http://arxiv.org/abs/1902.04043. arXiv: 1902.04043.

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. arXiv preprint arXiv:1912.01703, 2019.

15

https://github.com/koulanurag/ma-gym
https://github.com/koulanurag/ma-gym
http://arxiv.org/abs/1902.04043

	Related Work
	Omitted Proofs and Discussions
	Discussions about Monotonic Value Function Factorization
	Discussion on Different Team Reward Functions
	General Cases for Sub-team Coordination Patterns
	Proof of Proposition 1
	Base Architecture and the IGM Condition
	Sub-Team Factorization for Advantage Functions
	QMIX in Coordination Hierarchy
	Partially Observable Settings
	Fully Observable Settings

	QPLEX in Coordination Hierarchy

	Experimental Setup
	Testing Domains
	Implementation Details

	The StarCraft Multi-Agent Challenge
	Task Description
	Empirical Results

	Additional Experiments
	Additional Results for Predator-Prey
	Ablation Study on QSCAN's Layers
	Additional Comparison with QPLEX
	Additional Results in a Super-Hard SMAC Task

