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Abstract

The application of machine learning methods in quantum chemistry has enabled
the study of numerous chemical phenomena, which are computationally intractable
with traditional ab-initio methods. However, some quantum mechanical properties
of molecules and materials depend on non-local electronic effects, which are often
neglected due to the difficulty of modeling them efficiently. This work proposes a
modified attention mechanism adapted to the underlying physics, which allows to
recover the relevant non-local effects. Namely, we introduce spherical harmonic
coordinates (SPHCs) to reflect higher-order geometric information for each atom
in a molecule, enabling a non-local formulation of attention in the SPHC space.
Our proposed model SO3KRATES3 – a self-attention based message passing neural
network – uncouples geometric information from atomic features, making them
independently amenable to attention mechanisms. Thereby we construct spherical
filters, which extend the concept of continuous filters in Euclidean space to SPHC
space and serve as foundation for a spherical self-attention mechanism. We show
that in contrast to other published methods, SO3KRATES is able to describe non-
local quantum mechanical effects over arbitrary length scales. Further, we find
evidence that the inclusion of higher-order geometric correlations increases data
efficiency and improves generalization. SO3KRATES matches or exceeds state-
of-the-art performance on popular benchmarks, notably, requiring a significantly
lower number of parameters (0.25–0.4x) while at the same time giving a substantial
speedup (6–14x for training and 2–11x for inference) compared to other models.

1 Introduction

Atomistic simulations use long time-scale molecular dynamics (MD) trajectories to predict macro-
scopic properties that arise from interactions on the microscopic scale [1–3]. Their predictive
reliability is determined by the accuracy of the underlying force field (FF), which needs to be queried
at every time step. This quickly becomes a computational bottleneck if the forces are determined
from first principles, which may be required for accurate results. To that end, machine learning
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Figure 1: (a) Design principle of our proposed message-passing scheme, where invariant features f
and equivariant information - represented by spherical harmonic coordinates (SPHCs) � - are separate
and exchange information via (spherical) self-attention. (b) Overview of the SO3KRATES architecture.
(c) Comparison of prediction accuracy and model size of different architectures. (d) Comparison of
training and inference times of different architectures. (e) Illustration of learned SPHCs at different
layers of the SO3KRATES architecture. (f) Low-dimensional projection of atomic SPHCs, showing
that atoms far apart in Euclidean space can be mapped close together in SPHC space. (g) In contrast
to local models, SO3KRATES is able to learn the long-range correlations between hydrogen rotors in
cumulene and reproduces the ab-initio ground truth faithfully.

FFs (MLFFs) offer a computationally more efficient, yet accurate empirical alternative to expensive
ab-initio methods [2, 4–24].

In recent years, Geometric Deep Learning has become a popular design paradigm, which exploits
relevant symmetry groups of the underlying learning problem by incorporating a geometric prior
[12, 25, 26]. This effectively restricts the learnable functions of the model to a subspace with
a meaningful inductive bias. Prominent examples for such models are e.g. convolutional neural
networks (CNNs) [27], which are equivariant w. r. t. the group of translations, or graph neural networks
(GNNs) [28], which are invariant w. r. t. node permutation.

For molecular property prediction, it has been shown that equivariance w. r. t. the 3D rotation
group SO(3) greatly improves data efficiency and accuracy of the learned FFs [29–32]. To achieve
equivariance, architectures either rely on feature expansions in terms of spherical harmonics (SH) [33]
or explicitly include (dihedral) angles [29, 34]. While the latter scales quadratically (cubically) in
the number of neighboring atoms and has been shown to be geometrically incomplete [35], the
calculation of spherical harmonics scales only linear in the number of neighboring atoms, which
makes them a fast and accurate alternative [30, 32, 36].

* Reference times were taken from [34]. As our own timings were measured on a different GPU, we
decreased the reported times according to speedup-factors reported in [37]. For full details, see appendix A.6.
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However, current higher-order geometric representations based on SHs usually result in expensive
transformations, since an individual feature channel per SH degree (and order) is required. As a result,
going to higher degrees is computationally expensive and comes at the price of increasing complexity,
resulting in state-of-the-art (SOTA) models with millions of parameters [30, 32, 34]. However, in
order to be applicable to large molecular structures, models are required to be both efficient and
accurate on all length scales.

Non-local electronic effects have been outlined as one of the major challenges for a new generation of
MLFFs [21]. They result in non-local, higher-order geometric relations between atoms. Most current
architectures implicitly assume locality of interactions (expressed through a local neighborhood),
which prohibits an efficient description of all relevant atomic interactions at larger scales. Simply
increasing the cutoff radius used to determine local neighborhoods is not an adequate solution, since
it only shifts the problem to larger length scales [30].

In this work, we propose spherical harmonic coordinates (SPHCs), which encode higher-order
geometric information for each node in a molecular graph (Fig. 1e). This is in stark contrast to current
approaches, which consider molecules as three-dimensional point clouds with learned features and
fixed atomic coordinates: we propose to make the SPHCs themselves a learned quantity. Through
localization in the space of SPHCs (Fig. 1f), models are able to efficiently describe electronic effects
that are non-local in three-dimensional Euclidean space (Fig. 1g).

We then present SO3KRATES (Fig. 1b), a self-attention based message-passing neural network
(MPNN), which decouples atomic features and SPHCs and updates them individually (Fig. 1a).
This resembles ideas from equivariant graph neural networks [25], but allows to go to arbitrarily
high geometric orders. The separation of higher-order geometric and feature information allows to
overcome the parametric and computational complexity usually encountered in models with higher-
order geometric representations, since we only require a single feature channel (instead of one per
SH degree and order). Thus, SO3KRATES resembles some early architectures like SCHNET [10] or
PHYSNET [19] in parametric simplicity. We further show that SO3KRATES outperforms the popular
SGDML [38] kernel model by a large margin in the low-data regime, a domain which has so far
been considered to be dominated by kernel machines [21]. Numerical evidence suggests that the data
efficiency of SO3KRATES is directly related to the maximal degree of geometric information encoded
in the SPHCs. We then apply SO3KRATES to the well-established MD17 benchmark and show that
our model achieves SOTA results, despite is light-weight structure and having only 0.25–0.4x the
number of parameters of competitive architectures (Fig. 1c), while achieving speedups of 6–14x and
2–11x for training and inference, respectively (Fig. 1d).

Although we focus on quantum chemistry applications in this work, the developed methods are also
applicable to other fields where long-ranged correlations in three-dimensional data are relevant. For
example, models based on SPHCs may also be applicable to tasks like 3D shape classification or
computer vision.

2 Preliminaries and Related Work

In the following, we review the most important concepts our method is based upon and relate it to
prior work.

Message Passing Neural Networks MPNNs [14] carry over many of the benefits of convolutions to
unstructured domains and have thus become one of the most promising approaches for the description
of molecular properties. Their general working principle relies on the repeated iteration of message
passing (MP) steps, which can be phrased as follows [14, 25]

mij = m(fi, fj , rij) (1)

mi =

X

j2N (i)

mij (2)

f 0i = u(fi,mi) . (3)

Here, mij is the message between atoms i and j computed with the message function m(·), mi is
the aggregation of all messages in the neighborhood N (i) of atom i, and u(·) is an update function
returning updated features f 0i based on the current features fi and message mi. The neighborhood
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N (i) consists of all atoms which lie within a given cutoff radius around the atomic position ri, which
ensures linear scaling in the number of atoms n. While earlier variants parametrized messages only
in terms of inter-atomic distances [13, 19], more recent approaches also take higher-order geometric
information into account [25, 29, 31, 32, 39, 40].

Molecules as Point Clouds A molecule can be considered as a point cloud of n atoms P3D(R,F),
where R = (r1, ...rn) denotes the set of atomic positions ri 2 R3 and F = (f1, . . . , fn) is the set of
rotationally invariant atomic descriptors, or features, fi 2 RF . We write the distance vector pointing
from the position of atom i to the position of atom j as rij = rj � ri, the distance as rij = krijk2
and the normalized distance vector as r̂ij = rij/rij . Given the point cloud, a density over Euclidean
space assigning a vector value to each point r can be constructed as

⇢(r) =
nX

i=1

�(kri � rk2) · fi , (4)

where � is the Dirac delta function. It can be shown that applying a convolutional filter on ⇢(r)
resembles the update steps used in MPNNs [41].

Equivariance Given a set of transformations that act on a vector space A as Sg : A 7! A to which
we associate an abstract group G, a function f : A 7! B is said to be equivariant w. r. t. G if

f(Sgx) = Tgf(x) , (5)
where Tg : B 7! B is an equivalent transformation on the output space [25]. Thus, in order to say
that f is equivariant, it must hold that under transformation of the input, the output transforms “in
the same way”. While equivariance has been a popular concept in signal processing for decades
(cf. e.g. [42] or wavelet neural networks [43]), recent years have seen efforts to design group
equivariant NNs and kernel methods, since respecting relevant symmetries builds an important
inductive bias [12, 44, 45]. Examples are CNNs [27] which are equivariant w. r. t. translation, GNNs
[14, 28] which are invariant (Tg = I) w. r. t. permutation, or architectures which are equivariant
w. r. t. the SO(3) group [25, 31, 33, 36, 46]. In this work, we consider the SO(3) group of rotations,
such that A is the Euclidean space R3, where the corresponding group actions are given by rotation
matrices R✓ 2 R3⇥3.

Spherical Harmonics The spherical harmonics are special functions defined on the surface of the
sphere S2

= {r̂ 2 R3
: kr̂k2 = 1} and form an orthonormal basis for the irreducible representations

(irreps) of SO(3). In the context of tensor field networks [33], they have been introduced as elementary
building blocks for SO(3)-equivariant neural networks. The spherical harmonics are commonly
denoted as Y m

l (r̂) : S2 7! R, where the degree l determines all possible values of the order
m 2 {�l, . . . ,+l}. They transform under rotation as

Y m
l (R✓ r̂) =

X

m0

Dl
mm0(R✓)Y

m0

l (r̂) , (6)

where Dl
mm0(R✓) are the entries of the Wigner-D matrix Dl

(R✓) 2 R(2l+1)⇥(2l+1) [47]. Based on
the spherical harmonics, we define a vector-valued function Y (l)

: S2 7! R2l+1 for each degree
l, with entries Y m

l for all valid orders m of a given degree l. Since Y (l)
(R✓ r̂) = Dl

(R✓)Y (l)
(r̂)

(cf. eq. (6)), Y (l) is equivariant w. r. t. SO(3).

Tensor Product Contractions The irreps Y (l1) and Y (l2) can be coupled by computing their
tensor product Y (l1) ⌦ Y (l2), which can equivalently be expressed as a direct sum [33, 48]

Y (l1) ⌦ Y (l2) =

l1+l2M

l3=|l1�l2|

:=(Y
(l1)⌦l3Y

(l2)
)

z }| {
Ỹ (l3) , (7)

where the entry of order m3 for the coupled irreps Ỹ (l3) is given by

Ỹ l3
m3

=

l1X

m1=�l1

l2X

m2=�l2

Cl1,l2,l3
m1,m2,m3

Y l1
m1

Y l2
m2

, (8)
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and Cl1,l2,l3
m1,m2,m3

are the so-called Clebsch-Gordon coefficients. In the following, we will denote the
tensor product of degrees l1 and l2 followed by “contraction” to l3 (meaning the irreps of degree l3 in
the direct sum representation of their tensor product) as

�
Y (l1) ⌦l3 Y

(l2)
�
, which is a mapping of

the form R(2l1+1)⇥(2l2+1) 7! R2l3+1, since m3 2 {�l3, . . . l3}.

3 Methods

In the following, we describe the main methodological contributions of this work. We introduce the
concept of an adapted point cloud P3D(R,X ,F), which incorporates the set of spherical harmonics
coordinates (SPHCs) X = (�1, . . . ,�n) (see below) in addition to features F and Euclidean
coordinates R. However, contrary to R, SPHCs X are refined during the message passing updates.
Having SPHCs as part of the molecular point cloud extends the idea of current MPNNs, which learn
message functions on R, only. Instead, we learn a message function m (cf. eq. (1)) on both, the
(fixed) atomic coordinates R as well as on the SPHCs X . This adapted message-passing scheme
allows to learn non-local geometric corrections. Based on these design principles, we propose the
SO3KRATES architecture.

Initialization Feature vectors are initialized from the atomic numbers zi 2 N (denoting which
chemical element an atom belongs to) by an embedding map

fi = femb(zi), (9)

where femb : N 7! RF . We define SPHCs � as the concatenation of degrees L := {lmin, . . . , lmax}

� = [ �(lmin)

| {z }
2R2lmin+1

, . . . , �(lmax)| {z }
2R2lmax+1

] 2 R(lmax�lmin+1)2 , (10)

such that their transformation under rotation can be expressed in terms of concatenated Wigner-D
matrices (see appendix A.1). The short-hand �(l) 2 R2l+1 refers to the subset of SPHCs with
degree l. They are initialized as

�(l)
i =

1

Ci

X

j2N (i)

�rcut(rij) · Y (l)
(r̂ij), (11)

where Ci =
P

j2N (i) �rcut(rij), �rcut : R 7! R is the cosine cutoff function [6], and the sum runs
over the neighborhood N (i) of atom i.

Message Passing Update Two branches of attention-weighted MP steps are defined for the feature
vectors f and SPHCs � (see Fig. 1a). After initialization (eqs. (9) and (11)), the features are updated
as

f 0i = fi +
X

j2N (i)

�rcut(rij) · ↵ij · fj , (12)

where ↵ij 2 R are self-attention [49, 50] coefficients (see below). In analogy to the feature vectors,
it is possible to define an MP update for the SPHCs as

�0 (l)
i = �(l)

i +

X

j2N (i)

�rcut(rij) · ↵
(l)
ij · Y (l)

(r̂ij) , (13)

where individual attention coefficients ↵(l)
ij 2 R for each degree of the SPHCs are computed using

multi-head attention [49]. However, with this definition, both MP updates are limited to local
neighborhoods N (i). To be able to model non-local effects, we introduce the SPHC distance matrix
X 2 Rn⇥n with entries �ij = k�i � �jk2, i.e. distances between two atoms i and j in SPHC space
for all possible pair-wise combinations of n atoms. To have uniform scales, we further apply the
softmax along each row of X to generate a rescaled matrix X̃ = softmax(X) with entries �̃ij . A
polynomial cutoff function ��̃cut [29] is then applied to X̃ to define spherical neighborhoods N�(i)
(see A.2), which may include atoms that are far away in Euclidean space (see Fig. 1f). The spherical
cutoff distance is chosen as �̃cut = 1/n to ensure that spherical neighborhoods remain small, even
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when going to larger molecules. We then incorporate non-local geometric corrections into the MP
update of the SPHCs as

�0 (l)
i = �(l)

i +

X

j2N (i)

�rcut(rij) · ↵
(l)
ij · Y (l)

(r̂ij)

| {z }
local in R3

+

X

j2N�(i)

��̃cut(�̃ij) · ↵(l)
ij · Y (l)

(r̂ij)

| {z }
local in �, but non-local in R3

. (14)

We will show in the first part of the experiments, how geometric corrections from SPHC space allow
for modelling non-local quantum effects, inaccessible to current architectures. In the second part,
we use a SO3KRATES model without geometric corrections, which makes it a traditional MPNN in
the sense of only localizing in R3. We find this architecture to be highly parameter, data and time
efficient while capable of reaching SOTA results.

Spherical Filter and Self-Attention The self-attention coefficients in eqs. (12)–(14) are calculated
as

↵ij = fTi (wij � fj)/
p
F , (15)

where wij 2 RF is the output of a filter generating function and ‘�’ denotes the element-wise product.
The filter maps the Euclidean distance rij and per-degree SPHC distances �(l)

ij = k�(l)
j � �(l)

i k2
between the current SPHCs of atoms i and j into the feature space RF (as a short-hand, we write the
vector containing all per-degree SPHC distances as [�(l)

ij ]l2L). It is built as the linear combination of
two filter-generating functions

wij = �r(rij)| {z }
radial filter

+�s

⇣
[�(l)

ij ]l2L

⌘

| {z }
spherical filter

, (16)

which separately act on the Euclidean and SPHC distances. We call �r : R 7! RF the radial filter
function and �s : R|L| 7! RF the spherical filter function (an ablation study for �s can be found in
appendix A.4). Since per-atom features fi, interatomic distances rij , and per-degree distances �(l)

ij
are invariant under rotations (proof in appendix A.1), so are the self-attention coefficients ↵ij .

While we choose to pass the per-degree norms directly into the filter generating function �s, future
work might explore the possibilities of alternative metrics (instead of the L2 norm) or an expansion
in terms of basis functions as it is common practice for inter-atomic distances (see appendix A.3
eq. (30)).

Atomwise Interaction After each MP update, features and SPHCs are coupled with each other
according to

f 0i = fi + �1

⇣
fi, [�

(l)
i ]l2L, [�̃

(l)
i ]l2L

⌘
, (17)

�0 (l)
i = �(l)

i + �(l)
2

⇣
fi, [�

(l)
i ]l2L, [�̃

(l)
i ]l2L

⌘
�(l)

i + �(l)
3

⇣
[�̃(l)

i ]l2L

⌘
�̃(l)

i , (18)

where �1 : RF+2|L| 7! RF , �(l)
2 : RF+2|L| 7! R, and �(l)

3 : R|L| 7! R. In the inputs to �1,2,3,
degree-wise scalars �(l)

= k�(l)k2 are used to preserve equivariance. The coupling step additionally
includes cross-degree coupled SPHCs �̃(l)

i for each degree l. Following [48] they are constructed as

�̃(l)
i =

lmaxX

l1=lmin

lmaxX

l2=l1+1

kl1,l2,l
⇣
�(l1)

i ⌦l �
(l2)
i

⌘
, (19)

where kl1,l2,l 2 R are learnable coefficients for all valid combinations of l1, l2 given l and the term
in brackets is the contraction of degrees l1 and l2 into degree l (eq. (8)).

SO3KRATES architecture Using the design paradigm above, we build the transformer network
SO3KRATES, which consists of a self-attention block on F and X (eqs. (12) and (13)), respectively,
as well as an interaction block (eqs. (17) and (18)) per layer. After initialization of the features
and the SPHCs according to eqs. (9) and (11), they are updated iteratively by passing through nl

layers. Atomic energy contributions Ei 2 R are predicted from the features of the final layer using a
two-layered output block. The individual contributions are summed to the total energy prediction
E =

Pn
i Ei. See Fig. 1b for an overview. More details on the implementation, training details and

network hyperparameters are given in appendix A.3 and A.13.
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Figure 2: (a) Energy predictions for different cumulene structures with NEQUIP (lmax = 1

and lmax = 3) and SO3KRATES (lmax = 1) models with and without geometric corrections
(eqs. (13) and (14)). Cutoff radius and number of layers are kept constant at rcut = 2.5Å and
nl = 4, respectively. (b) We additionally test other SOTA models on the largest cumulene structure
(9 carbons). We find, that even for a very large cutoff, SCHNET fails to describe the dihedral angle
profile. The same holds true for an inherently global SGDML model and even for a SPOOKYNET
model that explicitly includes non-local corrections.

4 Experiments

In the first subsection, we show how non-local quantum effects can be incorporated by using non-
local corrections from the space of SPHCs. In the second part of the experiments, we remove the
non-local part which yields a traditional, R3-local MPNN which reaches SOTA results on established
benchmarks while requiring much less computational time and parameters than competitive models.
A scaling analysis as well as an accuracy comparison for both model variants can be found in appendix
A.8 and A.5.

Non-Local Geometric Interactions For efficiency reasons, MPNNs only consider interactions
between atoms in local neighborhoods, i.e. within a cutoff radius rcut. Thus, information can only be
propagated over a distance of rcut within a single MP step. Although multiple MP updates increase
the effective cutoff distance, because information can “hop” between different neighborhoods as long
as they share at least one atom, each MP step is accompanied by an undesirable loss of information,
which limits the accuracy that can be obtained. Consequently, MPNNs are unable to describe non-
local effects on length-scales that exceed the effective cutoff distance. To illustrate this problem, we
consider the challenging open task [21] of learning the potential energy of cumulene molecules with
different sizes (see Fig. 2a). Here, the relative orientation of the hydrogen rotors at the far ends of the
molecule strongly influences its energy due to non-local electronic effects [21]. In order to be able to
successfully learn the energy profile with a local model, the effective cutoff has to be large enough to
allow information to propagate from one hydrogen rotor to the other.

As a representative example for MPNNs, we consider the recently proposed NEQUIP model [32],
which achieves SOTA performance on several benchmarks. We find that even when the effective
cutoff radius is large enough in principle, an MPNN with nl = 4, rcut = 2.5Å, and lmax  1 fails
to learn the correct energy profile. This is due to the fact that the relevant geometric information
“cancels out” (similar to addition of vectors oriented in opposite directions) within each neighborhood,
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Figure 3: (a) Cumulene structure in Euclidean space. (b) Low-dimensional projections of the SPHCs
(lmax = 1) in SO3KRATES before and after training. Carbon atoms are grey and hydrogen atoms
on different ends of the molecule are green and red, respectively. During training, the model maps
hydrogen atoms at opposite ends close together in SPHC space (which is not the case at initialization).

underlining the limited expressiveness of mean-field interactions in MPNNs. Only by including
higher-order geometric correlations, e.g. going to lmax = 3, the correct energy profile can be
recovered (at the cost of computational efficiency). When going to even larger cumulene structures,
however, the effective cutoff becomes too small and it is necessary to increase the number of MP
layers to solve the task (again, at the cost of lower computational efficiency), which is illustrated
in appendix A.11. Neither increasing the maximum degree of interactions lmax, nor the number of
layers nl, is a satisfactory workaround: Instead of offering a general solution to describe non-local
interactions, both options decrease computational efficiency, while only shifting the problem to larger
length-scales or higher-order geometric correlations.

We further apply three additional models to the cumulene structure with nine carbon atoms. To that
end, we use an invariant SCHNET model with varying cutoff distances (6 Å and 12 Å), an inherently
global but invariant SGDML model and the SPOOKYNET architecture which explicitly includes
global effects using a non-local block. We find that none of the three is capable of describing the
rotor energy profile of cumulene.

In contrast, our proposed SO3KRATES architecture is able to reproduce the energy profile for cumulene
molecules of all sizes independent of the effective cutoff radius. Crucially, even with lmax = 1, the
predicted energy matches the ab-initio reference faithfully. We find that geometric corrections in
the MP update of the SPHCs (cf. eq. (14)) are responsible for the increased capability of describing
higher-order geometric correlations, as a SO3KRATES model with a naive MP update (cf. eq. (13))
fails to solve this task with lmax = 1 (see Fig. 2a). We further confirm that the model picks up on the
physically relevant interaction between the hydrogen rotors by analysing the attention values after
training (see Fig. 8 appendix A.7). To illustrate how SO3KRATES is able to describe non-local effects,
we show a low-dimensional projection of the atomic SPHCs before and after training for the largest
of the cumulene molecules (Fig. 3). After training, the SPHCs for hydrogen atoms at opposite ends
of the molecule are embedded close together in SPHC space, allowing SO3KRATES to efficiently
model the non-local geometric dependence between the hydrogen rotors.

Generalization to structures, larger than those in the training data are usually associated with the
re-usability of the learned, local representations. For that reason, it is unclear if this property still
holds when non-local corrections are used. As we show in appendix A.5 a SO3KRATES model with
non-local corrections still generalizes well to completely unknown and larger structures.

Benchmarks, Data Efficiency and Generalization As pointed out in [31] and [32], equivariant
features not only increase performance, but also improve data efficiency. The latter is particularly
important, as ab-initio methods for reference data generation can become exceedingly expensive
when high accuracy is required. Here, we use a subset of the recently introduced QM7-X data set
[51], which we call QM7-X250. It contains 250 different molecular structures, each with 80 data
points for training, 10 data points for validation and 11-3748 data points for testing (for details, see
appendix A.9). The small number of training/validation samples per molecule makes it particularly
suited for evaluating model behavior in the low data regime. In the following, we train (1) one model
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Figure 4: (a) Average force MAE as a function of lmax on 250 structures from QM7-X [51]. The
blue solid line corresponds to SO3KRATES models trained on each of the 250 structures (à 80 training
points), individually. The jointly trained SO3KRATES model (red solid line) is a single model trained
on all 250⇥ 80 training points. (b) Accuracy of force predictions for unknown structures as function
of lmax. Generalization is only investigated for the jointly trained model. Due to the way the
molecular descriptor is designed, SGDML [38] models can only be trained on individual structures.

per structure in QM7-X250 and (2) one model for all structures in QM7-X250 (250 ⇥ 80 = 20k
training points), which we refer to as individual and joint models, respectively.

We start by investigating the performance as a function of the maximal degree lmax and find that the
error strongly decreases with higher lmax (Fig. 4a). As kernel methods are known to perform well in
the low-data regime [21], we compare our results to SGDML [38] kernel models, which only use
distances as a molecular descriptor (corresponding to lmax = 0). For lmax = 0, we find SGDML
gives competitive results, whereas for lmax = 1, SO3KRATES starts to outperform SGDML. As
soon as lmax � 2, however, the prediction accuracy of SO3KRATES is greater than that of SGDML
by a large margin. Thus, increasing the order of geometric information in the SPHCs leads to
strong improvements in the low-data regime. For jointly trained models, we find that SO3KRATES
outperforms SGDML even for lmax = 0, with continuous improvement for increasing lmax. In
appendix A.10 we report energy and force errors across degrees and further experimental details.

The generalization capability of SO3KRATES is tested, by applying a jointly trained model to
25 completely unknown molecules from the QM7-X data set (see, Fig. 4b, details in appendix
A.10). Again, we find that force MAEs decrease with increasing lmax. For reference, we compare
SO3KRATES to individually trained SGDML models and find that SO3KRATES performs on par,
or even slightly better, for lmax � 2. Going beyond lmax = 2 is found to only marginally improve
generalization. In addition, we report results for a model trained on the full QM7-X data set in
appendix A.5, following [30].

For completeness, we also apply SO3KRATES to the popular MD17 benchmark (see Table 1). We
find, that SO3KRATES outperforms networks that have the same parameter complexity by a large
margin (PAINN and NEWTONNET). Notably, it requires significantly less parameters than other
SH based architectures (NEQUIP and SPOOKYNET), while performing only slightly worse or even
on par with them. Furthermore, SO3KRATES outperforms DIMENET, its closest competitor in
timing (cf. Fig. 1.d), consistently by a large margin. Compared to current SH based approaches,
GEMNETQ needs less parameters (still ⇠ 2.5x more than SO3KRATES) to achieve competitive results.
However, it requires the explicit calculation of dihedral angles which scales cubically in the number
of neighboring atoms. Due to its linear scaling (see A.8) and lightweight structure, SO3KRATES can
significantly reduce the time for training and inference (see Fig. 1d and A.6).

5 Discussion and Conclusion

Due to the locality assumption used in most MPNNs, they are unable to model non-local electronic
effects, which result in global geometric dependencies between different parts of a molecule. The
length-scales of such interactions often greatly exceed the cutoff radius used in the MP step, and even
though stacking multiple MP layers increases the effective cutoff, ultimately, MPNNs are not capable
of efficiently modeling geometric dependencies on arbitrary length scales.

In this work, we contribute conceptually by proposing an efficient and scalable solution to this
problem. We suggest a set of refinable, equivariant coordinates for point clouds in Euclidean space,
called spherical harmonic coordinates (SPHCs). Non-local geometric effects can then be efficiently
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Table 1: MAE for energy (in kcal mol�1) and forces (in kcal mol�1 Å
�1

) of current state-of-the-art
machine learning models on the MD17 benchmark for 1k training points. For each model, the number
of paramaeters, as well as the scaling in the number of neighbors m is shown.

NEQUIP [32]
3M | O(m)

SPOOKYNET [30]
3M | O(m)

GEMNETQ [34]
2.2M | O(m3)

DIMENET [29]
1.9M | O(m2)

PAINN [31]
600k | O(m)

NEWTONNET [52]
500k | O(m)

SO3KRATES
700k | O(m)

Aspirin energy
forces

0.13
0.19

0.151
0.258

–
0.217

0.204
0.499

0.159
0.371

0.168
0.348

0.139
0.236

Ethanol energy
forces

0.05
0.09

0.052
0.094

–
0.088

0.064
0.230

0.063
0.230

0.061
0.211

0.052
0.096

Malondialdehyde energy
forces

0.08
0.13

0.079
0.167

–
0.159

0.104
0.383

0.091
0.319

0.096
0.323

0.077
0.147

Naphthalene energy
forces

0.11
0.04

0.116
0.089

–
0.051

0.122
0.215

0.117
0.083

0.118
0.084

0.115
0.074

Salicyclic Acid energy
forces

0.11
0.09

0.114
0.180

–
0.124

0.134
0.374

0.114
0.209

0.115
0.197

0.106
0.145

Toluene energy
forces

0.09
0.05

0.094
0.087

–
0.060

0.102
0.216

0.097
0.102

0.094
0.088

0.095
0.073

Uracil energy
forces

0.10
0.08

0.105
0.119

–
0.104

0.115
0.301

0.104
0.140

0.107
0.149

0.103
0.111

modeled by including geometric corrections, which are localized in the space of SPHCs, but non-local
in Euclidean space. Further, we show that introducing spherical filter functions acting on the SPHCs
increases geometric resolution and predictive accuracy.

We then propose the SO3KRATES architecture, a self-attention based MPNN, which decouples atomic
features from higher-order geometric information. This allows to drastically decrease the parametric
complexity while still achieving SOTA prediction accuracy. We show evidence that increasing the
geometric order of SPHCs greatly improves model performance in the low-data regime, as well as
generalization to unknown molecules.

A limitation of the current implementation of SO3KRATES is that spherical neighborhoods N� in
eq. (14) are computed from all pairwise distances in SPHC space. An alternative implementation
could use a space partitioning scheme to find neighborhoods more efficiently. In a broader context, our
work falls into the category of approaches that can help to reduce the vast computational complexity
of molecular and material simulations. This can accelerate novel drug and material designs, which
holds the promise of tackling societal challenges, such as climate change and sustainable energy
supply [53]. Of course, our method could also be used for nefarious applications, e.g. design of
chemical warfare, but this is true for all quantum chemistry methods.

Future research will focus on applications of SO3KRATES to materials and bio-molecules, which are
typical examples of chemical systems where the accurate description of non-local effects is necessary
to produce novel insights. Efficient treatment of non-local effects in point cloud data goes beyond the
domain of quantum chemistry. One way of representing non-local dependencies are non-local neural
networks [54]. In comparison to the presented approach they compute a relation in feature rather than
in Euclidean space, making it incapable of capturing direct geometric relations in Euclidean space.
However, this might be necessary if the relative orientation of objects far apart from each other plays
a role for identifying different objects.
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