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In this supplementary material, we first provide a proof in Appendix A for the invariance of spectral
alignment residuals under changes to the Laplacian eigenbasis. Next, we describe the architecture of
our spectral attention network in Appendix B, and then introduce more implementation details in
Appendix C. We give running time analysis in Appendix D. At last, we show more qualitative results
in Appendix E.

A Basis Change in Spectral Alignment Residuals

In Section 4.2 of the main manuscript, we introduce spectral alignment residuals {riq}, given by the
multi-resolution functional maps {Ci}ni=1, and use them as an input signal for our spectral attention
network:

riq = min
p∈S1

δiqp, δiqp = ∥(Φi
2[q])

⊤ −Ci(Φi
1[p])

⊤∥2. (7)

Here we demonstrate that this residual input signal is in fact independant on the choice of source and
target Laplacian eigenbasis Φ1 and Φ2, which is not trivial a priori.

Our first remark is that, due to sign flipping and order changes [1], two different Laplacian eigenbases
may differ by a rotation matrix of size k×k, which is a block-diagonal matrix with a rotation for each
eigen space of the Laplacian up to size k. For eigen spaces of size 1, a rotation simply reduces to a
potential sign flip, but it may be more general if the eigen space associated with a specific eigenvalue
is of dimension 2 or more.

As a consequence, if we use another basis Ψ1 and Ψ2 on respectively the source and target shapes,
we have the property that Ψ†

jΦj is such a block-diagonal matrix Rj , with each block a rotation in the
corresponding eigen space of the Laplacian on shape j ∈ {1, 2}.
Theorem 1. Let G1 and G2 be (here fixed) per-point features on respectively source and target shapes,
and A1 and A2 their respective projection in spectral space using Φ1 and Φ2 as the Laplacian
eigenbasis. Let C(Φ1,Φ2) be the functional map solution to the minimisation problem:

C = argmin
C

∥CA1 −A2∥2 + α∥C∆1 −∆2C∥2, (8)

Then we have that a change in eigenbasis to Ψ1 and Ψ2 in that minimization problem results in a
new functional map solution taking the following form:

C(Ψ1,Ψ2) = R2C(Φ1,Φ2)R
⊤
1 , (9)

with Rj = Ψ†
jΦj , for j ∈ {1, 2}.
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Proof. It is proved in [2] that the solution to Eq. 8 is given in closed form by:

[C⊤]i = [(A1A
⊤
1 + αDi)

−1A1A
⊤
2 ]i,

where Di = diag(λ1
s − λ2

i , s ∈ [1, k])2 (λj being the eigenvalues of the Laplacian on shape
j ∈ {1, 2}), and [X]i denotes the ith column of the matrix X , with slight abuse of notation.

Firstly, let us denote by Âj the features in the new eigenbasis Ψj . Then we have:

Âj = Ψ†
jGj = Ψ†

jΦjAj = RjAj

Then:
Â1Â

⊤
1 + αDi = R1(A1A

⊤
1 + αDi)R

⊤
1

And:
Â1Â

⊤
2 = R1A1A

⊤
2 R

⊤
2

Consequently:

(Â1Â
⊤
1 + αDi)

−1Â1Â
⊤
2 = R1

(
(A1A

⊤
1 + αDi)

−1A1A
⊤
2

)
R⊤

2

Lemma 1. Given the dependence of Di on the eigenvalues of the second shape and the fact that the
rotation R2 is block diagonal for eigenspaces (also of the second shape), we have:

[
(
(A1A

⊤
1 + αDi)

−1A1A
⊤
2

)
R⊤

2 ]i = [C⊤R⊤
2 ]i

Proof. Indeed,

[
(
(A1A

⊤
1 + αDi)

−1A1A
⊤
2

)
R⊤

2 ]l,i =
∑

h∈[1,k]

[
(
(A1A

⊤
1 + αDi)

−1A1A
⊤
2

)
]l,h[R

⊤
2 ]h,i

where [X]l,i denotes the term on the lth row, ith column of the matrix X .

Given that [R⊤
2 ]h,i = 0 when λ2

h ̸= λ2
i , because of the block-diagonal structure of R2, we can only

keep the terms in the sum where λ2
h = λ2

i . Then for these terms, we have Di = Dh, because the
dependence is precisely on the eigenvalues of the second shape.

Now, using that [(A1A
⊤
1 + αDh)

−1A1A
⊤
2 ]h = [C⊤]h, we can individually rewrite the individual

terms, to get:

[
(
(A1A

⊤
1 + αDi)

−1A1A
⊤
2

)
R⊤

2 ]l,i =
∑

h∈[1,k],λ2
h=λ2

i

[C⊤]l,h[R
⊤
2 ]h,i

=[C⊤R⊤
2 ]l,i

which concludes the lemma.

Finally, if we denote Ĉ = C(Ψ1,Ψ2), we get:

[R⊤
1 Ĉ

⊤]i =R⊤
1 [Ĉ

⊤]i

=[(A1A
⊤
1 + αDi)

−1A1A
⊤
2 R

⊤
2 ]i

=[C⊤R⊤
2 ]i (because of Lemma 1)

which concludes the proof.

Using Theorem 1, we then have:

δiqp(Ψ1,Ψ2) =∥(Ψi
2[q])

⊤ −Ci(Ψ1,Ψ2)(Ψ
i
1[p])

⊤∥2
=∥R2

[
(Φi

2[q])
⊤ −Ci(Φ1,Φ2)(Φ

i
1[p])

⊤] ∥2
=δiqp(Φ1,Φ2) (rotations do not affect ℓ2 norm),

which proves that our spectral alignment residuals are indeed independant on the choice of basis.
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B Spectral Attention Network

In Fig. 4, we illustrate the PointNet-based[3] architecture of our spectral attention network. Following
the notation in Sec. 4.2, the input is the n-dimensional spectral alignment residuals {rq}q∈S2

, and
the output is the predicted spectral attention {αi}ni=1. To extract global features in the network, we
use GlobalAvgPool, which computes a weighted mean according to point areas for discretization
invariance as follows:

gl =

∑
q mqf

l
q∑

q mq
, (10)

where gl ∈ R denotes the lth dimension of the pooled global feature vector, f l
q ∈ R denotes the lth

dimension of the learned feature vector at the point q from previous layers, and mq ∈ R is the local
area at the point q.
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Figure 4: Architecture of our spectral attention network based on PointNet.

C Implementation

In this section, we provide more implementation details of our model to complement Sec 4.3.

To train on the FAUST, SCAPE, and DT4D-H datasets, we use the Wave Kernel Signature (WKS) [4]
as input signal to the feature extractor backbone DiffusionNet. The dimensionality of WKS is 128.
The initial learning rate is set to 10−4 and decayed by 0.1 at the half of training. The same settings
are applied to the baseline GeomFmaps [2].

The SMAL dataset has eight species of four-legged animal shapes. The training data is composed
of five species, including cow (8 shapes), dog (9), fox (4), lion (5), and wolf (3). The testing data
is composed of the remaining three species, including cougar (4), hippo (6), and horse (10). Thus
no shapes similar to the testing data are seen during training. To train on SMAL, we use the 3D
coordinates as input signal to the network. We observed overfitting with WKS on SMAL for both
GeomFmaps and our model, mainly due to the limited training data (29 shapes) and the challenging
setting of no species overlap between the training and testing data. Thus we opt for the XYZ signal
input augmented with random rotations around the up (or Y) axis. The initial learning rate is set to
10−3. The same settings are applied to the baseline GeomFmaps.

We use servers equipped with NVIDIA TITAN RTX and GeForce RTX 2080 Ti GPUs for network
training.

D Running Time

We show the running time of our approach and the baseline GeomFmaps in Tab. 5. The statistics were
collected on a server with Intel Xeon CPU @ 2.20GHz, 64GB RAM, and NVIDIA GeForce RTX
2080 Ti GPU. The computation of n = 20 multi-resolution functional maps with the FMReg layer [2]
is the bottleneck of our approach (i.e., in the Functional Map column of Tab. 5). However, we observe
that using the acceleration scheme based on principal submatrices (i.e., Ours-Fast) significantly
reduces the running time. The spectral attention network and differentiable spectral upsampling have
moderate computation cost. Nevertheless, we will investigate further optimizations on our model in
future work.
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Table 5: Running time (s) per shape pair averaged on SMAL
Functional Map AttentionNet Diff. Upsample Total

GeomFmaps 0.053 - - 0.053
Ours-Fast 0.221 0.013 0.039 0.273
Ours 1.303 0.013 0.039 1.355

Source Ground Truth GeomFmaps Ours-FastDeepShells
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Figure 5: Correspondence visualization by texture transfer for shapes from the SMAL dataset, where
the methods are trained in the unsupervised setting. Note that the species of the testing animal shapes
are never seen during training.

E Qualitative Results

In Fig. 5, we present more qualitative results of non-rigid shape matching on the challenging SMAL
dataset, where the compared methods are trained in the unsupervised setting. We reiterate that
the evaluation on SMAL is a highly challenging stress-test for generalization, since there is no
species overlap between the training and testing data, as mentioned in Appendix C. We observe
that, compared to DeepShells [5] and GeomFmaps, our approach is able to produce more accurate
correspondence for both near-isometric and non-isometric animal shapes, whose species are never
seen during training, by learning to distribute attention weights across the spectral resolutions in an
input data dependent manner.
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