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Abstract

In this work, we present a novel non-rigid shape matching framework based
on multi-resolution functional maps with spectral attention. Existing functional
map learning methods all rely on the critical choice of the spectral resolution
hyperparameter, which can severely affect the overall accuracy or lead to overfitting,
if not chosen carefully. In this paper, we show that spectral resolution tuning can
be alleviated by introducing spectral attention. Our framework is applicable in
both supervised and unsupervised settings, and we show that it is possible to train
the network so that it can adapt the spectral resolution, depending on the given
shape input. More specifically, we propose to compute multi-resolution functional
maps that characterize correspondence across a range of spectral resolutions, and
introduce a spectral attention network that helps to combine this representation into
a single coherent final correspondence. Our approach is not only accurate with near-
isometric input, for which a high spectral resolution is typically preferred, but also
robust and able to produce reasonable matching even in the presence of significant
non-isometric distortion, which poses great challenges to existing methods. We
demonstrate the superior performance of our approach through experiments on a
suite of challenging near-isometric and non-isometric shape matching benchmarks.

1 Introduction

Shape matching is a critical task in 3D shape analysis and has been paramount to a broad spectrum of
downstream applications, including registration, deformation, and texture transfer [1, 2], to name
a few. The algorithmic challenge of robust shape matching primarily lies in the fact that shapes
may undergo significant variations, such as arbitrary non-rigid deformations. Earlier works to tackle
non-rigid shape correspondence conventionally build upon hand-crafted features and pipelines [3],
while with the advent of deep learning, the research focus has largely shifted to data-driven and
learning-based approaches for improved matching robustness and accuracy [4].

To learn for non-rigid shape matching, a growing body of literature [7, 8, 9, 10, 11, 12] advocates the
use of spectral techniques, in particular, the functional map representation [13], which compactly
encodes correspondences as small-sized matrices using a reduced spectral basis. A number of
advances have been made to the functional map-based networks in terms of probe feature learning [5,
14], differentiable map regularization [5], supervised [7] and unsupervised learning [9, 8, 15], among
many others. Despite this progress, existing works nearly always learn functional maps in a single
spectral resolution (the number of basis functions used), which is often set empirically. However,
the functional map resolution plays a crucial role in the non-rigid shape matching performance,
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Figure 1: (a) The unstable matching performance of GeomFmaps [5] w.r.t. the critical Spectral
Resolution hyperparameter on an animal shape dataset SMAL [6]. (b) Correspondence visualization
by texture transfer for near-isometric (top) and non-isometric (bottom) shapes. GeomFmaps is trained
with ground truth supervision, while our approach is not.

as observed in existing literature [9]. As a concrete example, Fig. 1-(a) shows that the matching
performance of a state-of-the-art supervised learning method GeomFmaps [5] fluctuates significantly
when trained with a different map resolution (i.e., size of the functional map). Therefore, to improve
robustness, it is desirable to enable networks to adaptively change the resolution in a data-dependent
manner: for near-isometric shapes, adopting a higher spectral resolution allows high-frequency details
to be leveraged for more precise matching; while for non-isometric shapes, adopting a lower spectral
resolution is advantageous to obtain approximate but potentially more robust maps.

Motivated by the above discussion, in this work, we propose a novel learning-based functional map
framework that learns to adaptively combine multi-resolution maps with a mechanism that we call
spectral attention, which can accommodate both near-isometric and non-isometric shapes at the same
time. Specifically, our framework consists of two novel components (Fig. 2): (1) multi-resolution
functional maps and (2) the spectral attention module.

Given as input a pair of non-rigid shapes, we first use a functional map network to estimate a series
of maps with varying spectral resolution. Next, we feed the obtained functional maps to a spectral
attention network to predict a weight for each map. The attention weights are used to combine
all the intermediate maps into a final coherent map. To enable such an assembly, we design a
differentiable spectral upsampling module that can transform the intermediate maps to the same
spectral resolution within a learnable network. Finally, to train our network, we propose to impose
penalties on the intermediate multi-resolution functional maps as well as the final map. This is
different from existing approaches, e.g., [7, 9, 5, 10, 16], which work with and penalize a single
hand-picked spectral resolution. Our method can be trained in both supervised and unsupervised
settings and can directly benefit from other advances in deep functional map training, such as
improved architectures or regularization. To evaluate our model, we perform a comprehensive set of
experiments on several challenging non-rigid shape matching datasets, where our model achieves
superior matching performance over existing methods.

In a nutshell, the main contributions of our work are as follows: (1) We introduce a powerful
non-rigid shape matching framework equipped with multi-resolution functional maps with spectral
attention for handling diverse shape inputs. (2) We propose a novel spectral attention network and a
differentiable spectral upsampling module for robust functional map learning. (3) We demonstrate the
superior performance of our model compared to existing approaches through extensive experiments
on challenging non-rigid shape matching benchmarks. Our code and data are publicly available1.

2 Related Work

In shape analysis, the field of non-rigid shape matching is both extensive and well-studied. In the
following paragraphs, we review the works that are most closely related to our approach. A more
complete overview can be found in recent surveys [17, 18], and more recently [4] (Section 4).

1https://github.com/craigleili/AttentiveFMaps
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Functional Maps Our method is based on the functional maps framework, first introduced in
[13], and extended in various works such as [19, 20, 21, 22, 23, 24] among others (see [25] for
an overview). This general approach is based on encoded maps between shapes using a reduced
basis representation. Consequently, the problem of map optimization becomes both linear and more
compact. Besides, this framework allows to represent natural constraints such as near-isometry or
bijectivity as linear-algebraic regularization. It has also been extended to the partial setting [26, 27].

One of the bottlenecks of this framework is the estimation of so-called “descriptor functions” that
are key to the functional map computation. Early methods have relied on axiomatic features, mainly
based on multi-scale diffusion-based descriptors, e.g., HKS and WKS [28, 29].

Learning-based methods Several approaches have proposed to learn maps between shapes by
formulating it as a dense segmentation problem, e.g., [30, 31, 32, 33, 34, 35]. However, these methods
(1) usually require many labeled training shapes, which can be hard to obtain, and (2) tend to overfit
to the training connectivity, making the methods unstable to triangulation change.

Closer to our approach are deep shape matching methods that also rely on the functional map
framework, pioneered by FMNet [7]. In this work, SHOT descriptors [36] are given as input to the
network, whose goal is to refine these descriptors in order to yield a functional map as close to the
ground-truth as possible. The key advantage of this approach is that it directly estimates and optimizes
for the map itself, thus injecting more structure in the learning problem. FMNet introduced the idea
of learning for shape pairs, using the same feature extractor (in their case, a SHOT MLP-based
refiner) for the source and target shapes in a Siamese fashion to produce improved output descriptors
for functional map estimation. However, later experiments conducted in [5] have highlighted that
SHOT-based pipelines suffer greatly from connectivity overfitting. Thus, in more recent works, the
authors in [5, 15, 14] advocate for learning directly from shapes’ geometry, while exploiting strong
regularizers for functional map estimation.

The major upside of using the functional map framework for deep shape matching is that it relies
on the intrinsic information of shapes, which results in overall good generalization from training to
testing, especially across pose changes, which involve minimal intrinsic deformation.

Unsupervised spectral learning The methods described above are supervised deep shape matching
pipelines. While these methods usually give good correspondence prediction, they need ground-
truth supervision at training time. Consequently, other methods have focused on training for shape
matching using the functional map framework, without ground-truth supervision. This was originally
performed directly on top of FMNet by enforcing either geodesic distance preservation [8, 37], or
natural properties on the output functional map [9], as well as by promoting cycle consistency [38].

To disambiguate symmetries present in many organic shapes, some works choose to rely on so-called
“weak-supervision”, by rigidly aligning all shapes (on the same three axes) as a pre-processing step
[15, 39], and then use the extrinsic embedding information to resolve the symmetry ambiguity. This,
however, limits their utility to correspondences between shapes with the same rigid alignment as the
training set. Another solution is to use input signals that are independent to the shape alignment, such
as SHOT [36] descriptors as done in the original FMNet. One of these recent methods [11], makes
use of optimal transport on top of this SHOT-refiner to align the shapes at different spectral scales.
This method, like ours, computes the functional map at different scales via progressive upsampling,
but they only keep the last map as the output whereas we propose to let the network learn the best
combination of different resolutions. Additionally, this method is dependent on the SHOT input,
which makes it unstable towards change in triangulation. In-network refinement is also performed in
DG2N [40], but not in the spectral space.

Attention-based spectral learning The attention mechanism was originally introduced in deep
learning for natural language processing, and consists in putting relative weights on different words of
an input sentence [41]. This mechanism can be applied in different contexts, including that of shape
analysis. Indeed, attention learned in the feature domain can be used to focus on different parts of a
3D shape, for instance in partial shape matching, as done in [10]. As we show in this paper, attention
can also be used in the spectral domain by letting the network focus on different levels of details
depending on the input shapes and their resulting functional maps at different spectral resolutions.
Indeed, the utility of considering different resolutions of a functional map, e.g., via upsampling of its
size, has been highlighted in [42, 43]. Here we propose to let the network learn to adaptively combine
all the intermediate functional maps into a final coherent correspondence.
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3 Background

Our work proposes a learning-based framework for non-rigid shape matching by building upon the
functional map representation [13], and especially its learning-based variant GeomFmaps, introduced
in [5]. Before describing our approach in Sec. 4, we first briefly describe the basic learning pipeline
with functional maps for shape correspondence. We refer the interested reader to relevant works [25,
7, 8, 9, 5] for more technical details.

Deep Functional Map Pipeline We consider a pair of shapes S1 and S2, represented as triangle
meshes with n1 and n2 vertices, respectively. The goal is to compute a high quality dense correspon-
dence between these shapes in an efficient way. The basic learning pipeline estimates a functional
map between S1 and S2 using the following four steps [25].

• Compute the first k eigenfunctions of the Laplace-Beltrami operator [44] on each shape,
which will be used as a basis for decomposing smooth functions on these shapes. The
Laplacian is discretized as S−1W , where S is the diagonal matrix of lumped area elements
for mesh vertices and W is the classical cotangent weight matrix [45]. The eigenfunctions
are stored as columns in matrices Φ1 ∈ Rn1×k and Φ2 ∈ Rn2×k.

• Second, a set of descriptors (also known as probe, or feature functions) on each shape
are extracted by a feature extractor network [7, 5] here denoted by FΘ with learnable
parameters Θ. These feature functions are expected to be approximately preserved by the
unknown map. We denote the learned feature functions as FΘ(S1) = G1 ∈ Rn1×d and
FΘ(S2) = G2 ∈ Rn2×d, where d is the number of descriptors. After projecting them
onto the respective eigenbases, the resulting coefficients are stored as columns of matrices
A1,A2 ∈ Rk×d, respectively.

• Next, we compute the optimal functional map C ∈ Rk×k by solving:

C = argmin
C

∥CA1 −A2∥2 + α∥C∆1 −∆2C∥2, (1)

where the first term promotes preservation of the probe functions, and the second term
regularizes the map by measuring its commutativity with the Laplace-Beltrami operators [13,
5], which in the reduced basis become diagonal matrices of the eigenvalues ∆1 and ∆2.

• As a last step, the estimated map C can be converted to a point-to-point map commonly
by nearest neighbor search between the aligned spectral embeddings Φ1C

⊤ and Φ2, with
possible post-refinement applied [46, 22, 42, 47].

To train the feature extractor network FΘ, one defines a set of training shape pairs, and another set
of shape pairs for testing. As shown in [5], the solution to Eq. (1) can be obtained in closed form
within a neural network in a differentiable manner, and constitutes what is called “FMReg” in Fig. 2.
Using this insight, during training time, the network aims at reducing a loss L(C), defined on the
output functional map C(FΘ(S1),FΘ(S2)) estimated from the learned descriptors using the closed
form solution of Eq. (1). Through backpropagation, the parameters Θ are then updated to make the
network produce better features for the next pair of shapes.

We stress that in this pipeline, the size k of the functional map is a critical non-learned hyperparameter,
which can strongly affect matching results (as highlighted in Fig. 1 and in existing literature [9]).

4 Method

The main goal of our work is to robustly and adaptively estimate functional maps for shape pairs with
diverse geometric properties, including both near-isometric and non-isometric transformations. In
this section, we describe the technical details of our proposed non-rigid shape matching framework.
We illustrate the whole pipeline in Fig. 2. Our framework has two main stages: multi-resolution
functional map learning (Sec. 4.1) and spectral attention learning (Sec. 4.2).

4.1 Multi-resolution Functional Maps

In the first stage of our framework, given the input shapes S1 and S2, we follow the basic learning
pipeline, as described in Sec. 3, to infer multi-resolution functional maps for extensively characterizing
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Figure 2: Illustration of our non-rigid shape matching pipeline based on multi-resolution functional
maps with spectral attention. Our network takes as input a pair of shapes S1 and S2. First, we
estimate a set of intermediate functional maps {Ci}ni=1 with varying resolution, using DiffusionNet
FΘ as the feature backbone and the differentiable FMReg module for the map computation. Next, we
design a spectral attention network AΨ to predict a set of attention weights {αi}ni=1 for combining
the functional maps at different resolutions, transformed by differentiable spectral upsampling, into
the final map C. We impose losses Linter and Lfinal during training.

shape matching in the spectral domain. As mentioned above, this differs from existing learning-based
functional map works that typically compute a single map at a specific hand-picked resolution,
which may not be universally applicable due to the rich diversity of shapes, thus putting limit on the
generalization of networks across datasets.

To learn multi-resolution maps, we adopt a recent surface feature learning network DiffusionNet [14]
as the backbone to learn the d probe functions. DiffusionNet is shown to be robust to varying mesh
sampling and widely applicable to non-rigid shape analysis tasks [14, 12]. Following the notation in
Sec. 3, let FΘ denote this feature backbone. We feed the input shapes to the network in a Siamese
manner and obtain G1 = FΘ(S1) and G2 = FΘ(S2). These learned probe functions are shared in
the subsequent computation of multi-resolution maps.

To solve for a functional map with Eq. (1) in a differentiable manner, we employ the FMReg module
proposed in [5]. With slight abuse of notation, let C = {Ci}ni=1 denote a series of n estimated
functional maps with varying resolution (Fig. 2-left), where the ith map Ci obtained via Eq. (1) is of
size ki × ki. Adjacent maps differ in their resolution by τ rows and τ columns, i.e., ki+1 = ki + τ
for Ci+1, meaning that τ more eigenfunctions are included in Φ1 and Φ2 for the map optimization.

Acceleration In the above approach, FMReg is repeatedly used to optimize Eq. (1) for each Ci ∈ C,
incurring noticeable computation cost. To address this issue, we point out an acceleration scheme
based on principal submatrices to significantly simplify the computation of C. Specifically, we
observe that for i < n, the principal ki × ki submatrix of Cn can be treated as an approximation of
Ci computed in the standard way with Eq. (1). Accordingly, we can first employ FMReg once to
compute the largest map Cn and then construct the multi-resolution functional maps C as a set of
principal submatrices of Cn, thus avoiding the optimization for {Ci}n−1

i=1 . In practice, we find this
acceleration scheme to work reasonably well, showing comparable matching performance with the
above standard procedure (Sec. 5).

4.2 Spectral Attention

Given the estimated multi-resolution functional maps C, there are two main questions: (1) how to
prioritize the maps, and (2) how to address the resolution difference for combining the maps together.
Thus in the second stage of our framework, instead of performing hard assignment, we propose to
learn for each map Ci ∈ C a soft attention weight αi ∈ [0, 1], representing its contribution to the
final map assembly. To enable the assembly, we also introduce a differentiable spectral upsampling
module to align the map resolution within the network.

Network Intuitively, our spectral attention network takes as input, the set of functional maps C of
different sizes, and predicts, for each functional map Ci in C, a scalar weight αi, which represents
the confidence associated with Ci. To predict {αi}ni=1, the attention network needs to jointly assess
the multi-resolution functional maps with their associated spectral information (Fig. 2-right). Directly
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using the eigenfunctions as input signals to the network can be problematic due to the known issues of
sign flipping and order changes [13]. In this work, we opt for spectral alignment residual as pointwise
features and build the network upon a PointNet-based architecture [48].

Specifically, let Φi
1 and Φi

2 denote the spectral embeddings associated with Ci, i.e., matrices of the
first ki eigenfunctions on S1 and S2, respectively, as defined in Sec. 3. For a point q ∈ S2, we define
its spectral alignment residual riq as:

riq = min
p∈S1

δiqp, δiqp = ∥(Φi
2[q])

⊤ −Ci(Φi
1[p])

⊤∥2, (2)

where Φi
1[p] denotes the pth row of the matrix Φi

1, similarly for Φi
2[q]. We gather the residuals across

C into a feature vector rq = [..., riq/
√
ki, ri+1

q /
√
ki+1, ...]⊤ for the point q, where the scaling factor√

ki is to counteract the dimensionality difference across the spectral embeddings. The feature rq
can be interpreted as a form of confidence of each map Ci at the point q.

The vectors of spectral alignment residuals {rq}q∈S2 collectively form an unordered set. We then
feed this n-dimensional point set to our spectral attention network, denoted as AΨ with learnable
parameters Ψ. We build AΨ with the classification architecture of PointNet [48] with feature
transformations and global feature pooling. We forward the pooled global features through multi-
layer perceptrons and the softmax function to obtain spectral attention weights αi s.t.

∑n
i=1 α

i = 1.

Note that the spectral alignment residuals, as input to our spectral attention network AΨ, are computed
using the Laplacian eigenbasis. Nevertheless, as we prove in the supplementary material, the residuals,
and thus our network, are invariant under the changes of the Laplacian eigenbasis. In practice, we
have also observed that the network AΨ is stable and trains well.

Differentiable Spectral Upsampling Due to the dimensionality difference, the functional maps in
C cannot be directly combined together with the learned spectral attention weights. Inspired by [42],
we propose a differentiable spectral upsampling module to transform all the maps to the same spectral
resolution. The main idea consists of two differentiable steps: (1) Convert the ki × ki-size functional
map Ci to a soft pointwise map; (2) Convert the pointwise map to a kn × kn-size functional map.
Specifically, we first compute a soft pointwise map, denoted as Πi ∈ Rn2×n1 , from Ci as:

Πi
qp =

exp(−δiqp/t)∑
p′ exp(−δiqp′/t)

, (3)

where p, p′ ∈ S1 and q ∈ S2, and t is a learnable temperature parameter. Next, to compute an
upsampled map Ĉi of size kn × kn, we project Πi onto the corresponding spectral basis:

Ĉi = (Φn
2 )

†ΠiΦn
1 , (4)

where † denotes the Moore-Penrose inverse. After this differentiable upsampling, we obtain a set of
functional maps Ĉ = {Ĉi}ni=1 that are all of size kn × kn. Moreover, since they all represent maps
between the same shape pair S1 and S2, they can be directly compared to each other and linearly
combined.

Map Assembly With the estimated spectral attention {αi}ni=1 and the upsampled functional maps
Ĉ, the last step of our framework is to assemble the intermediate maps together into a final coherent
map output for shapes S1 and S2 (Fig. 2-rightmost). We denote the final map as C, which is computed
by a simple linear combination as follows:

C =

n∑
i=1

αiĈi. (5)

4.3 Training
Loss To train our network, we impose losses on both the intermediate multi-resolution functional
maps C = {Ci}ni=1 and the final map output C, as shown in Fig. 2. Following prior works [5, 9], our
network can be trained in a supervised or unsupervised way, and we present comprehensive results of
both training paradigms in Sec. 5. In both the supervised and unsupervised settings, the loss Linter for
the intermediate maps C and the loss Lfinal for the final map C are formulated as:

Linter =
1

n

n∑
i=1

(kn
ki

)2

L(Ci), Lfinal = L(C), (6)
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where L(C) is the penalty for a given map C depending on the training paradigm and described
below. The map penalty in Linter is multiplied by a scaling factor to counterbalance the spectral
resolution difference. The overall training loss combines the two losses as Ltotal = Linter + Lfinal. We
note that Ltotal remains unchanged regardless of whether the acceleration scheme (Sec. 4.1) is used.

For supervised training, we define the map penalty L(C) = ∥C−Cgt∥2, where the Frobenius norm is
used. The ground-truth functional map Cgt has the same spectral resolution as C and can be obtained
by projecting the point-to-point map onto the reduced spectral basis. For unsupervised training, we
follow [9] to define the map penalty as L(C) = ∥C⊤C − I∥2, which promotes orthogonality of
the given map. Note that a Laplacian commutativity penalty [9] is not necessary because of the
regularization imposed in Eq. (1).

Implementation We implement our network with PyTorch [49]. The feature backbone consists
of four DiffusionNet blocks [14] and produces d = 256 dimensional features as output. We use
α = 10−3 in Eq. (1). During pre-processing, we perform a one-time eigendecomposition of the
Laplacian on each shape and take the first 200 eigenfunctions, which are ordered by the corresponding
eigenvalues and reused in all subsequent functional map computations. We compute n = 20 multi-
resolution functional maps with sizes ranging from 10× 10 to 200× 200 with a step size τ = 10.
We set the batch size to 1 and use ADAM [50] for optimization. We use the WKS [29] descriptor as
input to the network for all experiments, except for the SMAL dataset [6] in Sec. 5.2, where the 3D
coordinates are used as input. This XYZ signal input is augmented with rotations around the up axis
(here Y), since the shapes in SMAL are randomly rotated around this axis. This input signal can better
address overfitting in the hard case of different animal species than WKS. More implementation
details are provided in the supplementary material.

5 Experiments

In this section, we present extensive experimental results on a wide range of challenging non-rigid
shape correspondence benchmarks to demonstrate the superior performance of our approach. We
perform evaluations on widely adopted human shape matching datasets such as FAUST [2] and
SCAPE [51] as well as a non-isometric dataset SHREC’19 [52]. We also evaluate on an animal shape
matching dataset SMAL [6] to stress-test generalization. Moreover, we test on a recent humanoid
shape dataset constructed from DeformingThings4D [53, 54] for both near-isometric and highly
non-isometric correspondence. We use remeshed variants for these datasets, introduced in [22] and
used in recent learning-based methods [5, 15, 11]. This ensures that the shapes do not share identical
mesh connectivity.

5.1 Matching on FAUST, SCAPE, and SHREC’19
Datasets Following [5, 11], the FAUST dataset, which has 100 human shapes, is split into 80 and
20 shapes for training and testing, respectively. For the SCAPE dataset consisting of 71 human
shapes, the training and testing split is 51/20. The SHREC’19 dataset has 44 human shapes and
is used only as a test set. Shape 40 in SHREC’19 is a partial shape and removed from the dataset,
because the Laplacian basis used has global support [13, 26] and special architecture designs like
[10] are required for partial shape matching, which is outside the scope of this work.

Baselines We perform comparison with existing non-rigid shape matching works categorized as
follows: (1) Axiomatic approaches including BCICP [22], ZoomOut [42], and Smooth Shells [55]; (2)
Supervised learning approaches including FMNet [7], 3D-CODED [56], HSN [35], ACSCNN [57],
TransMatch [58], and GeomFmaps [5]; (3) Unsupervised learning approaches including SURFM-
Net [9], UnsupFMNet [8], NeuroMorph [39], DeepShells [11], and GeomFmaps [5].

3D-CODED and TransMatch take point clouds as input, while the other methods work on meshes.
TransMatch is a recent transformer-based method typically requiring volumious training data, thus in
our experiments we initialized the training of TransMatch with its released network weights pretrained
on the SURREAL dataset [59] consisting of 10,000 shapes.

GeomFmaps is a strong baseline closely related to our work. For a fair comparison, we also use
DiffusionNet as the feature backbone in GeomFmaps, with the same input signal as ours, for improved
performance [14]. The supervised and unsupervised training losses for GeomFmaps are the same as
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Table 1: Mean geodesic error (×100) on FAUST, SCAPE, and SHREC’19
Train F S F + S
Test F S S19 F S S19 F S S19
FMNet sup 11.0 30.0 - 33.0 30.0 - - - -
3D-CODED sup 2.5 31.0 - 33.0 31.0 - - - -
HSN sup 3.3 25.4 - 16.7 3.5 - - - -
ACSCNN sup 2.7 8.4 - 6.0 3.2 - - - -
TransMatch sup 2.7 33.6 21.0 18.6 18.3 38.8 2.7 18.6 16.7
TransMatch + Refine sup 1.7 30.4 14.5 15.5 12.0 37.5 1.6 11.7 10.9
GeomFmaps sup 2.6 3.6 9.9 2.9 2.9 12.2 2.6 2.9 7.9
Ours-Fast sup 1.3 2.9 7.1 1.8 1.8 11.7 1.3 1.8 7.1
Ours sup 1.4 2.2 9.4 1.7 1.8 12.2 1.3 1.8 6.2

BCICP 6.1 - - - 11. - - - -
ZoomOut 6.1 - - - 7.5 - - - -
SmoothShells 2.5 - - - 4.7 - - - -

SURFMNet unsup 15.0 32.0 - 32.0 12.0 - 33.0 29.0 -
UnsupFMNet unsup 10.0 29.0 - 22.0 16.0 - 11.0 13.0 -
NeuroMorph unsup 8.5 28.5 26.3 18.2 29.9 27.6 9.1 27.3 25.3
DeepShells unsup 1.7 5.4 27.4 2.7 2.5 23.4 1.6 2.4 21.1
GeomFmaps unsup 3.5 4.8 8.5 4.0 4.3 11.2 3.5 4.4 7.1
Ours-Fast unsup 1.9 2.6 5.8 1.9 2.1 8.1 1.9 2.3 6.3
Ours unsup 1.9 2.6 6.4 2.2 2.2 9.9 1.9 2.3 5.8
The best results are highlighted separately for supervised and unsupervised methods.

the map penalties L defined in Sec. 4.3. GeomFmaps uses 30 eigenfunctions, as recommended in the
original work [5].

Results Tab. 1 reports the matching performance in terms of mean geodesic error on unit-area
shapes [60]. Ours-Fast refers to our method with the acceleration scheme (Sec. 4.1). We observe that
our method outperforms all baselines in both the supervised and unsupervised settings. The slightly
better correspondences obtained on FAUST by DeepShells [11] can be explained by the fact that they
use refinement as a post-processing step, which our method does not require. Our method directly
produces high-quality maps by choosing the best weighted combination of functional maps obtained
from matching at different spectral resolutions. In particular, notice that how we improve upon the
closest competitor, GeomFmaps [5], by enabling the network to optimize the spectral resolution.

Besides, the fast version of our method gives almost the same results as the complete approach, and
even better results in some cases. We attribute this partly to the fact that Ours-Fast avoids solving
many linear systems inside the network. While Ours is more principled, it also relies on solving
multiple linear systems with differentiable matrix inversion for each intermediate functional map [5].
Numerically this can lead to more instabilities, especially at the early training stage when descriptors
are not fully trained, which ultimately can lead to a drop in performance in certain cases. Nevertheless,
the results indicate that the acceleration scheme used in Ours-Fast works well in practice.

5.2 Matching on SMAL

Table 2: Results (×100) on SMAL and DT4D-H

SMAL DT4D-H

intra-class inter-class

GeomFmaps sup 8.4 2.1 4.1
Ours-Fast sup 5.8 2.0 4.7
Ours sup 5.3 1.8 4.6

DeepShells unsup 29.3 3.4 31.1
GeomFmaps unsup 7.6 3.3 22.6
Ours-Fast unsup 5.8 1.2 14.6
Ours unsup 5.4 1.7 11.6

Dataset The SMAL dataset has 49 four-
legged animal shapes of eight species. To
stress-test the generalization of learning-based
approaches, we use five species for training
and three species for testing, resulting in a
29/20 split of the shapes. Thus no shapes sim-
ilar to the testing data are seen during train-
ing, and the correspondence across species is
highly non-isometric, presenting great chal-
lenges to learning-based approaches.
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Figure 3: Correspondence visualization by color transfer for shapes from the DT4D-H dataset, where
the methods are trained in the unsupervised setting. The rightmost plots are the learned spectral
attention by our method.

Results Tab. 2-left reports the matching performance. Again, our method significantly improves
upon its predecessor GeomFmaps in both supervised and unsupervised settings. Besides, DeepShells
fails to predict accurate maps in this hard setting, due to its tendency to overfit to the training
set, since they use SHOT input which is very triangulation-sensitive. Our method thus has strong
generalization power, being able to predict correspondence between two animals whose species are
never encountered during training.

5.3 Matching on DeformingThings4D
Dataset We also test on a recent non-rigid shape matching benchmark, introduced in [54]. This
benchmark consists of shapes from a large-scale animation dataset DeformingThings4D [53] with
dense ground truth correspondences. The inter-class correspondences were obtained by non-rigid ICP
using manually selected landmarks [54]. We use nine classes of humanoid shapes for our evaluation.
In total, there are 198/95 non-rigid, and often non-isometric, shapes for training/testing, significantly
more than the previous datasets. We denote this humanoid shape benchmark as DT4D-H.

Results Tab. 2-right presents the performance for both intra and inter class matching. In the
supervised setting, we obtain performance comparable to GeomFmaps. This may be due to local
artefacts in the inter-class ground truth computed by non-rigid ICP across strongly non-isometric
shape classes, with matching accuracy below 5 being saturated. Nevertheless, the improvement
becomes remarkably noticeable in the unsupervised setting. DeepShells suffers from overfitting, as it
is shown to succeed in intra-class matching but not in inter-class matching. Meanwhile, our approach
is the only one to give reasonable overall results in this challenging unsupervised case.

Visualization In addition to the SMAL results in Fig. 1-(b), in Fig. 3 we show qualitative corre-
spondence results on the DT4D-H dataset, across methods trained in the unsupervised setting. We
observe that our method is able to produce high-quality correspondences for both intra and inter class
shapes, compared to other methods.

In Fig. 3-right, we also plot the spectral attention (i.e., {αi}ni=1 defined in Sec. 4.2) estimated by our
network with the unsupervised training. The plots demonstrate that, for near-isometric (intra-class)
shape pairs, the network puts most of the attention weights on functional maps of resolution in [150,
200]; while for more difficult non-isometric (inter-class) shape pairs, the network assigns higher
weights to functional maps of resolution in [50, 150]. For the non-isometric case, this suggests that the
smaller functional maps are more reliable and can be more accurately estimated than the larger ones.
In contrast, for near-isometric shapes, higher-resolution maps can be estimated directly (and thus,
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Table 3: Ablation results (×100)
Ours-Fast Ours

Full model 5.8 5.4

w/o Linter 13.1 13.4
w/o AΨ w/ uni. 56.2 5.9
w/o AΨ w/ avg. res. 11.1 5.6
τ = 5 5.1 7.2
τ = 20 6.4 6.9

Table 4: Backbone ablation (×100)
DiffusionNet KPConv

GeomFmaps 8.4 9.4
Ours-Fast 5.8 6.8

lower-resolution ones as well, since those are given as principal submatrices of the larger functional
maps). This highlights the importance of choosing the spectral resolution in a data-dependent manner.

5.4 Ablation Study

We perform ablation studies w.r.t. our network components and show the results in Tab. 3, where
unsupervised training on SMAL is used. First, we train our network without the loss on intermediate
multi-resolution functional maps and denote it as w/o Linter in Tab. 3. We observe that using Linter can
greatly improve the matching performance owing to the better intermediate representations produced.
Next, to validate the spectral attention network AΨ, we remove it and compute spectral attention
with two non-learning schemes. One option is to use a uniform weight (i.e., αi = 1/n), denoted
as w/o AΨ w/ uni. in Tab. 3. The other is to use mean spectral alignment residual (i.e., softmax
on − 1

n2

√
ki

∑
q∈S2

riq for αi), denoted as w/o AΨ w/ avg. res. The results show that the matching
performance degrades without the spectral attention network, in particular for Ours-Fast, which
fails to converge with the uniform weight during training, strongly indicating the robustness brought
by learned spectral attention. Moreover, we also test different values for the spectral step size τ
(Sec. 4.1), and τ = 10 is a balanced choice for both Ours-Fast and Ours.

To show the generality of our approach, we compare different feature backbones on SMAL where
supervised training is used. Specifically, we replace DiffusionNet (Fig. 2) with KPConv [61], which
is another advanced architecture working on point clouds. Tab. 4 shows that our method brings
noticeable improvement across various backbones, indicating the wide generality of our approach.

6 Conclusion, Limitations, and Societal Impacts

To conclude, we introduced a robust non-rigid shape correspondence framework applicable in both
supervised and unsupervised settings. We leverage a multi-resolution functional map representation
and propose to learn spectral attention for a final coherent correspondence estimation, resulting in a
powerful deep model that can adaptively accommodate near-isometric and non-isometric shape input.
We demonstrate the improved matching performance of our model through extensive experiments on
challenging non-rigid shape matching benchmarks.

One limitation of our approach is that, similarly to existing functional map works, we need to pre-
compute spectral decomposition for each input shape. While the pre-computation is efficient for
moderately sized shapes, down-sampling or remeshing may be needed for large-size input. Besides,
we focus on full shape matching and assume input shapes represented as triangle meshes. It would be
interesting to investigate an extension of our approach to partial shapes or point clouds as input.

Lastly, we do not see any immediate ethical issue with the proposed method, but note that considering
the superior performance on human shape matching, unintended uses, such as surveillance, may be a
potential negative societal impact of our work.
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