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Abstract

Multi-head attention empowers the recent success of transformers, the state-of-the-
art models that have achieved remarkable success in sequence modeling and beyond.
These attention mechanisms compute the pairwise dot products between the queries
and keys, which results from the use of unnormalized Gaussian kernels with the
assumption that the queries follow a mixture of Gaussian distribution. There is no
guarantee that this assumption is valid in practice. In response, we first interpret
attention in transformers as a nonparametric kernel regression. We then propose
the FourierFormer, a new class of transformers in which the dot-product kernels
are replaced by the novel generalized Fourier integral kernels. Different from the
dot-product kernels, where we need to choose a good covariance matrix to capture
the dependency of the features of data, the generalized Fourier integral kernels can
automatically capture such dependency and remove the need to tune the covariance
matrix. We theoretically prove that our proposed Fourier integral kernels can effi-
ciently approximate any key and query distributions. Compared to the conventional
transformers with dot-product attention, FourierFormers attain better accuracy
and reduce the redundancy between attention heads. We empirically corroborate
the advantages of FourierFormers over the baseline transformers in a variety of
practical applications including language modeling and image classification.

1 Introduction
Transformers [83] are powerful neural networks that have achieved tremendous success in many
areas of machine learning [40, 76, 36] and become the state-of-the-art model on a wide range
of applications across different data modalities, from language [23, 1, 18, 13, 62, 4, 8, 21] to
images [24, 43, 78, 63, 59, 27], videos [3, 44], point clouds [97, 31], and protein sequence [65, 34].
In addition to their excellent performance on supervised learning tasks, transformers can also
effectively transfer the learned knowledge from a pretraining task to new tasks with limited or no
supervision [60, 61, 23, 94, 42]. At the core of transformers is the dot-product self-attention, which
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mainly accounts for the success of transformer models [14, 56, 41]. This dot-product self-attention
learn self-alignment between tokens in an input sequence by estimating the relative importance of a
given token with respect to all other tokens. It then transform each token into a weighted average of
the feature representations of other tokens where the weight is proportional to a importance score
between each pair of tokens. The importance scores in self-attention enable a token to attend to other
tokens in the sequence, thus capturing the contextual representation [6, 83, 38].

1.1 Self-Attention

Given an input sequence X := [x1, · · · ,xN ]> 2 RN⇥Dx of N feature vectors, self-attention
computes the output sequence H from X as follows:

Step 1: Projecting the input sequence into different subspaces. The input sequence X is
transformed into the query matrix Q, the key matrix K, and the value matrix V via three linear
transformations

Q = XW
>
Q;K = XW

>
K ;V = XW

>
V ,

where WQ,WK 2 RD⇥Dx , and WV 2 RDv⇥Dx are the weight matrices. We denote Q :=
[q1, · · · , qN ]>,K := [k1, · · · ,kN ]>, and V := [v1, · · · ,vN ]>, where the vectors qi,ki,vi for
i = 1, · · · , N are the query, key, and value vectors, respectively.

Step 2: Computing the output as a weighted average. The output sequence H := [h1, · · · ,hN ]>

is then given by
H = softmax

⇣
QK

>
/

p

D

⌘
V := AV, (1)

where the softmax function is applied to each row of the matrix (QK
>)/

p
D. For each query vector

qi, i = 1, · · · , N , Eqn. (1) can be written in the vector form to compute the output vector hi as
follows

hi =
NX

j=1

softmax
⇣
q>
i kj/

p

D

⌘
vj :=

NX

j=1

aijvj . (2)

The matrix A 2 RN⇥N and its component aij for i, j = 1, · · · , N are the attention matrix and
attention scores, respectively. The self-attention computed by equations (1) and (2) is called the dot-
product attention or softmax attention. In our paper, we refer a transformer that uses this attention as
the baseline transformer with the dot-product attention or the dot-product transformer. The structure
of the attention matrix A after training governs the ability of the self-attention to capture contextual
representation for each token.

Multi-head Attention Each output sequence H forms an attention head. Multi-head attention
concatenates multiple heads to compute the final output. Let H be the number of heads and
W

O
2 RHDv⇥HDv be the projection matrix for the output. The multi-head attention is defined as

MultiHead({Q,K,V}
H
i=1) = Concat(H1, . . . ,HH)WO

.

The capacity of the attention mechanism and its ability to learn diverse syntactic and semantic
relationships determine the success of transformers [77, 84, 17, 85, 32]. However, equations (1)
and (2) implies that the dot-product attention assumes the features (qi1, . . . , qiD) in qi, as well as
the features (kj1, . . . , qjD) in kj , are independent. Thus, the dot-product attention fail to capture the
correlations between these features, limiting its representation capacity and inhibit the performance
of transformers on practical tasks where there is no guarantee that independent features can learned
from complex data. One solution to capture correlations between features qi and kj is to introduce
covariance matrices into the formulation of the dot-product attention with the cost of significantly
increasing of the computational complexity. Also, choosing good covariance matrices is difficult.

1.2 Contribution
In this paper, we first establish a correspondence between self-attention and nonparametric kernel
regression. Under this new perspective of self-attention, we explain the limitation of the dot-product
self-attention that it may fail to capture correlations between the features in the query and key
vectors. We then leverage the generalized Fourier integral theorems, which can automatically capture
these correlations, and derive the generalized Fourier integral estimators for the nonparametric
regression problem. Using this new density estimator, we propose the FourierFormer, a novel
class of transformers that can capture correlations between features in the query and key vectors of
self-attention. In summary, our contribution is three-fold:
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1. We derive the formula of self-attention from solving a nonparametric kernel regression
problem, thus providing a nonparametric regression interpretation to study and further
develop self-attention.

2. We develop the generalized Fourier integral estimators for the nonparametric regression
problem and provide theoretical guarantees for these estimator.

3. We propose the FourierFormer whose attentions use the generalized Fourier integral es-
timators to capture more efficiently correlations between features in the query and key
vectors.

Finally, we empirically show that the FourierFormer attains significantly better accuracy than the
baseline transformer with the dot-product attention on a variety of tasks including the WikiText
language modeling and ImageNet image classsification. We also demonstrate in our experiments that
FourierFormer helps reduce the redundancy between attention heads.

Organization We structure this paper as follows: In Section 2, we present the correspondence
between self-attention and nonparametric kernel regression. In Section 3, we discuss the generalized
Fourier integral estimators and define the FourierFormer. We validate and empirically analyze the
advantages of FourierFormer in Section 4. We discuss related works in Section 5. The paper ends with
concluding remarks. Technical proofs and more experimental details are provided in the Appendix.

Notation For any N 2 N, we denote [N ] = {1, 2, . . . , N}. For any D � 1, L1(RD) denotes the
space of real-valued functions on RD that are integrable. For any two sequences {aN}N�1, {bN}N�1,
we denote aN = O(bN ) to mean that aN  CbN for all N � 1 where C is some universal constant.

2 A Nonparametric Regression Interpretation of Self-attention
In this section, we establish the connection between self-attention and nonparametric kernel regression.
In particular, we derive the self-attention in equation (2) as a nonparametric kernel regression in
which the key vectors kj and value vectors vj are training inputs and training targets, respectively,
while the query vectors qi and the output vectors hi form a set of new inputs and their corresponding
targets that need to be estimated, respectively, for i, j = 1, · · · , N . In general, we can view the
training set {kj ,vj} for j 2 [N ] to come from the following nonparametric regression model:

vj = f(kj) + "j , (3)

where "1, . . . , "N are independent noises such that E("j) = 0. Furthermore, we consider a random
design setting where the key vectors k1,k2, . . . ,kN are i.i.d. samples from the distribution that
admits p as density function. By an abuse of notation, we also denote p as the joint density where the
key and value vectors (v1,k1), . . . , (vN ,kN ) are i.i.d. samples from. Here, f is a true but unknown
function and we would like to estimate it.

Nadaraya–Watson estimator Our approach to estimate the function f is based on
Nadaraya–Watson’s nonparametric kernel regression approach [50]. In particular, from the nonpara-
metric regression model (3), we have E [vj |kj ] = f(kj) for all j 2 [N ]. Therefore, it is sufficient to
estimate the conditional distribution of the value vectors given the key vectors. Given the density
function p of the key vectors and the joint density p of the key and value vectors, for any pair of
vectors (v,k) generate from model (3) we have

E [v|k] =

Z

RD

v · p(v|k)dv =

Z
v · p(v,k)

p(k)
dv. (4)

The formulation (4) of the conditional expectation indicates that as long as we can estimate the joint
density function p(v,k) and the marginal density function p(v), we are able to obtain an estimation
for the conditional expectation and thus for the function f . This approach is widely known as
Nadaraya–Watson’s nonparametric kernel regression approach.

Kernel density estimator To estimate p(v,k) and p(k), we employ the kernel density estimation
approach [66, 57]. In particular, by using the isotropic Gaussian kernel with bandwidth �, we have
the following estimators of p(v,k) and p(k):

p̂�(v,k) =
1

N

NX

j=1

'�(v � vj)'�(k � kj), p̂�(k) =
1

N

NX

j=1

'�(k � kj), (5)
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where '�(.) is the isotropic multivariate Gaussian density function with diagonal covariance matrix
�
2
ID. Given the kernel density estimators (5), we obtain the following estimation of the function f :

bf�(k) =
Z

RD

v · p̂�(v,k)

p̂�(k)
dv =

Z

RD

v ·
PN

j=1 '�(v � vj)'�(k � kj)
PN

j=1 '�(k � kj)
dv

=

PN
j=1 '�(k � kj)

R
v · '�(v � vj)dv

PN
j=1 '�(k � kj)

=

PN
j=1 vj'�(k � kj)

PN
j=1 '�(k � kj)

. (6)

Connection between Self-Attention and nonparametric regression By plugging the query vectors
qi into the function bf� in equation (6), we obtain that

bf�(qi) =
PN

j vj exp
�
�kqi � kjk

2
/2�2

�

PN
j exp (�kqi � kjk

2/2�2)

=

PN
j vj exp

⇥
�
�
kqik2 + kkjk

2
�
/2�2

⇤
exp

�
qik>

j /�
2
�

PN
j exp [� (kqik2 + kkj0k

2) /2�2] exp
�
qik>

j /�
2
� . (7)

If we further assume that the keys kj are normalized, which is usually done in practice to stabilize
the training of transformers [71], the value of bf�(qi) in equation (6) then becomes

bf�(qi) =
PN

j vj exp
�
qik>

j /�
2
�

PN
j exp

�
qik>

j /�
2
� =

NX

j=1

softmax
⇣
q>
i kj/�

2
⌘
vj . (8)

When we choose �
2 =

p
D where D is the dimension of qi and kj , equation (8) matches equa-

tion (2) of self-attention, namely, bf�(qi) = hi. Thus, we have shown that self-attention performs
nonparametric regression using isotropic Gaussian kernels.

Remark 1 The assumption that kj is normalized is to recover the pairwise dot-product attention in
transformers. In general, this assumption is not necessary. In fact, the isotropic Gaussian kernel in
equation (7) is more desirable than the dot-product kernel in equation (8) of the pairwise dot-product
attention since the former is Lipschitz while the later is not Lipschitz [37]. The Lipschitz constraint
helps improve the robustness of the model [16, 81, 2] and stabilize the model training [48].

Limitation of Self-Attention From our nonparametric regression interpretation, self-attention is
derived from the use of isotropic Gaussian kernels for kernel density estimation and nonparametric
regression estimation, which may fail to capture the complex correlations between D features
in qi and kj [88, 33]. Using multivariate Gaussian kernels with dense covariance matrices can
help capture such correlations; however, choosing good covariance matrices is challenging and
inefficient [87, 73, 11]. In the following section, we discuss the Fourier integral estimator and its use
as a kernel for computing self-attention in order to overcome these limitations.

3 FourierFormer: Transformer via Generalized Fourier Integral Theorem
In the following, we introduce generalized integral theorems that are able to capture the complex
interactions among the features of the queries and keys. We then apply these theorems to density
estimation and nonparametric regression problems. We also establish the convergence rates of these
estimators. Given these density estimators, we introduce a novel family of transformers, named
FourierFormer, that integrates the generalized Fourier integral theorem into the dot-product attention
step of the standard transformer.

3.1 Generalized Fourier Integral Theorems and Their Applications
The Fourier integral theorem is a beautiful result in mathematics [92, 7] and has been recently used
in nonparametric mode clustering, deconvolution problem, and generative modeling [33]. It is a
combination of Fourier transform and Fourier inverse transform. In particular, for any function
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p 2 L1(RD), the Fourier integral theorem is given by

p(k) =
1

(2⇡)D

Z

RD

Z

RD

cos(s>(k � y))p(y)dyds

=
1

⇡D
lim

R!1

Z

RD

DY

j=1

sin(R(kj � yj))

(kj � yj)
p(y)dy, (9)

where k = (k1, . . . , kD),y = (y1, . . . , yD), s = (s1, . . . , sD), and R is the radius. The de-
tailed derivation of Equation (9) is in Appendix B.3. Equation (9) suggests that pR(k) :=
1

⇡D

R
RD

QD
j=1

sin(R(yj�kj))
(yj�kj)

p(y)dy can be used as an estimator of the function p.

Benefits of the Fourier integral over Gaussian kernel There are two important benefits of the
estimator pR: (i) it can automatically preserve the correlated structure lying within p even when p is
very complex and high dimensional function. It is in stark contrast to the standard kernel estimator
built based on multivariate Gaussian kernel where we need to choose good covariance matrix in the
multivariate Gaussian kernel to guarantee such estimator to work well. We note that as the standard
soft-max Transformer is constructed based on the multivariate Gaussian kernel, the issue of choosing
good covariance matrix in dot-product transformer is inevitable; (ii) The product of sinc kernels in
the estimator pR does not decay to a point mass when R ! 1. It is in stark difference from the
multivariate Gaussian kernel estimator, which converges to a point mass when the covariance matrix
goes to 0. It indicates that pR is a non-trivial estimator of the function p. Finally, detailed illustrations
of these benefits of the Fourier integral over Gaussian kernel in density estimation and nonparametric
regression problems, which we have just shown to have connection to the self-attention in transformer,
can be found in Section 8 in [33].

Generalized Fourier integral estimator Borrowing the above benefits of Fourier integral estimator
pR, in the paper we would like to consider a generalization of that estimator, named generalized
Fourier integral estimator, which is given by:

p
�
R(k) :=

R
D

AD

Z

RD

DY

j=1

�

✓
sin(R(yj � kj))

R(yj � kj)

◆
p(y)dy, (10)

where A :=
R
R �

⇣
sin(z)

z

⌘
dz and � : R ! R is a given function. When �(k) = k for all

k 2 RD, the generalized Fourier integral estimator p�R becomes the Fourier integral estimator pR.
Under appropriate conditions on the function � (see Theorem 1 in Section 3.1.1 and Theorem 3 in
Appendix C.1), the estimator p�R converges to the true function p, namely,

p(k) = lim
R!1

p
�
R(k) = lim

R!1

R
D

AD

Z

RD

DY

j=1

�

✓
sin(R(yj � kj))

R(yj � kj)

◆
p(y)dy. (11)

We name the above limit as generalized Fourier integral theorem. Furthermore, the estimator p�R also
inherits similar aforementioned benefits of the Fourier integral estimator pR. Therefore, we will use
the generalized Fourier integral theorem as a building block for constructing density estimators and
nonparametric regression estimators, which are crucial to develop the FourierFormer in Section 3.2.

3.1.1 Density Estimation via Generalized Fourier Integral Theorems
We first apply the generalized Fourier integral theorem to the density estimation problem. To ease the
presentation, we assume that k1,k2, . . . ,kN 2 RD are i.i.d. samples from a distribution admitting
density function p where D � 1 is the dimension. Inspired by the generalized Fourier integral
theorem, we obtain the following generalized Fourier density estimator p�N,R of p as follows:

p
�
N,R(k) :=

R
D

NAD

NX

i=1

DY

j=1

�

✓
sin(R(kj � kij))

R(kj � kij)

◆
, (12)

where A =
R
R �

⇣
sin(z)

z

⌘
dz and ki = (ki1, . . . , kiD) for all i 2 [N ]. To quantify the error between

the generalized Fourier density estimator p�n,R and the true density p, we utilize mean integrated
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squared errors (MISE) [91], which is given by:

MISE(p�N,R, p) :=

Z

RD

(p�N,R(k)� p(k))2dk. (13)

We start with the following bound on the MISE between p
�
n,R and p.

Theorem 1 Assume that
R
R �(sin(z)/z)zjdz = 0 for all j 2 [m] and

R
R |�(sin(z)/z)||z|m+1

dz <

1 for some m 2 N. Then, there exist universal constants C and C
0 depending on d and A such that

MISE(p�N,R, p) 
C

Rm+1
+

C
0
R

D

N
.

Proof of Theorem 1 is in Appendix D.1. A few comments are in order. First, by choosing R

to balance the bias and variance in the bound of MISE in Theorem 1, we have the optimal R as
R = O(N1/(D+m+1)). With that choice of R, the MISE rate of p�N,R is O(N�(m+1)/(D+m+1)).
Second, when �(z) = z

l for l � 4 and z 2 R, the assumptions in Theorem 1 are satisfied when
m = 1. Under this case, the MISE rate of p�N,R is O(N�2/(D+2)). However, these assumptions
do not satisfy when �(z) = z

l and l 2 {1, 2, 3}, which is due to the limitation of the current proof
technique of Theorem 1 that is based on Taylor expansion of the estimator p�n,R.

To address the limitation of the Taylor expansion technique, we utilize the Plancherel theorem in
Fourier analysis to establish the MISE rate of p�N,R when �(z) = z

l and l 2 {1, 2, 3}. The details of
the theoretical analyses for such setting are in Appendix C.

3.2 FourierFormer: Transformers with Fourier Attentions
Motivated by the preservation of the correlated structure of the function from the generalized Fourier
integral theorem as well as the theoretical guarantees of density estimators, in this section we adapt
the nonparametric regression interpretation of self-attention in Section 2 and propose the generalized
Fourier nonparametric regression estimator in Section 3.2.1. We also establish the convergence
properties of that estimator. Then, based on generalized Fourier nonparametric regression estimator,
we develop the Fourier Attention and its corresponding FourierFormer in Section 3.2.2.

3.2.1 Nonparametric Regression via Generalized Fourier Integral Theorem
We now discuss an application of the generalized Fourier integral theorems to the nonparametric
regression setting (3), namely, we assume that (v1,k1), . . . , (vN ,kN ) are i.i.d. samples from the
following nonparametric regression model:

vj = f(kj) + "j ,

where "1, . . . , "N are independent noises such that E("j) = 0 and the key vectors k1,k2, . . . ,kN are
i.i.d. samples from p. Given the generalized Fourier density estimator (12), following the argument in
Section 2, the Nadaraya–Watson estimator of the function f based on the generalized Fourier density
estimator is given by:

fN,R(k) :=

PN
i=1 vi

QD
j=1 �

⇣
sin(R(kj�kij))

R(kj�kij)

⌘

PN
i=1

QD
j=1 �

⇣
sin(R(kj�kij))

R(kj�kij)

⌘ . (14)

The main difference between the generalized Fourier nonparametric regression estimator fN,R in
equation (14) and the estimator bf� in equation (6) is that the estimator fN,R utilizes the generalized
Fourier density estimator to estimate the conditional distribution of the value vectors given the key
vectors instead of the isotropic Gaussian kernel density estimator as in bf�. As we highlighted in
Section 3, an important benefit of the generalized Fourier density estimator is that it can capture the
complex dependencies of the features of the value vectors and the key vectors while the Gaussian
kernel needs to have good covariance matrix to do that, which is computationally expensive in
practice.

We now have the following result establishing the mean square error (MSE) of fN,R when Dv = 1.
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Theorem 2 Assume that
R
R �

⇣
sin(z)

z

⌘
z
j
dz = 0 for all 1  j  m and

R
R

����
⇣

sin(z)
z

⌘��� |z|jdz < 1

for any m + 1  j  2m + 2 for some m 2 N. Then, for any k 2 RD, when Dv = 1 there exist
universal constants C1, C2, C3, C4 such that the following holds:

E
⇥
(fN,R(k)� f(k))2

⇤


✓
C1

R2(m+1)
+

(f(k) + C2)RD

N

◆��
p
2(k)J(R)

�
,

where J(R) = 1 �
1

p2(k)

⇣
C3

R2(m+1) +
C4R

d log(NR)
N

⌘
. Here, the outer expectation is taken with

respect to the key vectors k1, . . . ,kN and the noises "1, . . . , "N .

Proof of Theorem 2 is in Appendix D.3. A few comments with Theorem 2 are in order. First, by
choosing R to balance the bias and variance in the bound of the MSE of the nonparametric generalized
Fourier estimator fN,R, we have the optimal radius R as R = O(N

1
2(m+1)+D ). With that choice of

the optimal radius R, the rate of fN,R is O(N� 2(m+1)
D+2(m+1) ). Second, when �(z) = z

l for l � 6, the
assumption on the function � of Theorem 2 is satisfied with m = 1. Under this case, the rate of fN,R

becomes O(N� 4
D+4 ). In Appendix C, we also provide the rate of fN,R when �(z) = z

l for some
l  5, which includes the original Fourier integral theorem.

3.2.2 FourierFormer
Given the generalized Fourier nonparametric regression estimator fN,R in equation (14), by plugging
the query values q1, . . . , qN into that function, we obtain the following definition of the Fourier
attention:

Definition 1 (Fourier Attention) A Fourier attention is a multi-head attention that does nonpara-
metric regression using the generalized Fourier nonparametric regression estimator fN,R. The output
ĥi of the Fourier attention is then computed as

ĥi := fN,R(qi) =

PN
i=1 vi

QD
j=1 �

⇣
sin(R(qij�kij))

R(qij�kij)

⌘

PN
i=1

QD
j=1 �

⇣
sin(R(qij�kij))

R(qij�kij)

⌘ 8 i 2 [N ]. (15)

Given the Fourier Attention in Definition 1, we then give the definition of FourierFormer as follows.

Definition 2 (FourierFormer) A FourierFormer is a transformer that uses Fourier attention to
capture dependency between tokens in the input sequence and the correlation between features in
each token.

Remark 2 (The Nonnegativity of the Fourier Kernel) The density estimation via generalized
Fourier integral theorem in Section 3.1.1 does not require the generalized Fourier density esti-
mator to be nonnegative. However, empirically, we observe that negative density estimator can cause
instability in training the FourierFormer. Thus, in FourierFormer, we choose the function � to be a
nonnegative function to enforce the density estimator to be nonnegative. In particular, we choose � to
be power functions of the form �(x) = x

2m, where m is an positive integer. Note that when m = 1
and m = 2, the kernels in our generalized Fourier integral estimators are the well-known Fejer-de la
Vallee Poussin and Jackson-de la Vallee Poussin kernels [20].

3.3 An Efficient Implementation of the Fourier Attention
The Fourier kernel is implemented efficiently in the C++/CUDA extension developed by Pytorch
[58]. The idea is similar to the function cdist [58], which computes the p-norm distance between
each pair of the two collections of row vectors. In our case, we aim to compute kernel functions that
represent a Fourier attention in Definition 1. The core of this implementation is the following Fourier
metric function df :

df (qi,kj) =
DY

d=1

�

✓
sin(R(qid � kjd))

R(qid � kjd)

◆
.

We directly implement df as a torch.autograd.Function [58] in which we provide an efficient
way to compute forward and backward function (df and gradient of df ). While the implementation
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Table 1. Perplexity (PPL) on WikiText-103 of FourierFormers compared to the baselines. FourierForm-
ers achieve much better PPL than the baselines.

Method Valid PPL Test PPL

Baseline dot-product (small) 33.15 34.29
FourierFormer (small) 31.86 32.85

Baseline dot-product (medium) 27.90 29.60
FourierFormer (medium) 26.51 28.01

of the forward function is straight forward, the backward function is more tricky since we need to
optimize the code to compute the gradient of df w.r.t to variables q, k, and R all at once. We can
develop the backward function with highly parallel computation by exploiting GPU architecture and
utilizing the reduction technique. The computational time is comparable to function cdist; thus, our
FourierFormer implementation is as computationally time-efficient.

4 Experimental Results
In this section, we numerically justify the advantage of FourierFormer over the baseline dot-product
transformer on two large-scale tasks: language modeling on WikiText-103 [46] (Section 4.1) and
image classification on ImageNet [22, 67] (Section 4.2), time series classification on the UEA
benchmark [5] (Section 4.3), and reinforcement learning on the D4RL Benchmark [29] (Section 4.4),
and the machine translation on the IWSLT’ 14 De-En [10] (Section 4.5). We aim to show that: (i)
FourierFormer achieves better accuracy than the baseline transformer on a variety of practical tasks
with different data modalities, and (ii) FourierFormer helps reduce head redundancy compared to the
baseline transformer (Section 4.6).

Throughout the section, we compare FourierFormers with the baseline dot-product transformers of the
same configuration. In all experiments, we made the constant R in Fourier attention (see equation (16))
to be a learnable scalar and set choose the function �(x) = x

4 (see Remark 2). All of our results
are averaged over 5 runs with different seeds. The details on the models and training are provided in
Appendix A. Moreover, additional experiments results are provided in Appendix E. Our PyTorch code
with documentation can be found at https://github.com/minhtannguyen/FourierFormer_NeurIPS.

4.1 Language Modeling on WikiText-103
We report the validation and test perplexity (PPL) of FourierFormer versus the baseline transformer
with the dot-product attention in Table 1. FourierFormers attain much better PPL than the base-
lines in both small and medium configurations. For the small configuration, the improvements of
FourierFormer over the baseline are 1.29 PPL in validation and 1.44 PPL in test. For the medium
configuration, these improvements are 1.39 PPL in validation and 1.59 PPL in test. These results
suggest that the advantage of FourierFormer over the baseline dot-product transformer grows with
the model’s size. This meets our expectation because larger models has larger query and key di-
mensions, e.g. the language model with medium configuration in this experiment has the query
and key dimension of 256 versus 128 as in the language model with small configuration. Since the
advantage of FourierFormer results from the property that FourierFormer can capture correlation
between features in query and key vectors, the larger the query and key dimensions are, the more
advantage FourierFormer has.

4.2 Image Classification on ImageNet
In the Imagenet classification task, we illustrates the benefits of Fourierformers in different data
modalities. We summarize our models’ results in Table 2. Same as in the language modeling experi-
ment, for this image classification task, the Deit model equipped with FourierFormer significantly
outperforms the baseline Deit dot-product transformer [79] in both top-1 and top-5 accuracy. This
result suggests that the advantage of FourierFormer over the baseline dot-product transformer holds
across different data modalities.

4.3 UEA Time Series Classification
To evaluate Fourierformers on temporal sequences, we compare the accuracy of the our models and
the baseline softmax transformers trained on 10 datasets in the the UEA Time Series Classification
Archive benchmark [5]. We summarize our results in Table 3. We observe show that Fourierformers
outperforms softmax baselines in 7 out of 10 tasks and yields significantly better accuracy than the
softmax transformer on average, showing the our models benefits when trained on temporal data.
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Table 2. Top-1 and top-5 accuracy (%) of FourierFormer Deit vs. the baseline Deit with dot-product
attention. FourierFormer Deit outperforms the baseline in both top-1 and top-5 accuracy.

Method Top-1 Acc Top-5 Acc

Baseline DeiT 72.23 91.13
FourierFormer DeiT 73.25 91.66

Table 3. The FourierFormer vs. the baseline softmax transformer on the UEA Time Series Classification
Archive benchmark [5]. The FourierFormer outperforms the baseline. We also include the reported
results from [95] and [93] (in parentheses) in addition to our reproduced results. The experiment setups
and configurations for the baseline and our FourierFormer are the same as in [93] (for the PEMS-SF,
SelfRegulationSCP2, UWaveGestureLibrary datasets) and [95] (for other tasks).

Dataset/Model Baseline softmax FourierFormer

ETHANOLCONCENTRATION 32.08 (33.70) 36.12
FACEDETECTION 68.70 (68.10) 68.71
HANDWRITING 32.08 (30.50) 31.68
HEARTBEAT 75.77 (77.60) 76.42
JAPANESEVOWELS 99.46 (99.40) 99.37
PEMS-SF 82.66 (82.10) 86.70
SELFREGULATIONSCP1 91.46 (92.50) 91.70
SELFREGULATIONSCP2 54.72 (53.90) 55.37
SPOKENARABICDIGITS 99.33 (99.30) 99.00
UWAVEGESTURELIBRARY 84.45 (85.60) 86.66
AVERAGE ACCURACY 72.07 (72.27) 73.17

Table 4. The decision FourierFormer vs. the baseline decision transformer [12] on the continuous
control tasks from D4RL benchmark [29]. The decision FourierFormer yields significantly better results
than the baseline decision transformer on 8 out of 9 tasks and on average across tasks. Each experiment
result is averaged over 5 runs with different random seeds.We also include the reported results from [93]
(in parentheses) in addition to our reproduced results.

Environment/Model Baseline decision transformer Decision FourierFormer

MEDIUM-EXPERT

HALFCHEETAH 91.03 (83.80) 92.27
HOPPER 110.30 (104.40) 111.10
WALKER 108.70 (107.70) 108.90

MEDIUM-REPLAY

HALFCHEETAH 35.31 (34.6) 38.47
HOPPER 85.61 (79.70) 89.70
WALKER 66.11 (62.90) 63.19

MEDIUM

HALFCHEETAH 42.28 (42.40) 42.38
HOPPER 61.47 (64.20) 64.77
WALKER 68.68 (70.60) 70.42
AVG REWARD 74.39 (72.20) 75.69

4.4 Reinforcement learning on the D4RL benchmark
We also examine the performance of our Fourierformers in reinforcement learning. In Table 4, we
verify the advantage of decision FourierFormer over the baseline decision transformer [12] on the
continuous control tasks from the D4RL benchmark [29]. The decision FourierFormer is the decision
transformer with the Fourier attention instead of the softmax attention. On this benchmark, our
decision FourierFormer significantly outperforms the baseline decision transformer on 8 out of 9
tasks and on average across tasks. Each experiment result averaged over 5 runs with different random
seeds. We follow the architecture and training configuration from [93].

4.5 Machine Translation on IWSLT’ 14 De-En
We demonstrate the performance of Fourierformer on the IWSLT’ 14 De-En [10] neural machine trans-
lation task, which has different inputs’ the sequence lengths. Table 5 shows that the FourierFormer
achieves better BLUE scores than the softmax baseline.

4.6 FourierFormer Helps Reducing Head Redundancy
To study the diversity between attention heads, given the model trained for the WikiText-103 language
modeling task, we compute the average L2 distance between heads in each layer. We show the
layer-average mean and variance of distances between heads in Table 6. Results in Table 6 shows
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Table 5. The FourierFormer vs. the baseline softmax transformer on the IWSLT’14 De-En machine
translation benchmark [10]. The FourierFormer outperforms the baseline.

Method BLEU score

Baseline softmax 34.42

FourierFormer 34.68

Table 6. Layer-average mean and standard deviation of L2 distances between heads of FourierFormer
versus the baseline transformer with dot-product attention trained for the WikiText-103 language
modeling task. FourierFormer has greater L2 distance between heads than the baseline and thus captures
more diverse attention patterns.

Method Mean Variance

Baseline dot-product 6.20± 2.30 6.17± 2.30
FourierFormer 7.45± 2.50 7.37± 2.44

that FourierFormer obtains greater L2 distance between attention heads than the baseline transformer
with the dot-product attention and thus helps reduce the head redundancy. Note that we use the small
configuration as specified in Section 4.1 for both models.

5 Related Work
Interpretation of Attention Mechanism in Transformers Recent works have tried to gain an
understanding of transformer’s attention from different perspectives. [80] considers attention as
applying kernel smoother over the inputs. Extending this kernel approach, [35, 15, 52, 89, 54]
linearize the softmax kernel in dot-product attention and propose a family of efficient transformers
with linear computational and memory complexity. [9] then shows that these linear transformers
are comparable to a Petrov-Galerkin projection [64], suggesting that the softmax normalization in
the dot-product attention is sufficient but not necessary. Other works provide an understanding of
attention in transformers via ordinary/partial differential equation include [45, 69]. In addition, [51,
75, 30, 96, 53] relate attentions in transformers to a Gaussian mixture models. Several works also
connect the attention mechanism to graph-structured learning and message passing in graphical
models [90, 72, 39]. Our work focuses on deriving the connection between self-attention and
nonparametric kernel regression and exploring better regression estimator, such as the generalized
Fourier nonparametric regression estimator, to improve the performance of transformers.

Redundancy in Transformers [19, 47, 25] show that neurons and attention heads in the pre-trained
transformer are redundant and can be removed when applied on a downstream task. By studying
the contextualized embeddings in pre-trained networks, it has been demonstrated that the learned
representations from these redundant models are highly anisotropic [49, 26]. Furthermore, [70, 74, 86,
68] employ knowledge distillation and sparse approximation to enhance the efficiency of transformers.
Our FourierFormer is complementary to these methods and can be combined with them.

6 Concluding Remarks
In this paper, we establish the correspondence between the nonparametric kernel regression and the
self-attention in transformer. We then develop the generalized Fourier integral estimators and propose
the FourierFormer, a novel class of transformers that use the generalized Fourier integral estimators to
construct their attentions for efficiently capturing the correlations between features in the query and
key vectors. We theoretically prove the approximation guarantees of the generalized Fourier integral
estimators and empirically validate the advantage of FourierFormer over the baseline transformer
with the dot-product attention in terms of accuracy and head redundancy reduction. It is interesting
to incorporate robust kernels into the nonparametric regression framework of FourierFormer to
enhance the robustness of the model under data perturbation and adversarial attacks. A limitation of
FourierFormer is that it still has the same quadratic computational and memory complexity as the
baseline transformer with the dot-product attention. We leave the development of the linear version
of FourierFormer that achieves linear computational and memory complexity as future work. It is
worth noting that there is no potential negative societal impacts of FourierFormer.
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