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Abstract

Deep networks on 3D point clouds have achieved remarkable success in 3D classi-
fication, while they are vulnerable to geometry variations caused by inconsistent
data acquisition procedures. This results in a challenging 3D domain generalization
(3DDG) problem, that is to generalize a model trained on source domain to an
unseen target domain. Based on the observation that local geometric structures
are more generalizable than the whole shape, we propose to reduce the geome-
try shift by a generalizable part-based feature representation and design a novel
part-based domain generalization network (PDG) for 3D point cloud classification.
Specifically, we build a part-template feature space shared by source and target
domains. Shapes from distinct domains are first organized to part-level features
and then represented by part-template features. The transformed part-level features,
dubbed aligned part-based representations, are then aggregated by a part-based
feature aggregation module. To improve the robustness of the part-based represen-
tations, we further propose a contrastive learning framework upon part-based shape
representation. Experiments and ablation studies on 3DDA and 3DDG bench-
marks justify the efficacy of the proposed approach for domain generalization,
compared with the previous state-of-the-art methods. Our code will be available on
http://github.com/weixmath/PDG.

1 Introduction

The 3D shape understanding and reasoning play a critical role in wide applications such as automatic
drive, archaeology, virtual reality / augmented reality, etc. Point cloud is a popular representation of
3D shape attributed to its simpleness and effectiveness. Recently, with the thriving of deep learning,
numerous deep architectures [1–10] have been proposed for 3D point cloud analysis. Although these
methods have achieved impressive results on the 3D shape classification task, all of them strongly
rely on the i.i.d assumption on the source and target data but ignore the out-of-distribution situation
in real-world practice. For example, the performance of these methods drops dramatically when
trained on CAD datasets [11, 12] and tested on real scanned datasets [13, 14]. Therefore, it is crucial
and valuable to investigate how to learn a 3D classification model that generalizes well on a related
test domain with domain shift to the training domain [15]. Domain shift refers to the existence of
significant divergence between the distributions of the training and test datasets [15]. The domain
shift may degrade the performance of network trained on a training dataset when generalizing to the
test dataset. Domain generalization methods for improving domain robustness of deep network have
been extensively investigated for 2D images [16–21]. However, little work [22, 23] addresses the
domain generalization (DG) problem for point cloud deep networks. For point clouds, the major
cause of domain shift is the geometry variations generated by inconsistent data collection processes,
e.g., the realistic sensor noises, the non-uniform density of point clouds, and self-occlusion. These
domain shifts specific for 3D point clouds hinder the idea that directly adopts 2D image-oriented
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DG methods to point clouds, and this inspires us to design a 3D domain generalization model for
addressing the domain shifts of point clouds.

Part-template spaceSource data Target data

Figure 1: The 3D point clouds in source domain (i.e., source
data on the left) and target domain (i.e., target data having
missing points on the right) can be both recognized as “chair”
because they can be represented by the shared parts in the
part-template space of “chair” category.

To improve the model robustness to
geometry variations, a straightforward
way is to simulate geometry shift dur-
ing training. MetaSets [22] designs
three point transformation tasks of sim-
ulating occlusions, missing parts and
changes in scanning density, which
have been proven to be effective as data
augmentations. They further learn fea-
ture representations by meta-learning
using these tasks. Instead of improv-
ing model’s generalization ability using
globally pooled point cloud features, in
this paper, we tackle the domain gener-
alization problem for 3D point clouds
based on our observation that the local
geometric structures of point clouds are more likely to be shared across distinct domains, therefore
being more generalizable to the geometry variations.

Parsing objects into parts is crucial for humans to understand the world. For the task of object
recognition, the visual system of people decomposes shapes into parts and recognizes objects based
on the description and spatial relations of parts [24]. It is hard for machines to understand the chair
on the right of Fig. 1 when it overfits on a set of chairs similar to the left one in Fig. 1. However,
humans can easily interpret them by decomposing two chairs and inferring their labels from some
similar parts (e.g., legs and a plain), even when having broken parts of the right chair in Fig. 1. This
motivation seems to be intuitive, and we will provide more experimental evidence in Sect. 2. Based
on this observation, we are interested in learning generalizable representation of 3D point clouds at
the part-level instead of the global shape-level.

Along this idea, in this work, we propose a novel part-based domain generalization network for
3D point cloud classification. We build a part-template feature space that is shared to source and
target domains. Shapes from distinct domains are first organized as part-level features and then
aligned to part-template features by a cross attention mechanism. Aligned part-based features are then
aggregated by a part-based feature aggregation module for each point cloud. To improve the robustness
of part-based representation, we further propose a contrastive learning framework to enforce that the
feature representations of a point cloud under different transformations are consistent in part-level
and shape-level. Extensive experiments conducted on 3DDA [25] and 3DDG [22] benchmarks
demonstrate the effectiveness of our approach, and our method outperforms the compared methods
by a notable margin.

Our contribution can be summarized in three folds. First, we empirically observe that the geometry
shift induced domain gap of point clouds could be reduced by part-level representation, thus we
propose to learn part-based 3D feature representation to improve the generalization ability of point
cloud classification models. Second, we propose a novel part-based domain generalization network for
3D point cloud classification. A contrastive learning framework upon part-based shape representation
is further designed to improve the robustness of learned representations. Third, our method achieves
the best performance by comparisons on 3D benchmarks for domain generalization.

2 Reducing Geometry Shift by Part-based Feature Representation

Problem definition. Let X and Y be input and label spaces. A domain is defined by (D, gD) where
D is a probability distribution on X and gD : X → Y is a function mapping input to its ground-truth
label. The objective of domain generalization is to train a classifier F on the source domain DS

that predicts well on target domain DT when the target samples are not available during training. In
general, we assume the label space is shared by source and target domains.

In 3D domain generalization, the input is a point cloud P ∈ RN×3, where N is the number of
points. We consider a point cloud classification model F composed of a feature extractor fθ :
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Figure 2: (a) A-distance between source and target domain features (shape-level, 512-points-part-
level, 256-points-part-level) for each class. (b) Discrimination ability of shape-level features and
part-level features measured by classification accuracy on source and target domains.

P → Z and a classifier Cψ : F → RC , where Z ∈ RN×d is point-wise features, F ∈ Rd

is a global representation of P , and C is the number of classes. The final prediction is given
by ŷ = softmax(Cψ(pooling(fθ(P )))), where the pooling operation is determined by F . The
parameters (θ, ψ) are optimized with respect to the cross entropy loss L(y, ŷ) = −

∑C
i=1 yi · log(ŷi).

Directly minimizing the cross entropy loss L will produce a discriminative network in the source
domain, however, it may overfit the source domain and degeneralize on the target domain.

Comparison of generalization and discrimination abilities of shape-level and part-level features.
To understand a shape, people may process it in various granularities. The fine-grained parts represent
local geometric structures while coarsen parts contain more global semantic information. Thus global
shape-level features may be more discriminative than part-level features. However, this advantage
drops sharply when encountering a large distribution discrepancy between training and test domains
for shape-level features. On the contrary, part-level features encode the local geometric structures
which are shared across different shapes in distinct distributions, while they are short of semantic
information. We next experimentally verify the above analysis. We use A-distance as a measure to
evaluate distribution discrepancy [26, 27]. It is defined as distA = 2(1− 2ϵ), where ϵ is the test error
of a classifier trained to discriminate the source and the target domain data. We train a PointNet [5]
on source domains M (ModelNet dataset [12]) and test on target domain SO (ScanObjectNN [14]).
We first get point-wise features Z ∈ RN×d for each shape that has N points. Then point-wise
features are max-pooled on all points to produce a global shape-level feature Zs. We also split each
shape into some overlapped parts in distinct scales, i.e., 16 parts (256 points in each part) and 8
parts (512 points in each part) and max-pooled on each part to get part-level features {Zspi }16i=1 and
{Zlpi }8i=1. Fig. 2 (a) shows the A-distance on each class of M → SO with shape-level features
Zs and part-level features {Zspi }16i=1 and {Zlpi }8i=1. We observe that distA of part-level features is
smaller than distA of shape-level features and distA decreases as the size of parts becomes smaller,
indicating that part-level features are able to better reduce domain gap. We also train a linear SVM
on source domain training data and test on source domain test data and target domain test data to
evaluate the discrimination abilities. For part-level features, the prediction of a shape is by voting on
the predictions of parts. As shown in Fig. 2 (b), the discrimination abilities of features are weakened
when the scale decreases. Though part-level features could reduce the geometry shift between source
and target domains, aggregating them simply by voting could not improve the discrimination ability.

Based on the above observations, we are inspired to represent a point cloud by part-level features
to reduce the domain discrepancy. We build a part-template feature space that is shared with
source and target domains. Part-level features in distinct domains are aligned to the part-template
features, resulting in part-based feature representations with better generalization. To improve the
discrimination of the part-level features, the features of parts are fused with a part-based feature
aggregation module to achieve a global representation for each point cloud.

3 Learning Part-based Representation of Point Clouds

We first introduce our proposed part-based representation of point clouds, taken as the main operation
of our part-based domain generalization network for 3D point cloud classification presented in Sect. 4.
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Figure 3: Illustration of our part-based feature representation for point clouds. Given a point cloud
P ∈ RN×3 from source or target domain, it is first processed by feature encoder and organized to
part-level features ZQ = {ZQi}Mi=1 ∈ RM×d. Then part-level features are transformed to aligned
part-based features FQ = {FQi

}Mi=1 by aligning them to part-template features H = {Hi}NH
i=1. Then

they are aggregated to a global representation F by the part-based feature aggregation module.

The major objective of this representation is to transform part-level features of shapes in distinct
domains into a common space, i.e., part-template feature space. All these part-level features are
aligned to a set of learnable part-template features in the part-template feature space. The transformed
features are dubbed as the aligned part-based representations of point clouds.

As shown in Fig 3, taking two point clouds from source and target domains, they are first organized to
part-level features, and then transformed to aligned part-based representations in part-template feature
space by cross-attention. In order to aggregate the aligned part-based representations to a global
representation, we further propose a part-based feature aggregation module to aggregate features
according to their importance.

3.1 From point clouds to part-level features

Given a point cloud P = {x1, x2, ..., xN} ∈ RN×3, point-wise features Z = {z1, z2, ..., zN} ∈
RN×d are first extracted by a feature extractor fθ, i.e., Z = fθ(P ; θf ). We represent a point cloud by
a union ofM overlapped parts P = Q1∪Q2∪...∪QM , where each partQi = {xi1, ..., xik} ∈ Rk×3

is defined as a center point xi1 with its k nearest neighbor points {xi1, ..., xik}. We use farthest point
sampling (FPS) to sample M center points for constructing M parts since FPS has better coverage of
the entire point cloud. For each part Qi, corresponding part-level feature ZQi

∈ Rd is derived by
maxpooling on point-wise features of part Qi:

ZQi
= maxpooling{zi1, ..., zik}. (1)

3.2 Representing part-level features using part-template features

As discussed in Sect. 2, part-level features reflect the local geometric structures of 3D shapes, which
could reduce geometry shifts more effectively. Thus we are inspired to use this general information to
improve the generalization ability of the classification model. Given part-level features in the source
domain, part-level geometry priors, modeled as part-template features, are extracted from the source
domain and provide references for the target domain. Specifically, we could construct a part-template
space H , where H = {Hi}NH

i=1 ∈ RNH×d is a set of part-template features. H serves as a basis set
and each basis vector could encode a local geometric prior. Our proposed part-template features are
similar to the dictionary of local geometric priors and each input part-level feature is represented
as a combination of them. A common choice to get a dictionary is to apply k-means clustering on
part-level features of the entire training data in each training step. However, the dictionary computed
by k-means can only reflect local geometric prior in the current step. Instead, we propose to use
a set of learnable part-template features to represent various shapes in the whole training process,
which can be updated automatically by gradient propagation. Leveraging this simple yet effective
representation, we could capture rich part-level geometry priors.
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Given part-level features ZQ = {ZQi}Mi=1 ∈ RM×d and part-template features H = {Hi}NH
i=1 ∈

RNH×d, we want to find a feature transformation T : RNH×d → RM×d for representing part-level
features with the part-template features, defined as

FQi
≜ T (H)i =

∑
j

TijHj ,∀i = 1, ...,M, (2)

where T ∈ RM×NH is a linear transform map implementing T and FQ ≜ {FQi
}Mi=1 is transformed

features, dubbed aligned part-based features. Briefly speaking, each aligned part-based feature is a
linear combination of part-template features, and the combination weight is decided by the relation
between part-level features and part-template features.

Recently, some researchers [28–31] have adopted cross-attention to align features from different
modalities. [32, 33] further apply cross attention module to solve the unsupervised domain adaptation
problem based on its great power in feature alignment and robustness to noises. In our case, we use
cross-attention module to learn dependencies between part-level features and part-template features.
The transformation map T is defined as

T = softmax(
ZQH

T

√
d

), (3)

where the softmax function is applied on the rows of the scaled similarity matrix. The i-th row of T
is a normalized similarity vector between part-level feature ZQi and all the part-template features
{Hi}NH

i=1. Part-template features which are more similar to part-level feature ZQi
will contribute

more to the combination, while the less similar part-template features make little impact.

Optimal transport [34] is another possible approach to distribution transport and alignment. We can
use optimal transport to learn T for transporting the part-template features such that the transported
feature distribution is the same as that of part-level feature distribution. We conduct the experiment
that PDG with OT for feature alignment in the ablation study. In this work, we employ cross-attention
for aligning part-level features to part-template features because of its better performance and lower
computation cost.

Once the T is derived, the corresponding aligned part-based features are derived by FQ = TH . For
each part-level feature ZQi

, we can observe that the aligned part-based feature FQi
is a weighted

sum of part-template features {Hi}NH
i=1.

3.3 Part-level features aggregation

After getting a set of aligned part-based features, a global representation is often obtained by
pooling these features. However, various parts of a shape may have different contributions for shape
recognition. Given the part-level representation FQ = {FQi

}Mi=1, we define the score of each part as

si = max(S(FQi
; θPs

)), (4)

for i = 1, ...,M . S(·) is a part score module with parameters θPs
, outputting the vector of prob-

abilities of a part belonging to C shape classes, and max operation returns the maximal value of
this vector. Ps(·) is implemented as the same structure as classifier Cψ(·). In a word, the score si
indicates the confidence score for classification of part FQi

. Then each part is weighted by this part
score, and the global representation of shape is derived by

F = maxpooling{s1 · FQ1
, ..., sM · FQM

}. (5)

4 Contrastive Learning Upon Part-based Shape Representation

We build a contrastive learning framework upon part-based shape representation to improve the
robustness of the learned aligned part-based features. The main idea is to maximize the agreement
between a same shape under different augmentations in part-level and shape-level via contrastive loss.
We randomly sample a mini-batch of N point clouds {Pk}Nk=1 and the contrastive learning task is
defined on 2N point clouds which are the pairs of samples under different augmentations. We use
three point cloud transformations including non-uniform density, dropping, and self-occlusion. For
more details, please refer to [22]. For each point cloud Pk, we denote P̃k as the same point cloud with
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another augmentation. Augmented shapes are encoded to derive the aligned part-based representation
FQ ∈ R2N×M×d and global representation F ∈ R2N×d. Following [35], they are further processed
by a projection head Proj(·), resulting in F̂Q and F̂. Proj(·) is implemented as a two-layer MLPs
with 4d hidden dimensions. We adopt the contrastive loss as the form of InfoNCE [36], which
learns representation by attracting positive samples and dispelling negative samples. The shape-level
contrastive loss is defined as a supervised contrastive loss [37]:

LCshape =
2N∑
k=1

log

∑
F̂+

k
exp(sim(F̂k · F̂+

k )/τ)∑
F̂+

k
exp(sim(F̂k · F̂+

k )/τ) +
∑

F̂−
k
exp(sim(F̂k · F̂−

k )/τ)
, (6)

where sim(·, ·) denotes the cosine similarity of two inputs, and τ is a temperature hyper-parameter,
empirically set to 0.07. F̂k is the anchor, F̂+

k denotes F̂k’s positively paired sample (excluding anchor
itself) with the same label as F̂k, and the negative sample F̂−

k is with different label to F̂k. By this
shape-level contrastive loss, the global representation of same class under different transformations
will cluster together while those from different classes will be pushed apart.

Part-level contrastive loss LCpart is defined in a self-supervised form:

LCpart =
2N∑
k

M∑
i

log
exp(sim(F̂Qk,i

· F̂+
Qk,i

)/τ)

exp(sim(F̂Qk,i
· F̂+

Qk,i
)/τ) +

∑
F̂−

Qk,i

exp(sim(F̂Qk,i
· F̂−

Qk,i
)/τ)

. (7)

For the i-th part of point cloud Pk, whose aligned part-based feature is F̂Qk,i
, the positive sample

F̂+
Qk,i

is the aligned part-based feature of i-th part of P̃k. The positive part has the same center
point as the anchor part. The negative samples are the other aligned part-based features in this batch.
Part-level contrastive loss LCpart encourages learned aligned part-based feature of a part of shape
under different local transformations to be consistent in the feature space.

By the contrastive tasks in both part-level and shape-level, aligned part-based representations are
robust to varying local point transformations and the combination of these aligned part-based repre-
sentations could be discriminative for shape classification.

4.1 Overall loss

The overall training loss consists of shape loss Lshape, part loss Lpart, shape-level contrastive loss
LCshape, and part-level contrastive loss LCpart. Given global shape representation F, it is sent to a
classifier Cψ followed by a softmax layer. The total training loss is

L = Lshape(Cψ(F), y) + λp

M∑
i=1

Lpart(S(FQi), y) + λC(LCshape + LCpart), (8)

where y is the class label and Lshape is a cross entropy loss based on global shape representation F.
Lpart is the cross-entropy loss defined on aligned part-based feature S(FQi). Lp enforces the part
score module S(·) could discriminate the shape category based on the aligned part-based features.

5 Experiments

5.1 Datasets

Sim-to-Real [22]. Real-to-Sim [22] is a 3DDG benchmark consisting of three domains:
ModelNet [12], ShapeNet [11] and ScanObjectNN [14]. (a) ModelNet (M ) contains 12,311
clean 3D CAD models from 40 categories, with 9,483 training models and 2,468 test models.
(b) ShapeNet (S) contains 51,162 3D models categorized into 55 classes and its objects have
larger structure variances compared with ModelNet. (c) ScanObjectNN (SO) is a recently
proposed real-world 3D object classification dataset with scanned indoor scene data. It contains
2,902 object instances from 15 categories. ScanObjectNN offers more practical challenges
including background occurrence, object partiality, and different deformation variants. Two
versions of ScanObjectNN, respectively with background (ScanObjectNN-BG, denoted as
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SOB) and with hardest perturbations (ScanObjectNN-T50-RS, denotes as SOH ), are also
utilized for testing. Then six synthetic-to-real point cloud domain generalization tasks are built.
M → SO, M → SOB , and M → SOH refer to training network on ModelNet and test on
ScanObjectNN, ScanObjectNN-BG, and ScanObjectNN-T50-RS where they have 11 shared
classes, while S → SO, S → SOB and S → SOH are defined as generalizing network from
ShapeNet to ScanObjectNN, ScanObjectNN-BG, and ScanObjectNN-T50-RS within 9 shared classes.

We follow the data preparation and experiment setting in [22]. Specifically, we use the official
training and test split strategy for each dataset. Each point cloud from three domains contains 2,048
points and is normalized within a unit ball. We report two versions of results, i.e., “Best” that is
the best achievable results among the epochs in training a network, while “Last five” indicating
the average test results of the last five epochs of the training procedure. Note that the reported
“Best” is unreasonable since the labels of test data are inaccessible, but it provides an upper-bound
of performance for a domain generalization approach. Thus we mainly report the “Last five” as
the comparison measure in this paper. We calculate the average of “Last five” of four DG tasks to
evaluate the performance of methods. We conduct each experiment three times and report the average
top-1 classification accuracy in tables.

PointDA [25]. PointDA [25] dataset is a widely used point cloud domain adaptation benchmark,
which collects shapes of 10 shared classes from ModelNet [12] (M), ShapeNet [11] (S), and Scan-
Net [13] (S⋆). Six point cloud domain adaptation tasks including M → S, M → S⋆, S → M ,
S → S⋆, S⋆ → M , and S⋆ → S are built upon PointDA [25]. We follow the data preparation,
dataset splitting, experiment setting in [25]. Each point cloud in PointDA [25] has 1,024 points. We
implement our method on this benchmark under the setting of domain generalization.

5.2 Compared methods

For Sim-to-Real, we first compare our method with three state-of-the-art point classification methods
including PointNet [5], DGCNN [6] and PointMLP [4]. We find that these methods achieve better
results than the results reported in [22], if a random jittering [5] is performed on the training data
which is widely used in 3D classification model training. We further compare our method with state-
of-the-art 3DDG method MetaSets [22]. We report their results by directly running their published
codes of http://github.com/thuml/Metasets.

For PointDA [25], we compare PDG with current 3D domain adaptation methods which use target
domain data in training procedure, including DANN [38], PointDAN [25], RS [39], DefRec +
PCM [40], GAST [41] and GLRV [42]. We also compare it with state-of-the-art 3DDG method, i.e.,
MetaSets [22], in which target domain data is inaccessible during training.

5.3 Implementation details

For our PDG, we adopt PointNet and DGCNN as backbones of feature extractor fθ and classifier
Cψ . For fair comparison, we do not change the architecture of backbone and train all methods except
MetaSets for 160 epochs with batch-size 32 on one NVIDIA V100 GPU. MetaSets is trained for 200
epochs with batch-size 32 on two NVIDIA V100 GPUs. We use Adam as the optimizer. The initial
learning rate and weight decay are 10−3, 10−4. The learning rate reduced to 10−5 following a cosine
quarter-cycle. The part number M , points number k in each part, and the number of part-template
features NH are respectively set to 8, 512, 384. λp and λC in training loss are 0.05 and 0.01.

5.4 Experimental Results

Comparison with single domain state-of-the-art methods. As shown in Table 1, PDG with
DGCNN as backbone outperforms previous state-of-the-art 3D classification methods by more
than 5.5% in average accuracy of four tasks. PointMLP [4] is a powerful method and achieves
state-of-the-art results on ModelNet40 (94.1%) and ScanObjectNN (83.9%) for single domain
point cloud classification, as shown in their paper. Compared with it, our PDG (DGCNN) shows
better generalization ability and outperforms them by 5.5%. Compared with PointNet [5] and
DGCNN [6], PDG with PointNet and DGCNN as backbone networks surpass them on every 3DDG
task, improving average accuracy by 4.2% and 6.2% respectively. We also find that DGCNN [6]
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Table 1: Test accuracy (in %) on Real-to-Sim dataset. We report the “Last five” of each methods as
main results for comparison. “Best” of each methods are also presented in bracket.

Method M → SO M → SOB M → SOH S → SO S → SOB S → SOH Avg

PointNet [5] 59.8 (61.5) 51.5 (53.8) 50.0 (51.9) 55.9 (57.4) 51.0 (54.0) 49.0 (50.9) 52.9 (54.9)
DGCNN [6] 60.2 (62.3) 54.7 (58.5) 49.2 (51.1) 54.9 (59.0) 51.9 (54.3) 47.2 (54.0) 53.0 (56.5)
PointMLP [4] 59.0 (62.5) 58.6 (59.4) 47.9 (51.1) 53.7 (57.3) 55.3 (56.8) 47.4 (50.9) 53.7 (56.3)
MetaSets (P) [22] 60.3 (66.3) 52.4 (57.5) 47.4 (54.4) 51.8 (55.3) 44.3 (50.3) 45.6 (50.0) 50.3 (55.6)
MetaSets (D) [22] 58.4 (64.2) 59.3 (60.6) 48.3 (53.1) 49.8 (60.3) 47.4 (57.8) 42.7 (50.8) 51.0 (57.8)

PDG (P) 67.6 (69.4) 58.5 (61.1) 56.6 (57.2) 57.3 (61.8) 51.3 (55.5) 51.3 (53.9) 57.1 (59.8)
PDG (D) 65.3 (68.8) 65.4 (68.0) 55.2 (58.0) 59.1 (64.3) 59.3 (64.3) 51.0 (56.6) 59.2 (63.3)

Table 2: Classification accuracy (in %) of various 3DDA and 3DDG methods on PointDA-10 dataset.
Results of methods which do not use target data during training are in bold.

Method DA / DG M → S M → S⋆ S → M S → S⋆ S⋆ → M S⋆ → S Average

Supervised - 93.9 78.4 96.2 78.4 96.2 93.9 89.5
w/o Adaptation - 83.3 43.8 75.5 42.5 63.8 64.2 62.2

DANN [38]

DA

74.8 42.1 57.5 50.9 43.7 71.6 56.8
PointDAN [25] 83.9 44.8 63.3 45.7 43.6 56.4 56.3
RS [39] 79.9 46.7 75.2 51.4 71.8 71.2 66.0
DefRec + PCM [40] 81.7 51.8 78.6 54.5 73.7 71.1 68.6
GAST [41] 84.8 59.8 80.8 56.7 81.1 74.9 73.0
GLRV [42] 85.4 60.4 78.8 57.7 77.8 76.2 72.7

MetaSets [22] DG 86.0 52.3 67.3 42.1 69.8 69.5 64.5
PDG (Ours) 85.6 57.9 73.1 50.0 70.3 66.3 67.2

outperforms PointNet [5] by only 0.1% while PDG (DGCNN) outperforms PDG (PointNet) by 2.1%.
This demonstrates that, given the part-level features better encoding local geometric structures, our
aligned part-based representations could further improve the robustness and discrimination ability.
These significant performance gains (4.2% and 6.2%) of PDG over the baseline prove the effectiveness
of our designed part-based domain generalization network, which improves both the generalization
and discrimination abilities of point cloud classification models.

Comparison with 3DDA and 3DDG methods. For Sim-to-Real [22], MetaSets [22] is a state-
of-the-art 3D domain generalization model which meta-learns point cloud representations from
some point transformation tasks. As shown in Table 1, with the same backbone network PointNet
and data augmentation, PDG outperforms MetaSets by 6.8%. When equipped with DGCNN, the
improvement is 8.2%. In contrast with MetaSets which aims to improve the generalizable ability of
shape-level features, our proposed PDG reduces geometry shift more effectively by the part-based
feature representation.

For PointDA [25], from Table 2, PDG improves the baseline methods by 5.0% in the average accuracy
of all tasks and outperforms 3DDG method Metasets [22] by 2.7%. Specifically, PDG beats MetaSets
in four tasks M → S⋆, S →M , S → S⋆, and S⋆ →M . For two synthetic-to-real tasks M → S⋆

and S → S⋆, the improvements are 5.6% and 7.9%. We can also find that PDG exceeds some 3DDA
methods including DANN [38], PointDAN [25], and RS [39].

5.5 Ablation study

In this section, we take a closer look at the effects of components of our network, including cross-
attention module for feature alignment, part-level aggregation module and contrastive learning
framework upon part-based shape representation. We choose PointNet [5] as backbone network
referred as “baseline” and experiments are conducted on M → SO task on Real-to-Sim [22] dataset.
We also investigate the effects of the scale of the parts and visualize the both part-level features
and shape-level features of the baseline and our PDG. Results of various architectures of PDG are
presented in Table 3.
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(a) Shape-level (PointNet) (b) Shape-level (PDG) (c) Part-level (PointNet) (d) Part-level (PDG)

Figure 4: (a)(b) The t-SNE [43] visualizations of shape-level features of PointNet and our PDG
(PointNet as backbone). (c)(d) The part-level features of PointNet, and aligned part-based features of
our PDG (PointNet as backbone). In each figure, the features of “chair” and “sofa” are denoted as “•”
and “+” respectively, while data from source (M ) and target (S⋆) are in blue and red.

Table 3: Results (in %) of variants of PDG
for shape classification on ModelNet to
ScanobjectNN with different architectures.

Method Last five Best

baseline 59.8 61.5
PDG (w/o CL) 66.4 68.1
PDG (w/o SCL) 67.1 69.3
PDG-max 65.3 67.8
PDG-avg 65.4 69.0
PDG-OT 65.2 65.7
PDG-16parts 65.4 67.1

PDG 67.6 69.4

Effectiveness of each component. We first replace
cross-attention module with optimal transport to find
the transformation map T for feature alignment as
discussed in Sect. 3.2. Table 3 shows the results of
PDG employing optimal transport for feature align-
ment, which is denoted as PDG-OT. Compared with
PDG-OT, PDG with cross-attention improves the per-
formance by 2.4%. As mentioned in Sect. 3.3, we
design a part-based feature aggregation module to ag-
gregate the aligned part-based features according to
their confidence score for classification. We compare it
with two baseline pooling operations, i.e., max-pooling
and average-pooling. As shown in Table 1, PDG with
part-level aggregation improves PDG-max and PDG-
avg by more than 2.2%. This shows that our part-based feature aggregation module is a superior way
to aggregate the aligned part-based features and brings a significant performance boost to our network.
We finally examine the effects of the contrastive learning framework defined in Sect. 4. As shown in
Table 3, with the contrastive learning framework, our method achieves better results than PDG (w/o
CL) with 1.2% improvement. We also remove the shape-level contrastive loss in PDG, denoted as
PDG (w/o SCL), which performs slightly worse than PDG by 0.5% (0.1%), while still outperforming
baseline by 7.3% (7.8%). This proves the effectiveness of our contrastive learning framework to
improve the robustness of the aligned part-based representations and the major performance gain of
PDG is derived from the design of part-based feature representation.

Selection the scale of part. As discussed in Sect. 2, the scale of the part-level features will influence
the generalization and discrimination abilities. Specifically, the discrimination ability of part-level
features decreases when the scale reduces, while the generalization ability improves. We show the
results of PDG with 8 parts (512 points in each part) and 16 parts (256 points in each part) in Table 3,
PDG with 8 parts (i.e., PDG in Table 3) outperforms PDG-16parts by 2.2%. Thus we choose 8 parts
with 512 points in each part for a better balance of discrimination and generalization abilities.

Feature visualization and analysis. We first visualize the learned shape-level and part-level
features of PointNet [5] of class “chair” and “sofa” from source domain (M ) and target domain (S⋆)
in Fig. 4. We can observe that in Fig. 4 (a), the shape-level features in source domain display a
high inter-class variance, while the features of “sofa” in target domain are closer to the features of
“chair” in source domain due to the geometry shift between two domain data. This implies better
discrimination ability of shape-level representation in source domain while worse in target domain.
Conversely, the part-level features of distinct domains and classes cluster together as shown in Fig. 4
(c), confirming our idea that the local geometric structures represented by part-level features are
shared across different domains and classes and could reduce geometry shift effectively. However,
the less discriminative part-level features are hard to be aggregated into a global representation for
classification. Our PGD solves this problem effectively as shown in Fig. 4 (b)(d). Our aligned
part-based representations in Fig. 4 (d) improve the discrimination ability of part-level features while
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keeping the generalization ability. And in Fig. 4 (b), we observe both lower inter-domain variance and
higher inter-class variance in the global representations of PDG compared with shape-level features
of PointNet in Fig. 4 (a), resulting in the improvement in classification accuracy (67.6% vs. 59.8%).

6 Related Work

Deep classification on point clouds. The early work PointNet [5] processes points independently
using MLP and aggregates them by a max-pooling to obtain the permutation invariant representation,
ignoring the vital local geometric structure of point clouds. DGCNN [6] models point clouds
as dynamical graphs and proposes a dynamic edge convolution for classification of point clouds.
Succeeding methods [1–4, 6–10] achieve improved performance for 3D shape recognition. However,
all these methods assume that the training and test data are from the same domain thus can be weak
at generalizing learned representations to new domains. A method that could improve the domain
generalization ability of point cloud representation is desirable.

Domain Generalization and Adaptation for Point Cloud classification. How to represent 3D
point clouds in different domains is an old but unsolved problem. [44] is one of the first methods
to explore the 3D domain adaptation problem, which leverages synthetic scans of 3D scenes from
Google 3D Warehouse to train an object detection system for 3D point clouds real-scan data. [45]
and [46] applied hough transform to the problem of robust 3D shape feature learning and evaluated
on point cloud classification and retrieval tasks of 3D domain generalization problem. [47] factored
low-dimensional deformations and pose variations of the 3d shapes and recognized them in the
scanned cluttered indoor scene, which is also a 3D domain generalization problem. [48] focused on
the CAD-to-scan retrieval task of the 3D domain generalization problem and introduced a method
called CAD-Deform to obtain accurate CAD-to-scan fits by non-rigidly deforming retrieved CAD
models. Recently, domain adaptation or generalization problem on deep point cloud classification
network [22, 25, 40–42, 49–52] has drawn more attention. PointDAN [25] proposes a 3D domain
adaptation network for point cloud classification by minimizing an MMD loss to align local features
across domains. [40–42, 49–52] further improve the results by designing a series of self-training
tasks. However, all these methods are designed for 3D domain adaptation with known target domain
data distribution. MetaSets [22] explores 3D domain generalization problem that the target domain
data is inaccessible when training, and proposes to meta-learn point cloud representations from a
group of point cloud transformations. Compared with them, we tackle the domain generalization
problem by reducing geometry shifts using aligned part-based representation. Experiments on 3DDA
and 3DDG benchmarks show that our PDG outperforms Metasets method by a large margin.

Contrastive self-supervised learning. Contrastive learning [53] which learns representation by
contrasting positive pairs and negative pairs has achieved increasingly success for self-supervised
learning [35, 54–59]. The learned representation could capture information shared between different
augmentations of the same input. In this paper, our motivation is that aligned part-based representation
should be similar under different local point transformations. To this end, we propose a contrastive
learning framework upon part-based shape representation and improve the robustness of aligned
part-based representation effectively.

7 Conclusion

In this work, we propose a novel part-based domain generalization network for 3D point cloud
classification. We propose to learn generalizable part-based feature representations of point clouds to
reduce the geometry gap of distinct domains. A contrastive learning framework is further designed to
improve the robustness of the part-based feature representation. Extensive experiments justify its
effectiveness. The current method is designed for point cloud classification, and we plan to extend it
to point cloud segmentation or detection in the future work.

Acknowledgment This work was supported by NSFC with grant numbers of 11971373, 12125104,
U20B2075, 12090021, 61721002.
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