A Appendix

A.1 AlphaStar cost estimation

We estimate the cost of AlphaStar [85] based on the following description in the paper: “In StarCraft,
each player chooses one of three races — Terran, Protoss or Zerg — each with distinct mechanics.
We trained the league using three main agents (one for each StarCraft race), three main exploiter
agents (one for each race), and six league exploiter agents (two for each race). Each agent was trained
using 32 third-generation tensor processing units (TPUv3) over 44 days.”

This corresponds to a total of 12 agents (= 3 main + 3 exploiter + 6 league) trained for a total
of 1056 TPU hours = 44 days * 24 hours/day on 32 TPU v3 chips. As per current pricing at
https://cloud.google.com/tpu/pricing, TPUV3 (v3-8) cost $8 per hour. Based on this,
we estimate the cost of replicating AlphaStar results for an independent researcher would be at
1056 * 12 * 32 x $8 = $3, 244, 032. Please note that we are only considering the cost of replication
and not accounting for other costs such as hyperparameter tuning and evaluation.

A.2 Compute resources for PVRL experiments

For experiments in section 4, we used a P100 GPU. For obtaining the teacher policy, the cost of
running the tabula rasa DQN for 400M frames for 10 games on 3 seeds each roughly amounts to
7 days x 30 = 210 days of compute on a P100 GPU. For each of the PVRL methods, we trained
on 10 games with 3 runs each for 10M frames, which roughly translates to 4-5 hours. For offline
pretraining, we train methods for 1 million gradient steps with a batch size of 32, which roughly
amounts to 6-7 hours (this could be further sped up by using large-batch sizes). We list the number of
configurations we evaluated for each method below.

e Rehearsal: We tried 5 values of teacher data ratio p x 4 n-step values, amounting to a total of
20 configurations.

e JSRL: We tried 4 values of teacher roll-in steps o x 2 values of decay parameter 3 x 2 values
of n-step, amounting to 16 configurations.

e RL Pretraining: We tried 2 values of A x 4 values of n-step, amounting to 8 configurations.

e Kickstarting: We report results for 4 values of n-step for a specific temperature and distillation
loss coefficient. For hyperparameter tuning, we evaluated 2 temperature values and 2 loss
coefficients with a specific n-step. Overall, this corresponds to a total of 8 configurations.

e DQfD: We report results for 4 values of n-step x 2 values of margin loss coefficients x 2 values
of margin parameters, amounting to 16 configurations.

e QDagger: We report results for 4 n-step values for a specific temperature and distillation loss
coefficient. For hyperparameter tuning, we evaluated 2 different temperature and loss coefficients
with a specific n-step, akin to kickstarting. Overall, this amounts to 8 configurations.

Based on the above, we evaluated a total of 60 (=20 + 16 + 16 + 8) configurations without pretraining
while 32 configurations with pretraining. Each of these configurations was evaluated for 30 seeds.
This amounts to a total compute time of 300-375 days for runs without pretraining on offline data
while 400-480 days of GPU compute for runs involving pretraining, resulting in a total compute time
of around 700 - 855 days on a P100 GPU.

A.3 PVRL: Experimental details

Atari 2600 Games: The subset of games in the paper includes games from the original Atari training
set used by Bellemare et al. [10] (Asterix, Beam Rider, Seaquest and Space Invaders) as well as
validation games used by Mnih et al. [60] (Breakout, Enduro, River Raid), except the games which
are nearly solved by DQN, such as Freeway and Pong. We do not use any hard exploration games as
a DQN teacher does not provide a meaningful teacher policy for such games. The remaining three
games were chosen to test the student agent in environments with challenging characteristics such as
requiring planning as opposed to being reactive (e.g., Ms Pacman, Q*Bert), and sparse-reward games
that require long-term predictions (Bowling). Furthermore, most of these games can be significantly
improved over the teacher DQN performance, which is sub-human on half of the games (Ms Pacman,
Q*Bert, Bowling, Seaquest and Beam Rider). Refer to Table A.2 for per-game teacher scores.

18

https://cloud.google.com/tpu/pricing

QDagger Kickstarting Pretraining

Teacher: Nature DQN Fine-Tuned @ 20M

o Offline Online ’/: 1.00

5 1.0 o

O o

b % 0.75

T0.38 s

N 2

© v 0.50

£0.6 5

(] Y

=z ©0.25

s 04 S

o 5

0.2 20.00

1 5 10 2 4 6 8 10 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Steps (x 100k) Env. Frames (x 1M) Teacher Normalized Score (t)

Figure A.11: Comparison of best-performing PVRL algorithms for reincarnating a student DQN agent given
a teacher policy and replay buffer from a Nature DQN agent trained for 200M frames followed by fine-tuning
with Adam for 20M frames (Panel 2 in Figure 1). While the performance of the reincarnated agents depends on
the teacher, the ranking of PVRL algorithms remain consistent wrt Figure 2, that is, QDagger > Kickstarting >
offline RL pretraining. Shaded regions show 95% bootstrap CIs. Left. Sample efficiency curves based on IQM
normalized scores, aggregated across 10 games and 3 runs. Right. Performance profiles.

o
U

o
IS

©
[

©
[N}

IQM Normalized Score

0 1/256 1/64 1/16 1/4
Teacher Data Ratio (p)

Figure A.12: Rehearsal for PVRL. The plots show IQM teacher normalized scores after training for 10M
frames, aggregated across 10 Atari games with 3 seeds each. Each point in the above plots correspond to a
distinct experiment setting evaluated using 30 seeds. Shaded regions show 95% ClIs [2].

Common hyperparameters. We list the hyperparameters shared by all PVRL methods in Table A.1.
For all methods, we swept over n-step returns in {1, 3, 5, 10} except for DQfD [36], which originally
used 10-step returns, where we only tried 3-step and 10-step returns and JSRL for which we tried
only 1-step and 3-step returns. For PVRL methods without any pretraining phase, we use a learning
rate of 6.25¢~° (JSRL, Rehearsal), following the hyperparameter configuration for Dopamine [15].
For methods that pretrain on offline data, we sweep over {6.25¢72, 1e~?} and found the learning rate
of 1e~® to perform better in our early experimentation and use it for our main results. We discuss the
method specific hyperparameters below. For obtaining the teacher policy using value-based agent,
we use the softmax(Qr(s,-)/7) over the teacher’s Q-function Q7 and use the same temperature
coefficient 7 for both the student and teacher policy.

e Rehearsal: We tried 5 different values of the teacher data ratio (p) in
{0,1/256,1/64,1/16,1/4}. The loss, LRrehearsal> can be written as: LRepearsal =
pLrp(Dr) + (1 — p)L7p(Ds). As can be seen from the results in Figure A.12, we
find a small value of teacher data ratio (p = 1/16) with 3-step returns to be the best
performing configuration.

e JSRL. As shown in Figure 4 (left), we swept over the maximum number of teacher roll
in steps of « in {0, 100, 1000, 5000}, and the decay parameter 3, which governs how fast
we decay the roll-in steps, in {0.8,1.0}. Note that 5 = 1.0 corresponds to JSRL-Random,
which was found to be competitive in performance to JSRL [83].

19

Table A.1: Common hyperparameters used by PVRL experiments using a DQN student agent on
ALE in Section 4. These hyperparameters are based on the ones used by the Jax implementation of
DQN in Dopamine [15].

Hyperparameter Setting
Sticky actions Yes
Sticky action probability 0.25
Grey-scaling True
Observation down-sampling (84, 84)
Frames stacked 4
Frame skip (Action repetitions) 4
Reward clipping [-1, 1]
Terminal condition Game Over
Max frames per episode 108K
Discount factor 0.99
Mini-batch size 32
Target network update period every 2000 updates
Min replay history 20000 steps
Environment steps per training iteration 250K
Update period every 4 environment steps
Training e 0.01
Training e-decay steps 50K
Evaluation e 0.001
Evaluation steps per iteration 125K
Q-network: channels 32, 64, 64
Q-network: filter size 8x8,4%x4,3x3
Q-network: stride 4,2, 1
@-network: hidden units 512
Hardware P100 GPU
Offline gradient steps per iteration 100K
Offline training iterations 10
Offline learning rate 0.0001

e RL Pretraining: We use CQL, which optimizes the following loss:

£Pretrm’n = LTD(DT) + A]Es,aN’DT 1Og (Z Q(Sa a/)) - Q(S’ a)

a

(A3)

The choice of CQL is motivated by its simplicity as well as recent findings that offline RL
methods that do not estimate the behavior policy are more suited for online fine-tuning [63].

ma n=1 n=3 mm n=5 mm n=10

CQL Coefficient = 0.3

CQL Coefficient = 1.0

v 0.8 Offline Online v 0.8 Offline Online

S S

O O

w0 L wn

506 //./-/‘*N—- g 06

o N

5 e | WA;{;:T//—‘

€04 €04 ﬁ%

(e} o

=z =z

- - /\//\,-\/'/‘

0.2 ©0.2
1 5 10 2 4 6 8 10 1 5 10 2 4 6 8 10
Steps (x 100k) Env. Frames (x 1M) Steps (x 100k) Env. Frames (x 1M)

Figure A.13: RL pretraining using CQL [46], followed by fine-tuning with Left. CQL coefficient 0.3, and
Right. CQL coefficient 1.0. The plots shows IQM teacher normalized scores over the course of training,
computed across 30 seeds, aggregated across 10 Atari games. Online fine-tuning degrades performance with
1-step returns, which is more pronounced with higher CQL loss coefficient.

20

Tabula Rasa Impala-CNN Rainbow DQN (Fine-Tune) @ 20M - Impala-CNN Rainbow

2.5| —e— Ir=0.0001) .
o Ir=1e-05 ° 2.0 Offline Online
st Ir=3e-05 put
S 2.0 T § SN
= - 1.5 e
£, 0 E 10l
s” S
= =
5% 508 g
0.0 135709 10 20 30 40 50

0 20 20 60 30 100 Steps (x 100k) Env. Frames (x 1M)
Env. Frames (x 1M)

Figure A.14: Tabula rasa Impala-CNN Rainbow.
Results for different learning rates for the tabula rasa
Impala-CNN Rainbow agent. Learning rate of 3e — 5
performs the best. The plots show IQM normalized
scores aggregated scores 10 Atari games with 3 seeds,
while the shaded regions show 95% bootstrap Cls.

Figure A.15: Effect of QDagger temperature T on
the performance of reincarnated Impala CNN-Rainbow
in Figure 1. A lower temperature coefficient (0.1) re-
sults in better performance in the offline pretraining
phase but converges to similar performance in the on-
line phase.

We tried two different values of CQL coefficient A (0.3 and 1.0), as shown in Figure A.13,
and report the results for the better performing coefficient (A = 0.3) in the main paper.

o Kickstarting. Kickstarting [74] uses the same loss as QDagger (Equation 2), but as dis-
cussed in the main paper, kickstarting does not have any pretraining phase on offline data.
For the temperature hyperparameter 7 for obtaining the policy 7(+|s) = softmax(Q(s,+)/7),
we tried 0.1 and 1.0. Similarly, we swept over two initial values for distillation loss co-
efficient (\g), namely 1.0 and 3.0. For experiments with the DQN student, we found the
coefficient 3.0 and temperature 0.1 to perform the best.

o DQIfD. Following Hester et al. [36], DQfD uses the following loss for training:
Lpesp(D) = Lrp(D) + nils~p |max (Q(s,a) + flar(s), a)) = Q(s,ar(s))| (A4)

where 7, corresponds to the margin loss coefficient, ar(s) = argmax, 7 (als) and f(ar,a)
is a margin function that is 0 when a = a7 and a positive margin m otherwise. We swept
over the values {1.0, 3.0} for both the margin parameter m and initial values 7o of the margin
loss coefficient 7,. For the DQN student, we report the results for the better performing
margin coefficients in the main paper.

e QDagger. Akin to kickstarting, we swept over the values of temperature 7 in {0.1, 1.0}
and distillation coefficient Ao in {1.0,3.0}. For ALE experiments, we decay the distillation
loss coefficient every training iteration (1M environment frames) using the fraction of
expected returns obtained by the student policy 7 compared to the teacher policy 7, that
is, Ay = 14«4, max(1l — G™/GT,, 0). For fair comparisons with other methods, we use the
same strategy for decaying the distillation loss coefficient A; for Kickstarting and the margin
loss coefficient n; for DQfD.

A.4 Reincarnating RL as a workflow: Additional details

Revisting ALE. We used the final model checkpoints of Nature DQN [60] from Agarwal et al. [1],
which was trained for 200M frames using the hyperparameters in Dopamine [15]. The fine-tuned
DQN (Adam) in panel 2 in Figure 1 uses 3-step returns. For the tabula rasa Impala-CNN Rainbow,
we use similar hyperparameters to Dopamine Rainbow except for learning rate (Ir), for which we
ran a sweep over {le — 4, 1le — 5,3e — 5}, shown in Figure A.14, and use the best performing Ir
of 3e — 5. For the reincarnated Impala-CNN Rainbow in Panel 3, we use a QDagger distillation
coefficient of 1.0 and sweep over temperature parameter 7 in {0.1, 1.0}, as shown in Figure A.15.
Consistent with our other fine-tuning results on ALE, in Panel 3, using a reduced [r of 3e — 6 for
fine-tuning the already fine-tuned DQN agent results in better performance, compared to using an Ir
of 1e — 5, as used by fine-tuned DQN.

21

DQN (Adam) @ 20M - Impala-CNN Rainbow DQN (Adam) @ 400M - Impala-CNN Rainbow

Offline Online Offline Online
o o
<) c 2.0
»15 &
9 915
N N
E 1.0 E
1.0
5 5 W
205 Zo0s
= o—P—0—0—9 |C —o— 7=01 = 0. —— 7=0.1
4 =10 <4 =10
135709 10 20 30 40 50 135709 10 20 30 40 50
Steps (x 100k) Env. Frames (x 1M) Steps (x 100k) Env. Frames (x 1M)

Figure A.16: Effect of QDagger temperature 7 on the performance of reincarnating Impala CNN-Rainbow
from Left. DQN (Adam) @ 20M, and Right. DQN (Adam) @ 400M. Notably, the better performing temperature
T is dependent on the teacher policy. Lower 7 results in cloning a more “spikier" teacher policy. With a reasonably
good teacher policy (DQN @ 400M), 7 value of 0.1 performs better than 1.0 while with a more suboptimal
teacher policy (DQN @ 20M), the higher temperature coefficient of 1.0 performs better than 0.1.

Fine-tune, Ir=3e-05 D4PG (Reincarnation), Ao = 0.1
3309 Fine-tune, Ir=0.0001 D4PG (Reincarnation), Ao = 0.3

Fine-tune, Ir=0.0003 = 500
300 S
2
c 19
5 2

£ 2507 © 400

© °
g o
2001 2

& L 300
8 150 <
2 %

S 100 2 200

>
50 in]

100

04
00 0s 10 15 20 25 0.0 0.5 10 15 2.0 2.5
Training Steps 1le7 Training Steps 1e7

Figure A.17: Fine-tuning TD3. Results for fine-tuning Figure A.18: Effect of varying initial QDagger dis-
a trained Acme TD3 agent with different learning rates. tillation coefficient \o on the performance of reincar-
All the different learning rates exhibit similar perfor- nated D4PG. Higher coefficient (0.3) results in faster
mance trends including severe degradation after pro- transfer but converges to similar performance to the
longed training. runs with lower coefficient (0.1).

A.4.1 Humanoid:Run

The purpose of humanoid:run experiments is to show the utility of reincarnation in a complex
continuous control environment given access to a pretrained policy and some data from its final replay
buffer. Irrespective of performance from fine-tuning performance TD3, we demonstrate the benefits
of using reincarnation over tabula rasa D4PG. For example, reincarnated D4PG achieves performance
obtained by SAC in 10M frames® in only half the number of samples (i.e., SM frames).

For obtaining the pretrained policy, TD3 was chosen as (1) it’s a well-known method for continuous
control, and (2) we could use an off-the-shelf JAX implementation in Acme, which is competitive on
humanoid-run. For tabula rasa TD3 [29], we used a learning rate (Ir) of 3e — 4 for both the policy
and critic, which are represented using a MLP with 2 hidden layers of size (256, 256). For other
hyperparameters, we used the default values in Acme’s TD3 implementation.

For fine-tuning TD3, we use the last 500K environment steps from the TD3’s replay buffer and use
the same hyperparameters as tabula rasa TD3 except for Ir. Specifically, we swept over the 7 in
{le—4,3e—4,3e— 05}, shown in Figure A.17, and find that all lrs exhibit performance degradation
with prolonged training. We hypothesize that this degradation is likely caused by network capacity
loss with prolonged training in value-based RL methods [47, 56]. We believe that this issue does not
affect our conclusions about the efficacy of reincarnating RL over a tabula rasa workflow. Further
investigation of this performance degradation is outside the scope of the present work.

3See https://github.com/denisyarats/pytorch_sac for SAC learning curves.

22

https://github.com/denisyarats/pytorch_sac

For the tabula rasa D4PG [8], we use MLP networks with 3 hidden layers of size (256, 256, 256) for
the policy and (512, 512, 256) for the critic. We used 3e — 4 as the learning rate and a sigma value of
0.2 that sets the variance of the Gaussian noise to the behavior policy. Other hyperparameters use
the default values for D4PG implementation in Acme. For reincarnating D4PG using QDagger, we
minimize a distillation loss between the D4PG’s actor policy and the teacher policy from TD?3 jointly
with the actor-critic losses. For QDagger specific hyperparameters, we pretrain using 200K gradient
updates as well as decay \; to O over a period of 200K gradient updates during the online training
phase. Additionally, we sweep over distillation coefficient A\ in {0.1, 0.3}, as shown in Figure A.18.
Note that both TD3 and D4PG use 5-step returns by default in Acme.

A.4.2 Balloon Learning Environment (BLE)
Details about BLE can be found in [33]. For self-containedness, we include important details below.

Station Keeping. Stratospheric balloons are filled with a buoyant gas that allows them to float for
weeks or months at a time in the stratosphere, about twice as high as a passenger plane’s cruising
altitude. Though there are many potential variations of stratospheric balloons, the kind emulated in
the BLE are equipped with solar panels and batteries, which allow them to adjust their altitude by
controlling the weight of air in their ballast using an electric pump. However, they have no means to
propel themselves laterally, which means that they are subject to wind patterns in the air around them.
By changing its altitude, a stratospheric balloon can surf winds moving in different directions.

BLE Evaluation. The goal of a BLE agent is to station-keep, i.e., to control a balloon to stay within
50 km of a fixed ground station by changing its altitude to catch winds that it finds favorable. We
measure how successful an agent is at station-keeping by measuring the fraction of time the balloon
is within the specified radius, denoted TWRSO0 (i.e., the time within a radius of 50km).

Environment Details. The observation space in BLE is a 1099 dimensional array of continu-
ous and boolean values. An agent in BLE can choose from three actions to control the balloon:
move up, down, or stay in place. The balloon can only move laterally by “surfing” the winds
at its altitude; the winds change over time and vary as the balloon changes position and altitude
More details can be found at https://balloon-learning-environment.readthedocs.io/
en/latest/environment.html.

Perciatelli Teacher and Data. Perciatelli is the name of the RL agent (QR-DQN with a MLP
architecture) trained by Bellemare et al. [11] using a distributed RL setup for more than a month in
the production-level Loon simulator and released with the BLE environment after fine-tuning for
14M steps in BLE. For the data, we use the final replay buffer (of size 2M transitions) logged by the
Perciatelli agent during BLE fine-tuning.

Architectures. The network architecture used by QR-DQN [23] and Perciatelli is a multilayer
perceptron (MLP) with 7 hidden layers of size 600 each with ReLU activations and approximate the
distribution using 51 fixed quantiles. For the DenseNet architecture [39] employed by IQN [22] and
R2D6, we use 7 hidden layers of size 512 each (for TPU-efficiency), which contains significantly
more parameters than the Perciatelli MLP. Additionally, R2D6 uses a LSTM layer of size 512 on top
of the DenseNet encoder with QR-DQN loss, while IQN samples 128 quantiles for minimizing the
implicit quantile regression loss.

Hyperparameters. We set most hyperparameters for our distributed RL agents based on configura-
tion of the BLE Quantile agent, which can be found at agents/configs/quantile.gin. For tabula rasa
agents, we swept over the Ir in {2e — 6,6e — 6, le — 5} and found 1e — 5 to be the best performing
lr. However, for fine-tuning Perciatelli, we found that a lower I of le — 6 performs better. For
reincarnated R2D6 and IQN, we use a [r of 1e — 5 and 6e — 6 respectively during the online phase
while 2 x [r in the offline pretraining phase. We set distillation temperature 7 to be equal to 1.0 and
linearly decay the QDagger distillation coefficient \; over a fixed number of learner steps (1M for
R2D6 and 160000 for IQN). Furthermore, we swept over the initial value of A; (Ag) in {0.3,1.0} and
found 1.0 to be better for R2D6 while 0.3 for IQN.

A.5 Additional ablations for QDagger
Dependence on offline replay data. In the PVRL setting on ALE, we assumed access to the last

replay buffer (containing 1M transitions) of the teacher DQN (Adam) agent trained for 400M frames.
This assumption is aligned with maximally reusing existing computational work and often holds

23

https://balloon-learning-environment.readthedocs.io/en/latest/environment.html
https://balloon-learning-environment.readthedocs.io/en/latest/environment.html
https://github.com/google/balloon-learning-environment/blob/master/balloon_learning_environment/agents/configs/quantile.gin

= Teacher Steps = 500K

Asterix Spacelnvaders

Offline Online Offline Online

/\f
//vv

10000
10000 7500

5000

Expected Returns

0

A

PR
/

Teacher Steps = 1M

Offline

15000

o/

= Offline Replay (1M)
Seaquest

Online

| // 15000
i X
I/ 10000

==

5000

Qbert

Offline

Online

mc

4

2 4 6 810

102 4 6 8 10 1 5 1
Steps (x 100k)

2 4 6 810 1 5

Frames (x 1M) Steps (x 100k) Frames (x 1M)

1 5 1
) Frames (x 1M)

2 46 810 1 5 1
Steps (x 100k)

Frames (x 1M) Steps (x 100k

Figure A.19: Substituting offline replay with teacher collected data for pretraining phase of QDagger for
reincarnating a student DQN given access to the teacher policy obtained from a DQN (Adam) trained for 400M
frames. For collecting data using the teacher, we roll out the teacher policy with e-greedy exploration where we
decay € from 1 to O linearly for the number of teacher steps. Note that 1 transition corresponds to 4 frames in
Atari (due to an action repeat of 4).

= QDagger QDagger (Offline only)

Asterix Spacelnvaders Seaquest Qbert

Offline i Online Offline Online Offline Online Offline + Online
| | | |
o i 10000 i i |
2 i | 15000 | Z=ALS 15000 | e~
3 10000 i 7500 I i/ i/J
o < H i
g Vall 5000 | 10000 A 10000| LTSN
g i i Al i
Qo H il H H
& 000 i 2500 o 5000 /—/ i i
i Vi i i 5000 i
1 5 102 4 6 8 10 1 5 102 4 6 8 10 1 5 102 4 6 8 10 1 5 102 4 6 8 10
Steps (x 100k) Frames (x 1M) Steps (x 100k) Frames (x 1M) Steps (x 100k) Frames (x 1M) Steps (x 100k) Frames (x 1M)

Figure A.20: Effect of online phase of QDagger on the performance of a DQN student reincarnated using
QDagger, given access to the teacher policy and final replay buffer obtained from a DQN (Adam) trained for
400M frames. While using QDagger only during offline phase performs comparably to QDagger during both
online and offline phase on Seaquest and Q*Bert, the online phase leads to slight improvement on Asterix and
significant improvements on Space Invaders.

in practice as last replay buffer of RL agents is typically logged on disk in addition to their policy
checkpoints. However, it is possible that we only have access to the teacher policy. In this scenario,
even if we don’t have access to the teacher’s replay buffer, we can generate data using the teacher
policy during the online RL phase (this would cost environment samples) and use this teacher
collected data for pretraining with QDagger loss (analogous to the behavior cloning phase in Dagger).

To verify this empirically, we ran a QDagger ablation on 4 games where we do not assume access
to the teacher’s replay buffer. As shown in Figure A.19, we found that collecting the same amount
of teacher data as the offline replay leads to comparable performance on 3/4 games (Asterix, Qbert,
Seaquest). Somewhat surprisingly, collecting only 500K transitions from teacher results in comparable
performance to using 1M transitions, except on Asterix where we see substantially lower performance.
The slightly better performance with offline replay could be related to its better diversity than teacher
collected data. While we used e-greedy exploration with the teacher policy, the offline replay data is
collected using possibly diverse policies, as the teacher agent was continually updated during training.

Effect of QDagger loss in online phase. In this work, we use QDagger loss during both the offline
pretraining and online RL phase (Equation 2). To evaluate the benefit of QDagger loss in the online
phase on ALE, we ran an ablation on 4 games where we use standard Q-learning instead of QDagger
loss during the online RL phase. As shown in Figure A.20, we see that the online phase helps improve
performance on some games (e.g., Space Invaders, Asterix) while not having much effect on others.
The impact of the QDagger loss in the online phase also depends on the offline replay buffer size.
For example, on the more complex BLE domain, we only had access to a small amount of replay
data relative to the training budget of the Perciatelli teacher. With this teacher, using the QDagger
loss only during the offline phase resulted in much lower performance than using QDagger for both
offline and online phase.

24

A.6 Per-game Scores on ALE

Table A.2: Average scores for the random agent, human agent and the DQN (Adam) trained for 400
million frames (based on 5 runs). For teacher normalized scores reported in the paper, the random
agent is assigned a score of 0 while the DQN (Adam) agent is assigned a score of 1. Normalization
using teacher allow us to compare the performance of student agents relative to the teacher and avoid
high performing outliers (such as Breakout and Space Invaders) in terms of human normalized scores.

Game Human DQN @400M Random
Asterix 8503.3 13682.6 210.0
Beam Rider 16926.5 6608.4 363.9
Bowling 160.7 33.9 23.1
Breakout 30.5 234.2 1.7
Enduro 860.5 1142.0 0.0
Ms Pacman 6951.6 4366.2 307.3
Qxbert 13455.0 11437.3 163.9
River Raid 17118.0 17061.9 1338.5
Seaquest 42054.7 14228.2 68.4
Space Invaders 1668.7 7613.6 148.0

Table A.3: Per-game scores for the top-performing methods in Figure 2. Mean scores along with
minimum and maximum scores, shown in brackets, across 3 runs.

Game QDagger Kickstarting Offline Pretraining
Asterix 12301.1 (9802.2, 14118.4) 7872.0 (6979.4, 8691.9) 4132.2 (3802.6, 4533.1)
BeamRider 6428.3 (6103.2, 6925.3) 5330.9 (4964.8, 5661.2) 1854.5 (1794.6, 1942.4)
Bowling 34.1 (30.0, 38.5) 31.3 (30.0, 33.0) 25.5(16.4,30.1)
Breakout 277.6 (254.5,295.8) 237.6 (191.0, 281.7) 126.3 (118.2,133.1)
Enduro 1765.6 (1415.1, 2161.3) 1167.3 (1031.9, 1268.2) 1167.9 (1124.7, 1222.9)
MsPacman 5110.6 (4742.7, 5325.6) 4196.8 (4038.8, 4485.4) 3687.2 (3608.7, 3764.3)
Qbert 16198.8 (14957.2,17521.1) 10028.4 (7337.3, 12860.8) 16421.6 (14018.6, 18395.2)
Riverraid 19496.7 (18585.6,20068.4) 16160.5 (14474.1, 17768.7) 14137.7 (13858.5, 14681.7)
Seaquest 17056.0 (16560.9, 17743.1) ~ 7849.9 (3674.8, 12504.5) 12099.4 (10374.0, 15204.1)
Spacelnvaders 6891.9 (6055.9, 8374.6) 2459.6 (2111.7, 2726.2) 958.7 (841.1, 1033.2)

Table A.4: Per-game scores for worst-performing methods in Figure 2. Mean scores along with
minimum and maximum scores, shown in brackets, across 3 runs.

Game Rehearsal DQfD JSRL

Asterix 2329.6 (2172.0, 2503.9) 2370.8 (2140.9, 2681.0) 1294.2 (1018.2, 1720.3)
BeamRider 2740.4 (2262.7, 3123.5) 2482.9 (1596.4, 3246.7) 4642.0 (4272.0, 5324 .4)
Bowling 33.5 (30.0, 36.0) 33.0 (30.0, 39.0) 37.8 (30.0, 46.1)
Breakout 70.2 (56.1, 82.2) 31.2(21.2,38.4) 49.7 (35.8,59.2)
Enduro 985.0 (928.6, 1095.0) 736.6 (671.5,792.4) 839.4 (660.7, 949.9)
MsPacman 2604.3 (2343.2, 2997.0) 2886.2 (2576.5, 3184.8) 2140.4 (1871.8, 2585.4)
Qbert 10649.0 (7697.8, 13882.9) 13386.7 (11800.7, 15295.5) 5828.7 (2871.6, 7753.4)
Riverraid 8640.5 (7789.1, 9532.1) 10290.7 (9722.8, 11323.5) 7498.6 (6916.7, 7916.8)
Seaquest 2859.2 (2300.9, 3969.2) 5325.5 (4454.8, 6128.3) 1140.8 (760.3, 1590.0)
Spacelnvaders 657.3 (638.7, 689.4) 533.3 (520.1, 557.5) 570.1 (549.9, 600.9)

25

