A Further Related Work

Batched algorithms for multi-armed bandits. Batched processing for the stochastic multi-armed
bandit problem has been investigated in the past few years. A special case when there are two bandits

/B
was studied by [39]. They obtain a worst-case regret bound of O ((IO;T)) loAg(T)) [25] studied

/
the general problem and obtained a worst-case regret bound of O (K log(K)ATl_ ? log(T) ), which was

KT B log(T)
A

min

later improved by [23] to O ( ) Furthermore, [23] obtained an instance-dependent

regret bound of }_ ;. A;>0 TVEO (%). Our results for batched dueling bandits are of a similar

flavor; that is, we get a similar dependence on 1" and B. [23] also give batched algorithms for
stochastic linear bandits and adversarial multi-armed bandits.

Adaptivity in combinatorial optimization. Adaptivity and batch processing has been recently
studied for stochastic submodular cover |27,/1,/24,|26], and for various stochastic ‘“maximization”
problems such as knapsack [20![13]], matching [[10/|12], probing [30] and orienteering [28}/29,|11].
Recently, there have also been several results examining the role of adaptivity in (deterministic)
submodular optimization; e.g. [8}|6/(9}|7/|17].

B Missing Proofs from
Proof of Lemma[3.1] Note that E[p; ;(r)] = p; j, and applying Hoeffding’s inequality gives

P (\@Tfl — pijl> (1) < 2exp (—2N;;(r) - v,;(r)?) < 2n.
O

Proof of Lemma- Applying Lemma- 3.1|and taking a union bound over all pairs and batches
we get that the probability that some estimate is incorrect is at most ( ) X B x2n < # where
n=1/K?BT. Thus, P(G) < 0O

1
T

Proof of Lemma(3.3] In C2B, an arm j is deleted in batch r iff there is an arm ¢ € A with p; ;(r) >
% + 2v;,;(r). If a* is eliminated due to some arm j, then by definition of event G, we get p; .+ >
1 4+ 4;,;(r) > %, a contradiction. .

C Missing Proofs from §3.1.1]

Proof of Lemma[3.4] For any pair i, j of arms and round r, let B; ; (r') denote the event that |p; ; (r) —
pi,j|> ¢ ;(r). Note that N;;(r) < Zg 19s < 2qg,. For any integer n, let s;;(n) denote the sample
average of n independent Bernoulli r.v.s with probability p;;. By Hoeffding’s bound,

P(ls;j(n) — pij|> ] < 2672"62, for any ¢ € [0, 1].
We now bound

2qy

<ZP i(r) A Nig(r) =n]

2qr
/2log (2K?2q, 2log(2K?%q,)
|sij(n) — pij|> ] < Z 2exp ( 7?1

1 1
<
(2K2g,)* — 4K? - ¢2

2qr

<ZP

< d4gq, -
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The second inequality uses the definition of ¢;;(r) when N;;(r) = n. The last inequality uses /X > 2.
Next, by a union bound over arms and rounds, we can write the desired probability as

P(Er>C(5),4,5: Bij(r) < >, > P(B

r>C(8) i<j
K 1 1
< < =
< ¥ (2) w2
r>C(9) r>C(9)
1 1 1 1
< Y <1+++--->< <9
9521 9,2C(5) 2 T 4 = 20() =
rSC0) 2q T2 - q q
4)
The second inequality above uses the bound on P[B;;(r)]. The first inequality in (4) uses ¢, =
l¢"] > q" — 1> % as g > 2. The last inequality in (4) uses the definition of C'(¢).
The lemma now follows by the definition of event =E(d) as Ir > C(9),4,j : B ;(r). O

Proof of Lemma- Fix any round r > C(0) + 1. Suppose that a* € D,.(i) for some other arm 3.
This implies that p; o+ (r — 1) > 3 + Ciq+ (r — 1). But under event E(4), we have |p; o+ (r — 1) —
Di,a*|< € (r — 1) because r — 1 > ('(9). Combined, these two observations imply p; o+ > % a
contradiction.

Proof of Lemma We first argue that a* is compared to all active arms in each round r > r(9).
By Lemma we know a* € A. By Lemma|(3.5| we have a* ¢ D,.(j) for all j # a* because
r > r() > 1+ C(5). If candidate i, # a*, then a* will be compared to all j € A (since
a* ¢ D,(ir)). On the other hand, if 4, = a*, then (1) for any j € D,.(a*), arm j is only compared to
a*, and (2) forany j € A\ D,(a*), arm j is compared to all active arms including a*.

Next, we show that for any round r > r(d) 4 1, arm a* defeats all other arms, i.e., |D,(a*)|= |A|—
This would imply that i, = a* and a* is the champion. Consider any arm j € A\ a*. Since a* is
compared to all active arms in round » — 1 > r(4), we have

Ny j(r—=1)> ¢t >

3
A2 IOg (2K2(JT71) )

min

where the second inequality is by Lemmawith r — 1 > r(d). Now, by definition, we have

Ca.g j(r—1) log (2K2q,_1) 2

min

2log (2K2¢,—1) \/ 2log (2K2¢,—1) _ Anin

Given this, it is easy to show that a* defeats arm j in round r. Conditioned on F(¢), we know that
|Daxj(r — 1) = pa= ;j|< car j(r — 1) < —Argi“. Then, we have

Amin 1 Amin 1 Annin 1
= A > =+ > — 4 ¢ j(r—1).

ﬁa*,j(T_l)Zpa*,j_ 2 _2 J 2 =9 2 2

Therefore, j € D,.(a*). It now follows that for any round » > r(d) + 1, arm a* is the champion. [

Proof of Theorem First, recall that in round r of C2B, any pair is compared ¢, = |¢"| times
where ¢ = T/ Since ¢ = T, C2B uses at most B rounds.

For the rest of proof, we fix § > 0. We now analyze the regret incurred by C2B, conditioned on events
G and FE(9). Recall that P(G) > 1—1/T (Lemma ,and P(E(5)) > 1 — & (Lemma|3.4). Thus,
P(GNE()) >1—6—1/T. Let Ry and Ry denote the regret incurred before and after round r(9)
(see Deﬁnition respectively.
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Bounding R;. This is the regret incurred up to (and including) round r(8). We upper bound the
regret by considering all pairwise comparisons every round r < r(0).

Ry < K*- Y ¢< K*- > ¢ < 2K*-q’®
r<r(é) r<r(d)

< 2K? - max {q -2Alog A, qc(§)+1} ,

where the last inequality uses Definition recall A = A126. -log(2K?). Plugging in the value of
C(8) <1+ 5log,(1/6), we obtain
log K log K 1
R1<O(K2)~max{q-2§m-bg(iiin) ¢ 5}. 5)

Bounding R,. This is the regret in rounds r > () + 1. By Lemma arm a* is the champion
in all these rounds. So, the only comparisons in these rounds are of the form (a*, j) for j € A.

Consider any arm j # a*. Let T be the total number of comparisons that j participates in after round
r(8). Let r be the penultimate round that j is played in. We can assume that > () (otherwise arm
j will never participate in rounds after (), i.e., T; = 0). As arm j is not eliminated after round r,

. 1
Pa (1) < 5+ Yar 5(7)-
Moreover, by E(5), we have py- (1) > pqa- j — Cq+ i (1) because r > r(8) > C(4). So,
1 . 1
5 T8 = Parj < Dar (1) + car i (r) < 5 4 Yar j (1) + €an (1),
It follows that

3 |log(2K?2BT)
A < Vg (1) + Car j(r) < —=y | —222 220
i < Var g (1) + Car 5(r) < /2 Ng- ;(r)

where the final inequality follows by definition of ¢ and . On re-arranging, we get Ny- ;(r) <

9log(2K?%BT)
273

round after 7(J),

. As r + 1 is the last round that j is played in, and j is only compared to a* in each

15¢ - log(2K?BT)
A2 '
J

T] S Na*,j(r+1) S Na*ﬁj(r)"—QQ‘Na*’j(T) S

The second inequality follows since j is compared to a* in rounds r and r + 1, and the number of
comparisons in round r + 1is |¢" "' | < ¢ (2¢,) < 2q - N j(r). Adding over all arms 7, the total
regret accumulated beyond round 7 () is

-log(KT
R2=ZJ}AJ»§ZO<Q°§_)>. (6)

j#a* j#a*

Combining (5) and (6), and using ¢ = T/, we obtain

2
R(T)<O (Tl/B . %g(m.log (12gK>) + 0 <T2/B CK?. \/§>

. Z o (Tl/B X)jg(KT)) .

j#ar
This completes the proof Theorem[I.1] O
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D Expected Regret Bound

In this section, we present the proof of Theorem We first state the definitions needed in the proof.
Let F'x (-) denote the cumulative density function (CDF) of a random variable X; that is, Fix (z) =

P(X < z). The inverse CDF of X, denoted F', is defined as F;'(z) = inf{z : P(X < x) > 2}
where z € [0, 1]. We will use the identity E[X] = [' F5'(2)dz.

Proof of Theorem First, note that in round r of C2B, any pair is compared ¢, = |¢" | times where
g =TY5. Since ¢” = T, C2B uses at most B rounds.

Let R(T') be the random variable denoting the regret incurred by C2B. By Theorem we know
that with probability at least 1 — 6 — 1/7,

2

AZ Amin 5

TYB 1og(KT)
i j;:* ¢ ( Aj ) '

Thus, Fpy i (1 — 8 — 1/T) < G(8) where

(T)
G():=A+0 (TQ/B-KQ : ﬁ) +B

where to simplify notation we set A = O(T /B ~% -log (M)> and B =

min min

/B, . Sy . .
> jtar 0] (%ﬁ;(fﬂ”))‘ Using the identity for expectation of a random variable, we get

§A+O(T2/B-K2>+B+1

where the fourth equality follows by setting 1 — ¢ — 1/7 = § and the final inequality follows since
fol (%)1/2 < 2. Thus,

E[R(T)] < O (Tl/B K2 log(K) log <logK>> +0 (TWB : K2>

Al‘nin
TYB log(KT)
+ > 0 (A > .

jFa* !

This completes the proof of Theorem|1.2 O
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E The Batched Algorithm with KL-based Elimination Criterion

In this section, we modify C2B to use a Kullback-Leibler divergence based elimination criterion. We
provide a complete description of the algorithm, denoted C2B-KL, in Algorithm[2] In what follows,
we highlight the main differences of C2B-KL from C2B. Recall the following notation. We use A to
denote the current set of active arms; i.e., the arms that have not been eliminated. We use index r
for rounds or batches. If pair (i, j) is compared in round r, it is compared ¢, = |¢" | times where
q = T"/B. We define the following quantities at the end of each round 7:

* N, ;(r) is the total number of times the pair (2, j) has been compared.
* D, ;(r) is the frequentist estimate of p; ;, i.e.,

__ # i wins against j until end of round r
Nij(r)

Di; (1) )

* A confidence-interval radius for each (i, j) pair:

_[2log(2K2q,)
cij(r) = W

* We define a term I;(r) which, at a high-level, measures how unlikely it is for j to be the
Condorcet winner at the end of batch r:

. 1
Lin= Y Du (Pv:,j(r% 2) “Nij(r),
iP5 (r) >4
where Dy (p, ¢) denotes the Kullback—Leibler divergence between two Bernoulli distribu-
tions: B(p) and B(q). We define I*(r) = minjec 4 I;(r).

The B-round algorithm, C2B-KL, proceeds exactly as C2B. The only change is in the elimination
criterion, which we describe next.

Elimination Criterion. In round r, if, for any arm j, we have I,;(r) — I*(r) > log(T) + f(K),
then j is eliminated from .A. Here f(K) is a non-negative function of K, independent of .

The main result of this section is to show that C2B-KL achieves the following guarantee.

Theorem E.1. For any integer B > 1, there is an algorithm for the K -armed dueling bandit problem

that uses at most B rounds. Furthermore, for any 6 > 0, with probability at least 1 — § — % .

e 108(C)=F(K) ywhere C' is some constant (see Lemma , its regret under the Condorcet condition
is at most

R(T)§O<T1/B~K2A102‘M~log <12gK)> +O<T2/B.K2.\/§> + ZO<Tl/B'Al?g(T)>

min min

Remark. _Setting f(K) > Klog(C), we get the same asymptotic expected regret bound as in
Theorem Following [35], we set f(K) = 0.3K %! in our experiments.

We require the following result in the proof of Theorem [E. 1

Fact E.1. For any ju and p satisfying 0 < ps < p < 1. Let C1(p, pi2) = (1 — p12)?/(21(1 — pa)).
Then, for any us < po,

D (ps, 1) — Dre(ps, p2) = Cr(p, p2) > 0.
The high-level outline of the analysis is exactly the same as that of C2B. For completeness, we provide

the analysis in the following section; however, we skip the proofs of lemmas that follow from the
analysis of C2B.
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Algorithm 2 C2B-KL
1: Input: Arms B, time-horizon 7', integer B > 1
2: active arms A <— B, r < 1, emprical probabilities p; ;(0) = 3 for all 4, j € B?
3: while number of comparisons < 7" do

4: if A = {i} for some ¢ then play (i, ¢) for remaining trials
5: Dr(i)%{jEAII/)\iJ’(T—l)> %-FCZ'J(T—].)}
6: iy < argmax;e 4| D (7)]

7. for i€ A\ {i,} do

8: ifi € D, (i) then

9: compare (i,,1) for ¢, times

10: else

11: for each j € A, compare (4, j) for ¢, times
12: compute p; ;(r) values

13: if 35 : I;(r) — I*(r) > log(T) + f(K) then

14: A— A\ {5}

15: r—r+1

E.1 The Analysis

In this section, we prove the high-probability regret bound for C2B-KL. Recall that ¢ = 7/ 5, and
that ¢ > 2. We first show that, with high probability, a* is not eliminated during the execution of the
algorithm. The following lemma formalizes this.

Lemma E.2. Let G denote the event that the best arm a* is not eliminated during the execution of
C2B-KL. We can bound the probability of G as follows.

P(G) < — - efloe(@)—/(K)

1
T

1 N ecl(pa*wj,l/Q)
Pxe(Pjax1/2) 4 (ecl(pa*_j,l/2)71>2

where C = max; C(j)+ 1, is a constant, with C(j) =

Proof. Let n; denote the number of times a* and j are compared. Let p,~ ;(n;) denote the frequentist
estimate of p,~ ; when a* and j are compared n; times (we will abuse notation and use P~ ; when
n; is clear from context). Let S € 2[KI\a™}\ () and consider vector {n; € N : j € S}. We
define A = > s Dxi (Dj,ax» 1/2) - nj. Let D(S;{n; : j € S}) denote the event that a* and j are
compared n; times and p,+ ; < 1/2 forall j € S, and that A > log(T") + f(K). The probability of
this event upper bounds the probability that a* is eliminated (as per our elimination criterion) when
a* and j are compared n; times, and Do+ ; < 1/2 for all j € S. We will show that

o F(K)

H (e—njDKL(p_,,a*J/z) n njecl(p_j_ﬁ,*,1/2)) ®)
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where C1 (p1, p12) = (11 — p2)?/(2u1 (1 — p2)). Using the above, we first show that by taking a
union bound over all S € 2[5\ ™I\ (hand {n; : j € S}, we obtain the final result. We have

IN

P(G)

Z Z P(D(5;{n; : j € 5}))

Se2lKI\{a*}\@ n; eNISI

< Z Z (e—njDKL(pj,a*,l/z) +njecl(pj,a*,1/2)>
Se2lKN\{a* I\ n;eNIS| Jjes
e~ /) D 1/2 oA 1/2
= Y I X (emoPelomer ) g cCilpi 172) ©)
Se2lKN{a* 1\ jE€S njEN
—f(K) 1 Cl(pj.a*71/2)
e e
=— > 1 el 1t 5 (10)
Sealkar\gjes \ € o \Phen ) — 1 (eCI(Pm*»l/Q) - 1)
L e SR eIy )
SealKI\{a* 1\
_ L Kes(0)- ()
T

where @) follows by swapping the order of summation and multiplication, uses Y oo e " =
1/(e* —1)and > )7 ne™™® = e®/(e” — 1), and (TI) follows by letting

() = 1 Bl CE)

eDKL(PjYa* ,1/2) 1 + ecl(p‘],ax ,1/2) _1> 2

To complete the proof, we need to prove .

, C'=max; C(j)+1 and the binomial theorem.

For the remainder of this proof, we fix S € 2151\Ma"}\ (), and vector {n; € N : j € S}. Observe that
P(D(S; {n; : j € §})) = P (A > log(T) + [(K)) = P (T < e /). )
where we defined A = 3, g Dk (Pj,a+» 1/2) - nj. By Markov’s inequality, we have

Ble—f(K) . gA] o= f(50)
—f(K) A < - . A
P (e A > T) < - — -Ele’] (12)

where the last equality follows since f(K) is constant (with respect to {n;} values). So, it suffices to
bound E[e#]. Towards this end, we define the following term:

- 1 =N 1
Pj(z;) =P (pyya* 2 5 and Die (pj,a*v 2) > ﬂfj) :

21



Then, we have
Ble) - | exp [ Yoy, | [Td(~Pi(a)
{z;}€[0,log(2)]!S! ]Ze;q 3139

= H/ €™ d(—Pj(x;)) (13)

jes /=;i€[0,log2]

n;T; log(2
€71 Py ()] >+/
z;€[0,log(2)]

P;(0) + / ”jen"xjpj(%)dxj>
z;€[0,log(2)]

e—njDKL(I)j,a* »1/2) + /

z;€[0,l0g(2)]

nje"ijPj(:cj)dxj> (14)

njenjrje—nj(mcl(pj,a*,1/2))dxj> (15)

e DKL(pj,a* ,1/2) + /

2;€[0,log(2)]

< (e—njDKL(pj,a*,l/z) + njecl(pj,a*,l/z))

njecl (pj"’* ’1/2)dl’j>

where (13) follows from the independence of the comparisons. We obtain by applying integration

by parts, (15) follows from the Chernoff bound and Fact here C1 (1, p2) = (p1—p2)?/(2p1 (1—
p2)), and the final inequality follows by observing that [ 1 n;e! (Pj.ax vl/g)dxj
nje (py.ar:1/2) . frJG[O,log@)] drj = nje" (py.ax:1/2) log(2). Note that log refers to the natural

logarithm, so we have log(2) < 1. Combined with (12}, this completes the proof of (8). O

j€[0,log(2

E.1.1 High-probability Regret Bound

‘We now prove Theorem Fix any § > 0. We first define event E'(4) as before.

Definition E.1 (Event E(6)). An estimate p; ;(r) in batch r is weakly-correct if |p; ;(r) — p; ;|<
cij(r). Let C(6) :== [} log,(1/0)]. We say that event E(5) occurs if for each batch v > C(6), every
estimate is weakly-correct.

The next lemma shows that £(d) occurs with probability at least 1 — §. Since E(d) does not depend
on the elimination criterion, its proof follows from the analysis of C2B.
Lemma E.3. Forall § > 0, we have

P(-E(5) = P(3r>C(0),4,5 : pij(r) — pijl>cij(r)) < 0.

As before, we analyze our algorithm under both events G and F(4). Recall that, under event G, the
best arm a* is not eliminated. Conditioned on these, we next show:

* The best arm, a*, is not defeated by any arm i in any round r > C(9) (Lemma.

* Furthermore, there exists a round 7(6) > C(0) such that arm o* defeats every other arm, in

every round after () (Lemma|E.6).

We re-state the formal lemmas next.
Lemma E.4. Conditioned on G and E(9), for any round r > C(§), arm a* is not defeated by any
other arm, i.e., * ¢ Ujzq+ Dy(1).
To proceed, we need the following definitions.

Definition E.2. The candidate i, of round r is called the champion if | D,.(i,.)|= | A|—1; that is, if i,
defeats every other active arm.
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Definition E.3. Let (6) > C(8) + 1 be the smallest integer such that

. 32
q"® > 24log A, where A := AT -log(2K?).

min

We use the following inequality based on this choice of 7(d).
Lemma E.5. The above choice of v(9) satisfies
- 8
q" > AT -log (2K2q,.) , Vr > r(9).

min

Then, we have the following.
Lemma E.6. Conditioned on G and E (), the best arm a* is the champion in every round r > r(J).

We are now ready to prove Theorem

Proof of Theorem First, recall that in round r of C2B, any pair is compared ¢, = |¢" | times
where ¢ = T'/5. Since ¢¥ = T, C2B uses at most B rounds.

For the rest of proof, we fix § > 0. We now analyze the regret incurred by C2B, conditioned on
events G and E(§). Recall that P(G) > 1 — L . e 10s(€) =/ (K) (Lemma, and P(E(§)) >1-06

(Lemma|E.3). Thus, P(GN E(8)) > 1 — 6 — & - X 1o8(@)=F(K) Let Ry and R, denote the regret
incurred before and after round 7(§) (see Deﬁnition respectively.

Bounding R;. We can bound R; as in the proof of Theorem[I.1} so, we get

log K log K 1
R1§O(K2)~max{q-zg2-log<2g. ),q2 6}' (16)

Bounding R,. This is the regret in rounds r > r(§) + 1. By Lemma arm a* is the champion
in all these rounds. So, the only comparisons in these rounds are of the form (a*, j) for j € A.

Consider any arm j # a*. Let T be the total number of comparisons that j participates in after round
r(9). Let r be the penultimate round that j is played in. We can assume that r > () (otherwise arm
j will never participate in rounds after r(¢), i.e., T, 7 = 0). As arm j is not eliminated after round r,

Ii(r) = I"(r) < log(T') + f(K).

By Lemma [E.6| I*(r) = 0 (since a* is the champion, the summation is empty). So, we have
I;(r) <log(T) + f(K). Observe that

1

) Noe 5(r) a7

I;i(r) > DxL (ﬁa*,j(T% 5

We can lower bound Dxy, (ﬁa*’ (), %) as follows.

~ 1 ~ 1\? 1\2 A\
Dxr (Pa*,j(r% 2) > (pa*,j(T) - 2) > (paw‘ —cqr j(1) = 2) > (;)

where the first inequality follows from Pinsker’s inequality, the second inequality uses Lemma
and the final inequality uses the fact that c,- ;(r) < AT, which follows by the choice of 7(9).
Plugging this into (I7), we get

A?

=2+ Na (1) < log(T) + f(K)
which on re-arranging gives
4(log(T) + f(K
Ny (r) < Ao8(T) + 7))

A
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As 7 + 1 is the last round that j is played in, and j is only compared to a* in each round after r(9),

12g - (log(T) + (K))

Tj < Nowj(r+1) < Nowj(r) +2¢- No- (1) < A2
J

The second inequality follows since j is compared to a* in rounds 7 and r + 1, and the number of
comparisons in round 7 + 1 is |¢"T!| < ¢ (2¢,) < 2q - N4 j(r). Adding over all arms 7, the total
regret accumulated beyond round 7 () is

R2=ZTjAjSZO<q.(log(T)+f<K))>~ (18)

: : A
Jj#ar j#a*

Combining and (T8}, and using ¢ = T*/5, we obtain

K?log(K log K 1 TYB og(T

min

j#a* /
T8 . f(K)
O
o)
j#a*
This completes the proof Theorem|[E.1] O

F Hardware Specification for Computational Experiments

We conducted our computations using C++ and Python 2.7 with a 2.3 Ghz Intel Core 75 processor
and 16 GB 2133 MHz LPDDR3 memory.
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