
A Derivation of the overall objective1

The goal requires us to not only model the dependence between x and (w, z) for latent representation2

learning and data generation, but also model the dependence between y and w for controlling the3

property. We propose to achieve this by maximizing the joint log likelihood p(x, y) via its variational4

lower bound. Given an approximate posterior q(z, w|x, y), we can use the Jensen’s equality to obtain5

the variational lower bound of log p(x, y) as:6

log p(x, y) = logEq(z,w|x,y)[p(x, y, w, z)/q(z, w|x, y)]
≥ Eq(z,w|x,y)[log p(x, y, w, z)/q(z, w|x, y)]. (1)

The joint likelihood log p(x, y, w, z) can be further decomposed as log p(x, y|z, w) + log p(z, w).7

Two assumptions apply to our task: (1) x and y are conditionally independent given w (i.e., x ⊥ y|w)8

since w only captures information from y; (2) z is independent from w and y, equivalent to y ⊥ z|w.9

This gives us x ⊥ y|(w, z), suggesting that log p(x, y|w, z) = log p(x|w, z) + log p(y|w, z) =10

log p(x|w, z) + log p(y|w).11

Proof. Proof of x ⊥ y|(w, z) given x ⊥ y|w, y ⊥ z, y ⊥ w.12

Firstly we will prove that given z ⊥ y and z ⊥ w, we have y ⊥ z|w. Based on the Bayesian rule, we13

have:14

p(y, z|w) = p(z|y, w)p(y|w) = p(y|z, w)p(z|w) (2)
Since z ⊥ y and z ⊥ w, then we have p(z|w) = p(z) and p(z|w, y) = p(z). As a result, both sides15

of Eq. 2 can be cancelled as p(z)p(y|w) = p(y|z, w)p(z), causing p(y|w) = p(y|z, w). We multiply16

p(z|w) then we have p(z|w)p(p(y|w) = p(y, z|w). Thus, we have y ⊥ z|w17

Then, given that x ⊥ y|w, y ⊥ z, y ⊥ w and y ⊥ z|w, based on the Bayesian rule, we have18

p(x, y|w, z) = p(y|x, z, w)p(x|z, w) = p(x|y, z, w)p(y|z, w). This equation can be cancelled as19

p(y|w)p(x|z, w) = p(x|y, z, w)p(y|w) given y ⊥ z|w and y ⊥ x|w. Then we have p(x|z, w) =20

p(x|y, z, w), indicating that x ⊥ y|(w, z).21

Consequently, we can write the joint log-likelihood and maximize its lower bound as:22

log pθ,γ(x, y, w, z) = log pθ(x|w, z) + log p(w, z) + log pγ(y|w)

= log pθ(x|w, z) + log p(w, z) +

m∑
i=1

log pγ(yi|w′
i), (3)

where we define w′
i as the set of values in w that contribute to the i−th property to bridge the mapping23

w → y and allow property controlling.24

Proof. Proof of log pγ(y|w) =
∑m

i=1 log pγ(yi|w′
i).25

Since w′ aggregates all information in w, we have log pγ(y|w) = log pγ(y|w′), Also, since prop-26

erties in y are independent conditioning on w′, log pγ(y|w) = pγ(y|w′) =
∑m

i=1 log pγ(yi|w′) =27 ∑m
i=1 log pγ(yi|w′

i).28

Given qϕ(w, z|x, y) = qϕ(w, z|x) = qϕ(w|x) · qϕ(z|x) since the information of y is included in x,29

we rewrite the aforementioned joint probability as the form of the Bayesian variational inference:30

L1 =− Eqϕ(w,z|x)[log pθ(x|w, z)]− Eqϕ(w|x)[log pγ(y|w)]
+DKL(qϕ(w, z|x)||p(w, z)). (4)

Since the objective function in Eq. (3) does not achieve our assumption that z is independent from w31

and y, we decompose the KL-divergence in Eq. (4) as:32

Ep(x)[DKL(qϕ(w, z|x)||p(w, z))] = DKL(qϕ(w, z, x)||q(w, z)p(x))

+DKL(q(w, z)||
∏
i,j

q(zi)q(wj))

+
∑
i

DKL(q(zi)||p(zi)) +
∑
j

DKL(q(wj)||p(wj)), (5)
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where zi is the i-th variable of the latent vector z and wj is the j-th variable of the latent vector w.33

Then we can further decompose the total correlation term in Eq. (5) as:34

DKL(q(w, z)||
∏
i,j

q(zi)q(wj)) = DKL(q(z, w)||q(z)q(w))

+DKL(q(w)||
∏
i

q(wi)) +DKL(q(z)||
∏
i

q(zi)) (6)

Thus, we can add a penalty of the first term of Eq. 6 to enforce the independence between z and w35

and another penalty to the second term to enforce the independence of variables in w. This is the36

second term of our final objective with the hyper-parameter ρ to penalize the term:37

L2 = ρ1 ·DKL(q(z, w)||q(z)q(w)) + ρ2 ·DKL(q(w)||
∏
i

q(wi)), (7)

L1 + L2 is the overall objective of our model. Together with the third term as illustrated in the main38

text:39

L3 = −Ew′∼p(w′)[N (y|f(w′; γ),Σ)] + ||Lip(f̄(w′; γ)[j])− 1||2 (8)

Our final objective is L1 + L2 + L3.40

B Proof of Theorem 4.141

Proof. We will prove Theorem 4.1 by taking the derivative of the objective function in both Eq. (9)42

and Eq .(10) regarding w′. Suppose g1(w′) and g2(w
′) are objective function of Eq. (9) and Eq. (10),43

respectively. To simplify the proof, rewrite g1(w
′) and g2(w

′) in the matrix form as:44

g1(w
′) = −(ŷ − f(w′; γ))TΣ−1(ŷ − f(w′; γ))

g2(w
′) = −(ŷ − f(w′; γ))T (ŷ − f(w′; γ))

Then we take the derivative of g1(w′) on w′:45

∂g1(w
′)

∂w′ =
∂g1(w

′)

∂f(w′; γ)

∂f(w′; γ)

∂w′ = 0

Since f(w′; γ) is the prediction function, it is not necessary for f(w′; γ) to reach maximum or46

minimum value at w′ all the time. And the above equation can always been satisfied if ∂g1(w
′)

∂f(w′;γ) = 0.47

Then we have:48

∂g1(w
′)

∂f(w′; γ)
= 0

→ 2(ŷ − f(w′; γ))TΣ−1 = 0

→ (ŷ − f(w′; γ))T = 0

ŷi = f(w′; γ)[i], i = 1, ...,m, (9)

assuming Σ is positive definite. Similarly for g2(w′), we have:49

∂g2(w
′)

∂f(w′; γ)
= 2(ŷ − f(w′; γ)) = 0

ŷi = f(w′; γ)[i], i = 1, ...,m (10)

Thus, Eq 9 and Eq 10 share the same set of solution, suggesting that the solution to Eq. (10) is also a50

solution to Eq. (9).51

C The Overall Implementation52

In this section, we introduce the overall implementation of the aforementioned distributions to model53

the whole learning and generation process. All experiments are conducted on the 64-bit machine with54

a NVIDIA GPU, NVIDIA GeForce RTX 3090.55
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Table 1: Implementation details of CorrVAE on image data (dSprites and Pendulum). Conv represents
the layer of convolutional neural network; ConvTranspose represents the transposed convolutional
layer; ReLU represents the Rectified Linear Unit activation function; FC is the fully connected layer.

Layer Object encoder Property encoder Object decoder
Input x (image) x (image) z and w

Layer1 Conv+ReLU Conv+ReLU FC+ReLU
Layer2 Conv+ReLU Conv+ReLU FC+ReLU
Layer3 Conv+ReLU Conv+ReLU FC+ReLU
Layer4 Conv+ReLU Conv+ReLU ConvTranspose+ReLU
Layer5 FC+ReLU FC+ReLU ConvTranspose+ReLU
Layer6 FC+ReLU FC+ReLU ConvTranspose+ReLU
Layer7 FC FC ConvTranspose+ReLU
Output z w x (image)

Table 2: Implementation details of CorrVAE on molecular data (QAC and QM9). GGNN represents
the gated graph neural network; ReLU represents the Rectified Linear Unit activation function; FC is
the fully connected layer.

Layer Object encoder Property encoder Object decoder
Input G (molecule) G (molecule) z and w

Layer1 FC+ReLU FC+ReLU FC+ReLU
Layer2 GGNN+ReLU GGNN+ReLU GGNN+ReLU
Layer3 GGNN+ReLU GGNN+ReLU GGNN+ReLU
Layer4 FC FC FC (for both node and edge)
Output z w G (molecule)

We have two encoders to model the distribution q(w, z|x), and two decoders to model p(y|w) and56

p(x|w, z) for property control and data generation, respectively. For the first objective L1 (Eq. (3)),57

we use Multi-layer perceptrons (MLPs) together with Convolution Neural Networks (CNNs) or58

Graph Neural Networks (GNNs) for image or graph data, respectively, to capture the distribution59

over relevant random variables. For L2 in Eq. (4), since both q(z) and q(w) are intractable, we use60

Naive Monte Carlo approximation based on a mini-batch of samples to approach q(z) and q(w) [2].61

The details regarding the architecture of CorrVAE on image and molecular datasets are presented in62

Table 1 and Table 2, respectively. The dimension of each layer can be tuned based on different needs.63

The mask layer M is formed and trained with the Gumbel Softmax function, while h function64

in Eq. (5) is modeled by MLPs. The L1 norm of the mask matrix is added to the objective to65

encourage the sparsity of the mask matrix. The invertible constraint and modeling pγ(y|w′) in66

Eq. (7) are achieved by MLPs, by which f̄(w′; γ)[j] is approximated with j = 1, 2, ...,m, and67

f(w′; γ)[j] = f̄(w′; γ)[j] + w′
j , as in the constraint of Eq. (7). Since the function f̄(w′; γ)[j]68

approximated by MLPs contains operation of nonlinearities (e.g., ReLU, tanh) and linear mappings,69

then we have Lip(f̄(w′; γ)[j]) < 1 if ||Wl||2 < 1 for l ∈ L, where Wl is the weights of the l-th layer70

in f̄(w′; γ)[j]. || · || is the spectral norm and L is the number of layers in MLPs. To apply the above71

constraints, we use the spectral normalization for each layer of MLPs [1].72

For generating data with desired properties, we borrow the weighted-sum strategy to solve the73

multi-objective optimization problem in Eq. (11) to obtain the corresponding w∗. We formalize74

the inequality constraint in Eq. (11) into the KKT conditions. Then w∗ serves as the input to the75

generator of the trained model to generate objects with desired properties.76

The pre-trained models to predict properties given an image are trained on all data from dSprites77

dataset, and the structure of pre-trained models is as below (Table 3):78

D Quantitative evaluation79

The quality of generated molecules based on QAC and QM9 datasets is evaluated by validity, novelty80

and uniqueness. The results have been shown in Table 4. The quality of generated images is evaluated81

by negative log probability (− logProb) and FID as shown in Figure 5.82
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Table 3: Implementation details of pre-trained models on dSprites dataset to predict properties y.
Conv represents the layer of convolutional neural network; ConvTranspose represents the transposed
convolutional layer; ReLU represents the Rectified Linear Unit activation function; FC is the fully
connected layer.

Layer Model
Input Conv+ReLU

Layer1 Conv+ReLU
Layer2 Conv+ReLU
Layer3 FC+ReLU
Layer4 FC
Output y

Table 4: Generation quality of each method regarding validity, novelty and uniqueness on QAC dataset.
2*Method QAC QM9

validity novelty uniqueness validity novelty uniqueness
Semi-VAE 100% 100% 37.5% 100% 100% 82.5%

PCVAE 100% 100% 89.2% 100% 99.6% 92.2%
CorrVAE 100% 100% 44.5% 100% 91.2% 23.8%

Table 5: Generation quality of each method regarding validity, novelty and uniqueness on dSprites dataset.
Method − logProb Rec. Error FID
CSVAE 0.26 227 86.14

Semi-VAE 0.23 239 86.05
PCVAE 0.23 222 85.45

CorrVAE 0.22 229 85.17

Table 6: The avgMI achieved by each model on the dSprites and Pendulum datasets.

Method dSprites Pendulum
CSVAE 0.1578 0.1099

Semi-VAE 0.0118 0.0223
PCVAE 0.0119 0.0252

CorrVAE 0.0404 0.0468

Table 7: CorrVAE compared to state-of-the-art methods on QAC datasets according to MSE between generated
correlated properties and expected properties.

2*Method QAC QM9
logP MolWeight logP MolWeight

Semi-VAE 15.13 433447.6 50.55 47365.07
PCVAE 29.76 365098.7 2.33 4528.7

CorrVAE 24.01 356701.5 2.75 4476.54

Table 8: CorrVAE compared to Bayesian optimization on dSprites and Pendulum datasets according to MSE
between predicted correlated properties and true properties.

2*Method dSprites Pendulum
size x+y position light position shadow position

BO 0.0033 0.0062 19.2387 17.2858
CorrVAE 0.0016 0.0066 15.3900 6.0250

We also conducted additional experiments by predicting properties with the whole w and performing83

property control via Bayesian optimization. In this case w′ and the mask layer are dropped. The84

results that compare CorrVAE and the Bayesian optimization-based model (BO) are shown in Table 8.85

Based on the results, CorrVAE achieves smaller MSE on both light position and shadow position86

of Pendulum dataset. Specifically, for light position, MSE achieved by CorrVAE is 15.3900 which87

is much smaller than 19.2387 obtained from the Bayesian optimization-based model. For shadow88

position, MSE achieved by CorrVAE is 6.0250 which is much smaller than 17.2858 obtained from89

the Bayesian optimization-based model. Besides, on dSprites dataset, CorrVAE achieves the MSE90

of 0.0016 for the size which is smaller than 0.0033 obtained from the Bayesian optimization-based91

model. In addition, CorrVAE achieves comparable results on x+y position with the Bayesian92

optimization-based model. The results indicate that CorrVAE has better performance than the93
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Figure 1: Visualize generated images from CorrVAE.

(a)

(b)

(c)

(d)

Figure 2: Show case of eight generated images in a batch corresponding to Figure 4 in the main
text. (a) shape=1 (square), size=0.9, x position=0.8, y position=0.8, x+y position = 1.6; (b) shape=1
(square), size=0.9, x position=0.6, y position∈ [0.3, 0.4]; (c) shape=2 (ellipse), size=0.9, x posi-
tion=−∞, y position=0.4; (d) shape=2 (ellipse), size=0.5, x position=−∞, y position= ∞

Bayesian optimization-based model on controlling independent variables (i.e., size in dSprites, light94

position in Pendulum) and correlated properties (shadow position in Pendulum).95

E Qualitative evaluation96

We evaluate the property controllability of our model by traversing the latent variables in w that97

control corresponding properties. In addition to controlling all five properties of the dSprites dataset,98

we also conducted a naive experiment to control three properties size, x position and x+y position99

(Figure 4 and Figure 3). Figure 4 shows that mask matrix learned by the model indicating latent100

variables that control corresponding properties. Specifically, we argue that two variables, w6 and101

w8 can only control y position and x position, respectively, as indicated by the mask matrix learned102

from the training process. As shown in Figure 3 and Figure 5, if we traverse w3 that only controls103

x position (Appendix Figure 4), the horizontal position of the object will move from the left to the104

right (Appendix Figure 3 (a)) while x+y position keeps unchanged but y position cannot be controlled105

since its information is not captured by w and the mask matrix.106

In addition to traversing latent variables, we also performed multi-objective optimization on images107

according to different constraints of properties (Figure 5). Since we do not control shape of those108

images so that this property can go random in the generation process, while all other properties are109

well controlled by the multi-objective optimization framework.110

Moreover, we also traverse the latent variables in w′ by simultaneously traversing on latent variables111

in w corresponding to the associated w′ and visualize how the relevant property changes in Figure 6.112

As is shown in Figure 6 (a), the shape of the pattern changes from ellipse to square as we traverse on113

w′
1. In Figure 6 (b), the size of the pattern shrinks as we traverse on w′

2. In Figure 6 (c), the x position114

of the pattern moves from left to right as we traverse on w′
3. In Figure 6 (d), the y position of the115
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Figure 3: Generated images of corrVAE by traversing three latent variables in w for dSprites dataset
according to the mask matrix (Figure 4). The corresponding properties are illustrated at the top right
corner of each image. (a) Traversing on the w3 that only controls x position; (b) Traversing on the
w5 that only controls size of the object; (c) Traversing on the w7 that simultaneously controls both x
position and x+y position

0 0 0 0 1 0 0 0
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Figure 4: The mask matrix learned by the training process. Each column corresponds to one latent
variable in w. Each row corresponds to a property. In our experiments setting, three properties, scalre,
x position and x+y position, are handled. x position and x+y position are correlated properties

pattern moves from top to bottom as we traverse on w′
4. In Figure 6 (e), the x position, y position116

and x+y position of the pattern simultaneously change as we traverse on w′
4, where x position moves117

from left to right, y position moves from bottom to top and x+y position increase.118
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Figure 5: Generation of dSpirates images under different constraints. Properties extracted via pre-
trained models are illustrated at the top right corner of each image. (a) scale=0.5, x position=0.5, x+y
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Figure 6: Generated images of corrVAE by traversing five latent variables in w′ for dSprites dataset
according to the mask matrix (Figure 5). The corresponding properties are illustrated at the top right
corner of each image. (a) Traversing on the w′

1 that controls shape; (b) Traversing on the w′
2 that

controls size; (c) Traversing on the w′
3 that controls x position; (d) Traversing on the w′

4 that controls
y position; (e) Traversing on the w′

5 that controls x+y position.
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