
A Supplementary for “Discovering Design Concepts for CAD Sketches”

A.1 The complete list of L0 types

We provide the complete list of L0 types in List 2. These types are constructed based on the given
data types from the SketchGraphs dataset [17]. Note that in the current implementation we do
not distinguish sub-primitive references that point to different parts of a primitive, but rely on the
predicted geometric closeness of primitive parts to tell them in the post-process, as we find the
geometric predictions are generally quite accurate for this purpose. On the other hand, we note that
the extension of references into primitive parts can be trivially achieved by turning primitives into
functions and augmenting them with arguments (similar to how we model constraints), such that each
argument corresponds to a primitive part; the constraint references can then pinpoint to primitive
parts through argument passing (Sec. 4.2).

List 2: The complete list of L0 types considered in this work.
// Basic data types
Construction, Length, Angle, Coord, Ref
// L0 primitive types
Line→ bdash: Construction, cstart_x, cstart_y, cend_x, cend_y : Coord
Circle→ bdash: Construction, ccenter_x, ccenter_y : Coord, lradius : Length
Point→ bdash: Construction, cx, cy : Coord
Arc→ bdash: Construction, ccenter_x, ccenter_y : Coord, lradius : Length , astart, aend : Angle
// L0 constraint types
Coincident→ λ(r1, r2 : Ref).{}
Distance→ λ(r1, r2 : Ref).{ldist : Length}
Horizontal→ λ(r1 : Ref).{}
Parallel→ λ(r1, r2 : Ref).{}
Vertical→ λ(r1 : Ref).{}
Tangent→ λ(r1, r2 : Ref).{}
Length→ λ(r1 : Ref).{ldist : Length}
Perpendicular→ λ(r1, r2 : Ref).{}
Equal→ λ(r1, r2 : Ref).{}
Diameter→ λ(r1 : Ref).{ldist : Length}
Radius→ λ(r1 : Ref).{ldist : Length}
Angle→ λ(r1, r2 : Ref).{aang : Angle}
Concentric→ λ(r1, r2 : Ref).{}
Normal→ λ(r1, r2 : Ref).{}

A.2 Implementation details

Sketch encoding format In Sec. 4 we described how sketches are encoded to allow network learning;
here we present more implementation details.

We encode the input sketch S as a series of primitive tokens followed by a series of constraint tokens,
with these tokens supplemented by learned positional encoding according to their indices in this
sequence (Sec. 4.1). We additionally insert learnable START, END and NEW tokens at the front of the
sequence, the end of the sequence, as well as between every encoded primitive/constraint respectively,
to produce the complete sequence.

Each primitive is represented by two consecutive tokens: a L0 type token and a parameter token. The
L0 type of primitive is encoded by a 256-dim embedding, obtained by an embedding layer denoted
as enctype. The parameters of a primitive are encoded in the parameter token; compared with using
different numbers of tokens for different primitive types that previous autoregressive baselines do
[6, 13, 18], our one-token parameter encoding allows straightforward matching with a target primitive
even if the predicted primitive type does not match the target, which simplifies training. In particular,
we use a schema shown in Fig. 7 to encode the parameter values, where each basic data type is
represented by a 14-dim code that is obtained by embedding the quantized parameter value, and
all slots of a specific primitive type are used while the rest slots are set zero. To represent that the

13

Line Point Circle Arc

bdash csx csy cex cey bdash cx cy bdash cx cy lrad bdash cx cy lrad astart aend

Figure 7: Parameter code schema. A parameter code contains 18 tokens, each of 14 dims, that are
concatenated and zero-padded to 256 dims. For a particular primitive type, only tokens corresponding
to the specified type are used in the parameter code, the rest tokens are reset to zero. We did not
allocate slots for constraint parameters in the current implementation; in comparison, previous works
[13, 18] simply omit constraints with parameters.

resultant parameter token belongs to a specific primitive type, we augment parameter token with the
type token by summing the two vectors to produce the final parameter token (Sec. 4.1).

Each constraint is represented by a type token and several reference tokens. The constraint type token
is obtained through the same embedding layer enctype as primitives. To encode a reference, we use a
256-dim embedding to encode the primitive index in this expanded sequence, obtained through the
embedding layer encref . We omit constraint parameters in the current implementation, and defer
their inference to post-processing according to the positions of predicted primitives; in comparison,
most previous works [13, 18] have simply skipped constraint types with parameters.

Sketch parameter decoding decparam() has a mirrored structure of encparam(). It takes a latent
parameter code as input and decodes it into a 256-dim code (Fig. 7), which contains several segments
corresponding to different primitive types. When doing type casting (Sec. 5), the segment corre-
sponding to the target type is taken for parameter decoding. Each primitive property is represented
by a 14-dim embedding code, from which a quantized property value is recovered by an inverse-
embedding layer; during this inverse-embedding process, the logits are processed by argmax to query
the quantized value. Following previous works [6, 13, 18], we always work with quantized attribute
values as categorical variables during network training and inference.

Normalization, augmentation and quantization We normalize all sketches inside a 2× 2 square
centered at the origin, and remove duplicated sketches by rasterizing into 128× 128 binary valued
images and removing those with the same images. We apply random shrinking augmentation with
scaling factors of 0.5 ∼ 0.8. The continuous basic data types (List 2) are uniformly quantized; in
particular, we assign 30 bins for angle, 20 bins for length and 80 bins for coordinate.

Network and training details The detection network is a transformer encoder-decoder network,
with the encoder/decoder having 12 layers, 8 attention heads and latent dimension of 256.

The structure generation network takes a library code q′ ∈ L1 and generates the L0 type elements [t0i]
within and a matrix representing the compositionRT1 of [t0i] and arguments. Specifically, the 256-dim
library code q′ first passes through an MLP4 of 3 layers to expand to kL0 × 256 dims, i.e. kL0 codes
representing [t0i] elements. Then each code passes through another MLP of 3 layers (i.e. dectype)
to output the discrete probabilities of L0 types that t0i assumes. To generate the composition matrix
RT1 , we use another MLP of 5 layers to expand the library code to a (2kL0+karg)× (kL0+karg)
matrix and apply softmax on each row, as detailed in Sec. 4.2.

The parameter network generates parameters to instantiate concepts. It first expands each of the
kqry concept instance codes [qi] into kL0 parameter latent codes, which are further added with the
corresponding parameter type embeddings obtained from structure generation network and fed into
a transformer decoder to generate explicit parameters. The transformer decoder here has the same
hyper parameters as the concept detection decoder (i.e. 12 layers, 8 attention heads, and 256 latent
dimension). The decoder transforms each group of kL0 latent parameter codes by cross-attending
to contextualized input sequences [e′

t0i
], and finally maps them to parameter tokens as described in

Fig. 7 through decparam, which are further decoded into probabilities over quantized basic data types
by corresponding inverse embedding layers.

We implement all modules in Pytorch, and use the Adam optimizer with a learning rate of 10−4 to
train the network for 160 epochs on 4 V100 GPUs, which takes 2 days to complete.

4Unless otherwise specified, all MLPs used in this paper have uniform hidden dimensions as the input
dimension and ReLU activation after each hidden linear layer.

14

Library size, EMA code update and dead code revival In our experiments, we use a library of
1000 candidate concepts for L1. We follow [16] to replace the first term of concept quantization loss
(i.e. ||sg(qi)− q′i||) with exponential moving average (EMA) updates of q′ ∈ L1. Specifically, for
each code q′i, we define two accumulated variables ni ≥ 0 and mi ∈ Rd, which are initialized as
1 and a random unit vector, respectively. They are later updated in each gradient descent iteration
following the rules:

ni := γni + (1− γ)Ni (8)

mi := γmi + (1− γ)
∑
j

qi,j (9)

q′i :=
mi

ni
(10)

where {qi,j} are Ni detection queries that select q′i as the closet concept prototype in this iteration.
We set the decay rate γ = 0.99 and the commitment cost coefficient β = 1 in all our experiments.

In addition, we find that the concept quantization process may suffer from codebook collapse where
all [qi] select to few codes of L1, which impairs the capability of the model. To solve this problem,
in the training process we use dead-code revival [16] to periodically (every 100 mini-batches) find an
unused code in L1 and replace it with the q who has farthest distance to its closest code q′.

A.3 Autoregressive baseline implementation detail

Following [24, 13, 18], the autoregressive baseline contains two modules, the primitive model that
generates primitives sequentially and the constraint model that takes primitives as input and generates
constraints sequentially. The primitive model is an autoregressive transformer decoder of 12 layers, 8
attention heads and latent dimension 256. The constraint model is a transformer encoder-decoder,
where the encoder contextualizes input primitives, and the decoder is an autoregressive model
generating constraints. Constraint reference to primitives is implemented by computing dot product
correlation between the generated reference token and contextualized primitive tokens produced by
the encoder, following the Pointer Network design [23]. The constraint model encoder/decoder have
the same hyper-parameters as the primitive model.

A.4 More results

We present more results on design intent interpretation and auto completion. In Fig. 8, we show
more results of how raw sketches are parsed with learned concepts, where primitives are colored
according to their encapsulating concepts, and constraint graphs are visualized to show the modular
concepts. In Fig. 9 we show more such design intent interpretation results without constraint graphs.
Fig. 10 presents more auto-completion results, where again we compare with baseline autoregressive
approach and demonstrate better interpretability and more regular completions.

A.5 Concept library analysis

Fig. 11(a) shows the frequency of how often our learned library concepts are used in the test dataset.
The distribution shows a long-tail pattern, which is expected because the diversity of sketches
demands a wealth of modular sketch concepts that individually may not be used extensively. We
provide more concrete concepts and corresponding sketches containing these concepts in Fig. 12.
These concepts are arranged according to appearance frequency (from high to low) as marked with
red points in Fig. 11(a). The most frequently used concepts are rectangles with different constraint
variants due to their high abundance within regular sketches. Besides, concepts with simple structures,
e.g. few lines connected together by coincidence, are generally more frequently used than those with
complex structures, as the simple structures are more flexible and can fit in diverse sketches.

Fig. 11(b) shows the complexity of learned library concepts in terms of how many L0 instances
are contained in a concept. We can see that there are a small number of degenerate concepts with
empty L0 instances and trivial concepts with only one L0 instances. The empty concepts serve as
placeholder for filling up the gaps between small sketches and the maximal graph of kqry concepts.
The trivial concepts exist because we always convert a raw sketch into a set of L1 concepts, and for
those L0 elements of the raw sketch that do not fit into any modular concept, they will be encapsulated
with such trivial L1 concepts for the sake of complete reconstruction.

15

Line

Line
Coinc.

Line
Coinc.

Parallel
Distance

Line

Perpend

Coinc.
Coinc.

Horizon

Line
Coinc.

Line

Coinc.

Line
Parallel

Distance Line

Coinc.

Line

Coinc.

LineParallel

LineCoinc. Line
Coinc.

Horizon
Perpend

Coinc. Coinc.

Horizon
Point

Coinc.

Parallel
Distance

Horizon

Perpend

Coinc.
Coinc.

PointCoinc.

Parallel
Distance

Circle LineCoinc.

LineCoinc.
Circle

Coinc.

Horizon
Angle

Equal
Length

Circle
Coinc.

Line

Tangent

Coinc.

Line
Tangent
Coinc.

EqualRadius

Tangent

Coinc.

Tangent

Coinc.

Line

Circle
Tangent

Coinc.

Out arg: 0
Coinc.

Tangent

Coinc.

In arg: 0

In arg: 0

In arg: 1

Out arg: 0 Out arg: 1
Equal

Circle

Line

Coinc. Line

Coinc.

Length

Horizon

Angle
Equal

Circle

Coinc.

Line

Out arg: 0Coinc.

Tangent

Out arg: 1Tangent

Coinc. Radius

Line

Line

Coinc.

Line

Coinc.

Parallel

Line

Perpend

Coinc. Coinc.
Horizon

Line
Coinc.

Line
Parallel

Line
Coinc.

Line

Coinc.

Horizon
Perpend

Coinc.

Coinc.
Parallel

Line LineParallel
Line

Coinc.

LineCoinc.

Coinc.

Perpend
Coinc.

Horizon

Parallel

In arg: 0

Out arg: 0 Out arg: 1Coinc.

In arg: 1

Line

LineCoinc. Line

Coinc.

Parallel

Line

Coinc.

Perpend Coinc.
Horizon

Line

Line
Coinc.

Line

Vertical

LineCoinc.

Coinc.

Coinc.

Out arg: 1Coinc.

In arg: 0

In arg: 1
Out arg: 0

Out arg: 1Vertical

In arg: 1

Line Line

Coinc.

Line Coinc.

Line

Coinc.

Out arg: 0

Vertical

Distance

Out arg: 1Coinc.

Perpend

Arc

LineCoinc.

Tangent

Line

Coinc.

Tangent

Point Coinc.

Coinc.
In arg: 0

In arg: 1

Vertical

Horizon.

Horizon.

Horizon.

Line
LineCoinc.

LineVertical

LineVertical

LineCoinc.

LineCoinc.

Coinc.

Horizon

Coinc.
Vertical

LineCoinc.
Horizon

Line
Coinc.

Vertical

Point

Coinc.

Arc

Tangent

Coinc.

Line

Coinc.

Tangent

Coinc.

Horizon

LineCoinc. Perpend
Coinc.Vertical

Equal

Line

Vertical

Line

Coinc.

Out arg: 0Coinc.

Line
Coinc.

Horizon

In arg: 1

In arg: 0

In arg: 1Out arg: 0 Out arg: 1Coinc.

Line
Line

Coinc. Line

Coinc.
Parallel

Line

Coinc.

Perpend

Coinc.

Horizon

Coinc.

Line

Line

Coinc.

Line

Coinc.

Parallel

Line

Perpend

Coinc. Coinc.
Horizon

Line

Coinc.
Line

Coinc.

Equal

Coinc.

Line
Coinc.

Vertical

Arc LineTangent

ArcTangent

Coinc.

Out arg: 0

Coinc.

Tangent

In arg: 0

In arg: 0In arg: 1

Line

Out arg: 0Coinc.

Tangent

Out arg: 1Tangent

Coinc. Radius Circle Out arg: 0
Coinc.

Out arg: 1
Coinc.

Coinc.

Circle Arc
Coinc.

Circle ArcCoinc.
LineTangent

Coinc.

Line
Tangent

Coinc.

ArcCoinc.
Coinc.

Tangent

Circle ArcCoinc.
Tangent

Coinc.

Tangent

Coinc.

Circle
Equal

Out arg: 0Coinc.

In arg: 1

Circle

Radius

Radius
In arg: 1

Out arg: 0

Out arg: 1

In arg: 0

Circle

Coinc.

Circle

Equal
Circle

In arg: 0

Circle
LineCoinc.

LineCoinc.

Line
Coinc.

Angle Angle
Out arg: 1

Vertical

Coinc.

Equal

Coinc.

CircleEqual
Out arg:1

Coinc.

Coinc.

Circle LineCoinc.

Line

Coinc.

LineCoinc.

Vertical

Angle

Angle

Circle

Coinc.
CircleCoinc.

Circle
Coinc.

Circle

Coinc.

Circle
Coinc. Circle

Coinc.

Radius
Equal

Equal

Radius
Equal

Equal

Horizon

Line

Line
Coinc.

Line

Coinc.

Out arg: 1Coinc.

In arg: 0

Line Coinc.

Coinc.In arg: 0

In arg: 1

Out arg: 0 Out arg: 1Coinc.

Line

Line
Coinc.

Line
Coinc.

Out arg: 0Parallel Coinc.

LineCoinc.

Coinc.

Line

Line
Coinc.

Horizon

LineCoinc.

Coinc.
Coinc.

Coinc.

Parallel
Line

Line
Line

Line

Coinc.
Coinc.

Coinc.

Line

Line

Coinc.
Line

Coinc.

Parallel

Arc

Tangent

Arc

Tangent

Line

Perpend

Coinc.

Coinc.

Coinc.
Coinc.

Horizon

Line
Coinc.

Coinc.

Line

Parallel

Line
Coinc.

Line

Coinc.
Coinc.

Coinc.

Horizon

Perpend

Coinc.

Coinc.

Parallel

Line LineParallel

Line

Coinc.

Line
Coinc.

Coinc.

Perpend

Coinc.

Horizon
Parallel

In arg: 0

In arg: 1

Out arg: 0 Out arg: 1Coinc.

In arg: 1
Line

LineCoinc.

LineCoinc.
Parallel

LineCoinc.
Perpend

Coinc.
Out arg: 1

Horizon

Coinc.

Arc
Out arg: 0Coinc.

Tangent

Out arg: 1
Coinc.

Arc

Coinc.

Tangent

Coinc.

Line
Coinc.

Coinc.

Line
Line

Coinc.
Line

Coinc.

Parallel

Distance

Line
Coinc.

Perpend Coinc.

Horizon

Out arg: 0 Out arg: 1Horizon

In arg: 1

In arg: 1

Line

Line
Parallel Line

Coinc.

Coinc. Coinc.

Perpend
Horizon

In arg: 0

Line

Point

Line
LineParallel Line

Coinc.

Coinc.
Perpend Horizon

Line

Coinc.

Parallel
Coinc.

Coinc.

ParallelCoinc. Out arg: 1

Out arg: 1

Out arg: 0Coinc.
Distance

Distance

Point Out arg: 0

Figure 8: Design intent parsing. Each example shows the input raw sketch and corresponding
constraint graph (in black), as well as our interpreted sketch made of modular concepts and corre-
sponding modular constraint graph, where primitives and constraints are colored according to their
encapsulating concepts.

16

Figure 9: Design intent parsing without showing the constraint graphs. In each sketch example, L0

primitives of the same color belong to the same sketch concept.

17

Figure 10: More results of auto-completion. Each example shows the input partial sketch (black)
and groundtruth completion (red), result of the autoregressive baseline, and our result (colored by
concepts). Our completion results show better interpretability and regularity.

18

(a) (b)
Figure 11: Statistics about the learned library concepts. (a) Library frequency distribution. The
horizontal axis shows the 1000 L1 library concepts learned and sorted according to their frequencies
in the test dataset. The vertical axis shows the frequency value in log-scale. The majority of learned
concepts have stable but not very high occurrence frequencies, meaning they follow a long-tail
distribution as expected. Concepts denoted by red points on the curve are visualized in Fig. 12. (b)
Library complexity histogram. The horizontal axis is the number of L0 instances contained in a
concept, and the vertical axis is the number of concepts of a specific complexity. We can see that
degenerate (i.e. empty) or trivial (i.e. size 1) concepts are rare among the whole learned library.

A.6 Parameter refinement with constraint solver

The errors in generated primitive parameters (e.g. due to quantization of basic data types) can be
mitigated by applying constraints with a constraint solver provided by OnShape [15]. In Fig. 13, we
show examples of sketches before and after refining primitive parameters with constraint solver.

A.7 More ablation results

kqry Primitive Constraint Modular(%)

5 0.994 0.766 50.8
6 0.994 0.808 36.0
8 0.991 0.845 32.6
10 0.998 0.894 15.9
12 0.999 0.918 14.9

Table 2: Query number kqry ablation. F-scores
are reported for primitives and constraints.

karg Primitive Constraint Modular(%)

1 0.993 0.666 52.6
2 0.993 0.766 50.8
3 0.990 0.7577 18.5
4 0.994 0.776 7.1

Table 3: Argument number karg ablation. F-
scores are reported for primitives and constraints.

L1 size Primitive Constraint Modular(%)

50 0.970 0.581 48.1
100 0.980 0.600 48.8
500 0.989 0.735 49.2
1000 0.994 0.766 50.8
2000 0.995 0.779 50.6

Table 4: L1 library size ablation. F-scores are reported for primitives and constraints.

To evaluate the impact of hyper parameters such as the number of concept queries kqry, arguments
karg and library size L1, we train our model under different kqry, karg and L1 sizes on the auto-
encoding design intent interpretation task.

When changing kqry, we also adjust kL0 the number of L0 elements each concept contains, so that
the total number of generated L0 elements, i.e. kqry × kL0 , is unchanged. The evaluation results on
adjusting kqry, karg, L1 are shown in Table 2, Table 3 and Table 4 respectively.

19

In arg: 1 In arg: 0

Line
Line

Coinc.
Line

Coinc.

Line
Coinc.

Coinc.Coinc.

Line
LineCoinc.

Out arg: 1
Coinc. Out arg: 0

Coinc.

In arg: 0In arg: 1

Circle

Circle Circle
Equal

Out arg: 0
Equal

Equal

Circle
Equal

Line ArcCoinc.
Radius

Line
Coinc.

Out arg: 1Coinc.
Arc

Coinc.
Coinc.

Out arg: 0Coinc.

In arg: 0

In arg: 1 Arc

Radius
Out arg: 0Coinc.

Arc
Coinc.

Coinc.
Radius

Arc Out arg: 1Coinc.

Line

Line

Line

Out arg: 0

Coinc.

Perpend Out arg: 1

Coinc.

In arg: 0

Line

Line

Coinc.
Line

Coinc.

Parallel

Line
Coinc.

Perpend Coinc.

Line

Line

Parallel
Line

Coinc.

Line

Coinc.

Coinc.
Perpend

Coinc.

Horizon
Parallel

In arg: 1

Line Line
Coinc.

Out arg: 0Perpend
Line

Coinc.

Perpend

LineCoinc.
Out arg: 1

Coinc.In arg: 0

In arg: 1

Line
Line

Coinc.

Line
Equal

Out arg: 1
Coinc.Line

Coinc.

Equal

Coinc.

Out arg: 0
Equal

In arg: 0

Arc LineCoinc.

LineCoinc.

Line
Coinc.

Coinc.

Coinc.

Out arg: 0
Coinc.

Coinc.

Out arg: 1
Coinc.

Figure 12: Examples of learned library concepts and their corresponding sketch instances. The
concepts are sorted by their occurrence frequency (high to low) in the test set, and correspond to the
red dots marked on the distribution curve of Fig. 11.

20

Figure 13: Parameter refinement with constraint solver. Generated sketches have parameter
inaccuracies (upper row); constraint solver refines the sketches by applying generated constraints and
fitting the primitives together properly (lower row).

kqry = 10

kqry = 8

kqry = 6

kqry = 5

Figure 14: Design intent interpretation trained with different concept query numbers kqry.
Larger kqry leads to less modular concepts.

21

karg = 4

karg = 3

karg = 2

Figure 15: Design intent interpretation trained with different argument numbers karg. Larger
karg leads to less modular concepts.

From Table 2 we can see that adding more concept queries makes the model more expressive and
flexible, demonstrated as the increasing constraint F-scores; on the other hand, this comes with a cost
of hurting modularity, as a sketch can be decomposed into more granular components.

From Table 3 we see that adding more arguments karg than default 2 does not result in a significant
improvement in constraint F-score, but leads to a significant decrease in modularity, suggesting the
current default argument number is sufficient. On the other hand, decreasing the number of arguments
leads to a significant drop in constraint F-score but does not achieve obviously higher modularity.

We visualize examples of design intent interpretation for different kqry and karg in Fig. 14 and Fig. 15
respectively, to give an intuitive sense of the above numeric results especially on modularity.

From Table 4 we can see that adding more L1 library makes the model more expressive and flexible,
showing increasing constraint F-scores. However, such improvement becomes marginal when more
libraries are introduced, as the newly introduced libraries are mainly used to capture structures that
rarely appear and have little impact on the overall results (intuitively, they mainly continue the fall-off
trend of far-right tail regions of the frequency distribution shown in Fig. 11(a)). On the other hand,
the modularity maintains at roughly the same level throughout the changes over library size.

A.8 Image-conditioned generation

We extend our model to image-conditioned generation, where we are interested in accurately recover-
ing a parametric sketch from an image of hand-drawn sketch. For comparison, we also extend the
auto-regressive baseline to this image-conditioned generation.

Following [13, 18], we use a ViT style encoder to condition the generation on images. Specifically,
the input sketch image of size 128× 128 is partitioned into non-overlapping square patches of size
16× 16. The image patches are flattened and pass through an MLP of 3 layers to produce a sequence
of 64 image tokens (each of dimension 256), and then feed into a transformer encoder to produce
contextualized image embeddings that the detection decoder cross-attends to. For autoregressive
baseline, we similarly augment the primitive model with such an image encoder and use cross-
attention to image tokens in the autoregressive primitive decoder. The ViT style image encoder used
here has the same hyper parameters as the other transformer modules discussed above (i.e. 12 layers,
8 attention heads, 256 latent dimension).

We train our model with learning rate of 3× 10−4 for 200 epochs and the autoregressive baseline
with the same learning rate for 400 epoch to convergence. We used the xkcd packages in mathplotlib
to simulate sketches of hand-drawn style.

22

Figure 16: Image conditioned generation. Each example shows the input sketch image, the
reconstruction result by autoregressive baseline, and our result.

Config Primitive Constraint

Autoregressive 0.575 0.301
Ours 0.711 0.368

Table 5: Image-conditioned generation. F-scores are reported for primitives and constraints.

We provide quantitative evaluation in Table 5 and visual comparison in Fig. 16, both showing that our
model has superior performance than the autoregressive baseline, which again can be attributed to the
more regular generation through sketch concept composition.

A.9 Experiment on “CAD as Language” dataset

We also conduct preliminary experiments of our method on the dataset of [6], which comprises of
millions of CAD sketches retrieved from OnShape [15]; in comparison, the SketchGraphs dataset
[17] on which we have done the other experiments is similarly collected from OnShape but has a
smaller scale. We filter the dataset by removing trivial or semantically ambiguous sketches and
confine the sketch complexity such that the total number of primitives and constraints is within
[20, 90]. In the end, we obtain about 2.5 million sketches and use 2.3 millions for training and the
rest for testing. In comparison, there are about 1 million samples from SketchGraphs dataset used in
the other experiments, where the maximum sketch graph size is 50 (Sec. 6).

To accommodate the increased complexity of this dataset, we increase the query number kqry to
6, the L1 library size to 15, and leave the rest hyperparameters unchanged. Examples of learned
libraries and corresponding sketches are presented in Fig. 17. Examples of design intent parsing
results are given in Fig. 18. We can see that our method obtains new modular concepts and parses
more complex sketches; these results show that our framework works similarly on this new dataset.

23

In arg: 1 Out arg: 0

Line

Line

Coinc.

LineCoinc.

Line

Parallel

Length
Parallel

Perpend

Coinc.

Coinc. Length

Line

Line
Parallel

Circle

Midpoint Midpoint

Diameter
Out arg: 1

MidpointPoint Coinc.

Circle
Coinc.

In arg: 0In arg: 1

In arg: 1In arg: 0

Circle

Diameter CircleCoinc.

Out arg: 0Coinc.

Diameter

In arg: 1

Line

Length

LineParallel

Out arg: 0

Midpoint

Midpoint

Coinc.

Out arg: 1
Coinc.

Horizon

Point

Line LineCoinc.

Line

Coinc.
Out arg: 1

Tangent

Tangent

Out arg: 0
Coinc.

Coinc.

Tangent

Tangent

In arg: 1

In arg: 1 Line ArcCoinc.

Line Coinc.
ArcCoinc.

Out arg: 0

Coinc.

Figure 17: Examples of library concepts learned from the CAD as Language dataset [6] and
their corresponding sketch instances. Different instances of the same library are highlighted in
different colors.

A.10 Broader impact

This work potentially improves the efficiency of CAD sketch design, which however does not replace
other critical procedures of CAD. For example, the discovered concepts do not necessarily meet
structure safety constraints, and should be subject to checking and validation procedures according to
specific applications. The general methodology of program library induction presented in this work
facilitates more structured and interpretable machine learning, which may enhance human and AI
interaction but has no direct negative social impacts.

24

Line LineParallel
Distance

Out arg: 1

Horizon
Coinc.

Out arg: 0Coinc.

In arg: 0In arg: 1

Point

In arg: 1

Line

LineCoinc.

Line

Distance

Parallel Line

Coinc.

Coinc.

Perpend Distance

Parallel

Coinc.

In arg: 0

Line

Length

Line
Coinc.

LineParallel Line
Perpend

Coinc.

Coinc.
Parallel

Coinc.

Length

Circle

Diameter

Out arg: 0Coinc.

Out arg: 1Tangent

In arg: 0

Line

Line

Parallel Out arg: 1

Coinc.

Length
Perpend

Out arg: 0Coinc.

Point

Point

Out arg: 0 Distance

Length

In arg: 1

Distance

Line

Midpoint
LineParallel Line

Coinc.

Line

Coinc.

Point

Distance

Length Coinc.

Perpend

Coinc.

Line

Distance

Length
Parallel

Circle
Coinc.

Length

Line

Coinc.

Perpend Line

Coinc.

Length
Parallel

Point

Line

Parallel

Coinc.
Coinc.

Point

Line

Line
Parallel

Distance LineCoinc. Line
Coinc.

Tangent

Coinc.

Perpend

Coinc.

Parallel
Distance

Diameter

Coinc.
In arg: 1

In arg: 1

Line LineCoinc.

Line
Coinc.

Line
Parallel

Parallel

Coinc.
Perpend Line

LineCoinc.

Line

Coinc.

Line

Parallel

Distance

Distance

Parallel

Coinc.

Perpend

Line LineParallel
Out arg: 0Coinc.

Out arg: 1
PerpendLine Out arg: 0Distance

Vertical

Distance

Distance

Out arg: 1In arg: 1

Out arg: 1

Perpend

Coinc.

Coinc.

Coinc.

Line

Coinc.

Line

LineDistance
Parallel

Line

Coinc.

Line

Coinc.

Vertical

LineCoinc.

Line
Coinc.

Perpend

Line
Coinc.

Line
Coinc.

Perpend

Parallel

Distance

Parallel

Line

Parallel

Distance Coinc.

Line
Parallel
Distance

Coinc.
Length

Circle

Diameter

Circle

PointCoinc.

Diameter

Line

LineParallel

Out arg: 1Horizon

In arg: 0

In arg: 0

In arg: 1

Circle

Diameter

Out arg: 0

Coinc.
Circle

Circle

Diameter

Out arg: 1

Coinc.

Circle Coinc.
Diameter

Line LineParallel Out arg: 0
Coinc.

Out arg: 1
Coinc.

Coinc.

Perpend

Line LineCoinc.

Line

Parallel

Line

Coinc.

Coinc.

Perpend
Parallel

Coinc.
Coinc.

Midpoint

Diameter

Coinc.

Circle

Diameter CircleCoinc.

PointCoinc.

Diameter

Line

LineParallel

LineEqual

Line
Coinc.

Circle

Coinc.

Circle

Coinc.

Coinc.

Perpend

Coinc.

Circle
Coinc.

CircleCoinc.

Line

Horizon

Parallel

Diameter

Diameter

Diameter

Diameter

Line

Coinc.

Perpend Line

Coinc.

Parallel
Line Parallel

Equal
Coinc.

Midpoint

Coinc.
Line LineMidpoint

Line

Coinc.

Coinc.

Circle
Tangent

Out arg: 0
Coinc.

Tangent

Point
Coinc.

In arg: 1

In arg: 0

In arg: 1

Line LineCoinc.

Line

Coinc.

Out arg: 1

Tangent

Tangent

Out arg: 0
Coinc.

Coinc.

Tangent

Tangent

Line LineCoinc.

LineCoinc.

Out arg: 1

Tangent

Tangent

Out arg: 0
Coinc.

Coinc.

Tangent

In arg: 0

Tangent

In arg: 1 Line

Line
Coinc.

Out arg: 1Tangent

Line
Coinc.

Midpoint
Tangent

Circle

Diameter

Point
Coinc.

Out arg: 0Equal

Point

Circle

Diameter

LineTangent
LineTangent Line

Tangent Line
Tangent

Line
Tangent

Line

Tangent

Point

Coinc.

Circle

Equal

Midpoint

Coinc.
Coinc.

Coinc.
Coinc. Coinc.

Coinc.

LineTangent

LineTangent

Line
Tangent

LineTangent Line

Tangent

Line

Tangent

Point
Coinc.

Midpoint

Coinc.
Coinc.

Coinc.

Coinc.
Coinc.

Coinc.

Figure 18: Design intent parsing learned on the CAD as Language dataset [6]. Each example
shows the input raw sketch and corresponding constraint graph (in black), as well as our interpreted
sketch made of modular concepts and corresponding modular constraint graph, where primitives and
constraints are colored according to their encapsulating concepts.

25

	Supplementary for ``Discovering Design Concepts for CAD Sketches''
	The complete list of L0 types
	Implementation details
	Autoregressive baseline implementation detail
	More results
	Concept library analysis
	Parameter refinement with constraint solver
	More ablation results
	Image-conditioned generation
	Experiment on ``CAD as Language'' dataset
	Broader impact

