
A Proofs for Section 2

Proof. of Lemma 3.

For every x denote �(x) = P [y = h
⇤(x)|x]� P [y 6= h

⇤(x)|x], and since h
⇤ is the Bayes optimal

predictor it holds that �(x) � 0. Observe the following:
LD(h) = Ex⇠D [P [y 6= h(x)|x]]

= Ex⇠D [P [y 6= h(x)|x] · 1{h(x) = h
⇤(x)}]

+ Ex⇠D [P [y 6= h(x)|x] · 1{h(x) 6= h
⇤(x)}]

= Ex⇠D [P [y 6= h
⇤(x)|x] · 1{h(x) = h

⇤(x)}]

+ Ex⇠D [P [y = h
⇤(x)|x] · 1{h(x) 6= h

⇤(x)}]

= Ex⇠D [P [y 6= h
⇤(x)|x] · (1{h(x) = h

⇤(x)}+ 1{h(x) 6= h
⇤(x)})]

+ Ex⇠D [�(x) · 1{h(x) 6= h
⇤(x)}]

= LD(h
⇤) + Ex⇠D [�(x) · 1{h(x) 6= h

⇤(x)}]

(2)

Now, notice that we have:
Ex⇠D [�(x) · 1{h(x) 6= h

⇤(x)}] � Ex⇠D [�(x) · 1{h(x) 6= h
⇤(x)} · 1{�(x) � ��(D)}]

� ��(D) P
D

(A \B) (3)

where A denotes the event where h(x) 6= h
⇤(x) and B denotes the event where �(x) � ��(D).

By definition of the loss we have PD(A) = LD⇤(h), and by definition of the margin we have
PD(B) � 1� �. Therefore, we have:

P
D

(A \B) = P
D

(A) + P
D

(B)� P
D

(A [B) � LD⇤(h) + (1� �)� 1 = LD⇤(h)� � (4)

Now, combining Eq. (2), (3) and (4), together with the fact that LD(h)  LD(h⇤) + ✏, we get:
��(D)(LD⇤(h)� �) + LD(h

⇤)  LD(h)  LD(h
⇤) + ✏

and so the required follows.

Proof. of Theorem 2.

Fix some ✏ 2 (0, 1) and let ✏0 = ✏�(D)
2 and �

0 = ✏
2 . By the Fundamental Theorem of Statistical

Learning (see [25]), there exists some universal constant C s.t. taking m = C
VC(H)+log(1/�0)

(✏0)2 we get
that w.p. at least 1� �

0 over sampling S ⇠ D
m it holds that:

LD(ERMH(S))  inf
h2H

LD(h) + ✏
0 = LD(f

⇤

D
) + ✏

0

where we use the fact that f⇤

D
2 H is the Bayes optimal of D. Now, from Lemma 3 it holds that, w.p.

at least 1� �
0 it holds that (note that �(D) = �0(D)),

LD⇤(ERMH(S)) 
✏
0

�(D)
So, we get that:

E
S⇠Dm

LD⇤(ERMH(S)) 
✏
0

�(D)
+ �

0 = ✏

Proof. of Lemma 5.

Let the event E = {(x, y)| y 6= f
⇤(x)}, then,

���⌘(D)� E
S⇠Dm

LD⇤(A(S))
��� =

������
P

x,y⇠D

[y 6= f
⇤(x)]� P

x⇠DX
S⇠D

m

[A(S)(x) 6= f
⇤(x)]

������
=

= |D(E)�A(Dm)(E)|  sup
E

|D(E)�A(Dm)(E)| =

= TV (D,A(Dm)) = "
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Proof. of Theorem 6.

We follow a proof similar to Chapter 28.2.1 of [25].

Let � =
q

log(4/3)
2M . For every b 2 {±1}, let Db be the distributions concentrated on a single example

x 2 X , with label,

y ⇠ Pb(y) = Bernoulli

✓
1 + b�

2

◆
=

⇢ 1+b�
2 if y = 1

1�b�
2 if y = �1

Take P = {D+,D�}. Observe that the algorithm A that takes a single sample (x, y0) and outputs y0
is a sampler for every D 2 P .

Let y 2 {±1}m be the sequence of labels observed by the algorithm A, and denote by A(y) 2 {±1}
the label that A outputs for x when observing the sequence of labels y. Note, that D⇤ will be a
constant distribution concentrated on (x, b). Therefore, we have:

E
S⇠D

m
b

LD⇤(A(S)) = E
S⇠D

m
b

1{A(S)(x) 6= b} = E
y⇠Pm

b

1{A(y) 6= b}

Denote N+ := {y 2 {±1}m :
P

i yi � 0} and N� = {±1}m \N+. Then:

E
y⇠Pm

+

1{A(y) = �1}+ E
y⇠Pm

�
1{A(y) = 1}

=
X

y

P+(y)1{A(y) = �1}+ P�(y)1{A(y) = 1}

=
X

y2N+

P+(y)1{A(y) = �1}+ P�(y)1{A(y) = 1}

+
X

y2N�

P+(y)1{A(y) = �1}+ P�(y)1{A(y) = 1}

�

X

y2N+

P�(y) +
X

y2N�

P+(y) �
1

2

⇣
1�

p
1� exp(�2m�2)

⌘

where the last inequality follows from Lemma B.11 in [25]. So, if m <
log(4/3)

2�2 = M we get:

E
b

E
S⇠D

m
b

LD⇤(A(S)) =
1

2

✓
E

y⇠Pm
+

1{A(y) = �1}+ E
y⇠Pm

�
1{A(y) = 1}

◆
>

1

8

and we get there exists D 2 P s.t. if m < M then ES⇠Dm LD⇤(A(S)) > 1
8 .

Proof. of Theorem 8.

To see property 1. of Definition 7, we show that if two distributions over (x, y) are close in total
variation, then the Bayes optimal classifier for both has to be similar. That is,

TV(D,D
0) < " =) Px⇠D [f⇤

D
(x) 6= f

⇤

D0(x)]  "/�

Note, for x ⇠ DX we have yx =: f⇤

D
(x) 6= f

⇤

D0(x) =: ŷx if and only if PD0 [yx|x] < PD0 [ŷx|x],
but the margin condition guarantees that PD [yx|x]� PD [ŷx|x] � �, thus,

P
x⇠D

[f⇤

D
(x) 6= f

⇤

D0(x)]  P
x⇠DX

[|PD [yx|x]� PD0 [yx|x] | > �] 

 E
x⇠D

[|PD [yx|x]� PD0 [yx|x]|]/�.

Where we use Markov inequality for the second transition. Now, we can use the alternative definition
of TV to conclude the proof (here p(x) is the Radon–Nikodym measure of x under the marginal DX

and pD(x, y) is the Radon–Nikodym measure of (x, y) under D):

E
x⇠DX

[|PD [yx|x]� PD0 [yx|x]|] =

Z
|PD [yx|x]� PD0 [yx|x]|p(x) 


1

2

Z
|pD(x, y)� pD0(x, y)|  "
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Where the penultimate inequality is based on an easy corollary of the triangle inequality: 8y we have
X

y

| P
D

[y|x]� P
D0
[y|x]| � 2| P

D

[y|x]� P
D0
[y|x]|.

We proceed to prove the 2rd property. For each x 2 X let y1 and y2 be the two most likely labels
respectively with respect to the distribution D, that is, y1(x) = argmaxy PD[y|x] and y2(x) =
argmaxy 6=y1(x) PD[y|x] and y

0

1, y
0

2 defined similarly for D0. Then, for a given x, if the margin is
small, i.e., PD0 [y01|x]� PD0 [y02|x] < � � ⌧ then we will want to prove that the following holds:

X

y

|PD [y|x]� PD0 [y|x] | > ⌧ (5)

If y1 6= y
0

1 then with probability 1 we have PD [y1|x]� PD [y01|x] > �. Using the definition of y01,
PD [y1|x]� PD [y01|x] + PD0 [y01|x]� PD0 [y1|x] > � > ⌧

If, on the other hand, y1 = y
0

1 using PD [y1|x]� PD [y2|x] > � again we have (by summing up the
inequalities):

PD0 [y01|x]� PD0 [y02|x] + PD0 [y02|x]� PD0 [y01|x] > ⌧

So in both cases Equation 5 holds. Thus,

P
x
[PD0 [y01(x)|x]� PD0 [y02(x)|x] < � � ⌧ ] 

P
x

"
X

y

|PD [y|x]� PD0 [y|x] | > ⌧

#


E
x

"
X

y

|PD [y|x]� PD0 [y|x] |

#
/⌧ = 2TV(D,D

0)/⌧ = 2
"

⌧

Proof. of Theorem 9.

Fix ✏ 2 (0, 1) and 0 < ⌧ < �(D). Let m = m

⇣
✏(1��(D)+⌧)

2

⌘
. Fix some x 2 X such that

f
⇤

D
(x) 6= f

⇤

A(Dm)(x) = argmax
y

PA(Dm) [y|x]

Then,
PS⇠Dm [A(S)(x) 6= f

⇤

D
(x)] = P(x,y)⇠A(Dm) [y 6= f

⇤

D
(x)|x] �

1

2
Therefore, since A is a learner with sample complexity m(·) we have:

✏

2
� E

S⇠Dm
LD⇤ (A(S)) = E

x⇠DX
P

S⇠Dm
[A(S)(x) 6= f

⇤

D
(x)]

� Ex

h
P
S
[A(S)(x) 6= f

⇤

D
(x)]

���f⇤

D
(x) 6= f

⇤

A(Dm)(x)
i
· Px

h
f
⇤

D
(x) 6= f

⇤

A(Dm)(x)
i

�
1

2
Px

h
f
⇤

D
(x) 6= f

⇤

A(Dm)(x)
i
=

1

2
LD⇤

⇣
f
⇤

A(Dm)

⌘

So, the first condition of Definition 7 holds. For the second condition, observe that since f
⇤

A(Dm) is
the Bayes optimal classifier, we have:

⌘(A(Dm)) = P(x,y)⇠A(Dm)

h
y 6= f

⇤

A(Dm)(x)
i
 PA(Dm) [y 6= f

⇤

D
(x)]

= E
x⇠D

P
S⇠Dm

[A(S)(x) 6= f
⇤

D
(x)] = E

S⇠Dm
LD⇤(A(S)) 

�(1� �(D) + ⌧)

2

where the last inequality is using the fact that A is a learner. From Lemma 16, since ⌘(A(D)) 
�(1��(D)+⌧)

2 , it holds that ��(A(D)) � �(D)� ⌧ .
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Lemma 16. Let D be a distribution with µ-bounded noise, i.e., ⌘(D) = Px,y⇠D[y 6= f
⇤(x)]  µ

where f
⇤ is the Bayes optimal classifier. Let 0 < � < 1 be some positive constant denoting a margin.

Then,

P
x⇠DX


P
D

(f⇤

D
(x)|x) < max

y 6=f⇤
D(x)

P
D

(y|x) + �

�


2 · µ

(1� �)

Proof. For each x 2 X let y1(x) and y2(x) be the two most likely labels respectively, that is,
y1(x) = argmaxy P[y|x] and y2(x) = argmaxy 6=y1(x) P[y|x]. Let �x = P[y1(x)|x]� P[y2(x)|x]
and denote the set of small margin examples B = {x|�x  �}. Then we have,

⌘(D) = E
x
[P[Y 6= y1(x)|x]] �

� E
x
[P[Y 6= y1(x)|x]|x 2 B]P[x 2 B] �

� P(B) ·
1� �

2

Where the last inequality is proven via the following lemma:

Lemma 17. Given a fixed x 2 B s.t. �x  � (in notation of Lemma 16) for some 0 < � < 1. Then,

P[Y 6= y1(x)|x] �
1� �

2

Proof. Since the x is fixed we drop all x related notation WLOG:

P[Y = y1] = 1� P[Y 6= y1] 

 1� P[Y = y2] 

 1� P[Y = y1] + �

Thus, by rearranging we get P[Y = y1] 
1+�
2 which implies P[Y 6= y1] �

1��
2

B Proofs of Section 3

To prove Theorem 10 we use the following Lemma:
Lemma 18. Let A be some learning algorithm. Fix some � > 0 and ⌧ < �. Then, for every x s.t.

• PA(Dm)

h
f
⇤

A(Dm)(x) | x
i
> PA(Dm)

h
�f

⇤

A(Dm)(x) | x
i
+ � and

• f
⇤

A(Dm)(x) = f
⇤

D
(x)

it holds that:

PS1,...,Sk⇠Dm

"
f
⇤

D
(x)

1

k

kX

i=1

A(Si)(x)  ⌧

#
 exp

✓
�
k(� � ⌧)2

4

◆

Proof. of Lemma 18.

Fix some x 2 X and denote

px(y) = PA(Dm) [y|x] = PS⇠Dm [A(S)(x) = y]

Let y⇤x = argmaxy px(y) = f
⇤

A(Dm)(x). So, assume that x satisfies the assumption, namely assume
that px(y⇤x) > px(�y

⇤

x) + � and y
⇤

x = f
⇤

D
(x).

Denote y
(i)
x = A(Si)(x), the prediction of the i-th teacher on x. Then,

E
"
1

k
y
⇤

x

kX

i=1

y
(i)
x

#
= E

h
y
⇤

xy
(1)
x

i
= px(y

⇤

x)� px(�y
⇤

x) > �

16



By Hoeffding’s inequality we get:

P
"
1

k
y
⇤

x

kX

i=1

y
(i)
x  ⌧

#
 exp

0

B@�

k

⇣
E
h
1
ky

⇤

x

Pk
i=1 y

(i)
x

i
� ⌧

⌘2

4

1

CA = exp

✓
�
k(� � ⌧)2

4

◆

Proof. of Theorem 10

Let X 0
✓ X be the subset of points x 2 X satisfying the assumptions of Lemma 18 with � = �(D)

2
and ⌧ = 0. Observe that, using the union bound, and the properties of the teacher A:

Px⇠D [x /2 X
0]

 Px⇠D

h
PA(Dm)

h
f
⇤

A(Dm)(x) | x
i
> PA(Dm)

h
�f

⇤

A(Dm)(x) | x
i
+ �

i

+ Px⇠D

h
f
⇤

A(Dm)(x) 6= f
⇤

D
(x)
i

 ✏/3 + LD⇤

⇣
f
⇤

A(Dm)

⌘


2✏

3

Now, fix some x 2 X
0, and from Lemma 18 we have:

E
S1,...,Sk⇠Dm

1{Aens(S1, . . . , Sk)(x) 6= f
⇤

D
(x)}  exp

✓
�
k�

2

4

◆
 ✏/3

Finally, we get:

E
S1,...,Sk⇠Dm

LD⇤(Aens(S1, . . . , Sk))

= E
S1,...,Sk⇠Dm

E
x
1{Aens(S1, . . . , Sk)(x) 6= f

⇤

D
(x)}

= Px⇠D [x 2 X
0] · E

x|x2X 0
E

S1,...,Sk⇠Dm
1{Aens(S1, . . . , Sk)(x) 6= f

⇤

D
(x)}

+ Px⇠D [x /2 X
0] · E

x|x/2X 0
E

S1,...,Sk⇠Dm
1{Aens(S1, . . . , Sk)(x) 6= f

⇤

D
(x)}



✓
1�

2✏

3

◆
✏

3
+

2✏

3
 ✏

Proof. of Theorem 11.

Fix a sequence of k subsets of examples S = (S1, . . . , Sk), and let eDS be the distribution given by
sampling x ⇠ D and returning (x, y) where y = Aens(S1, . . . , Sk)(x). Let S̃S be an i.i.d. sample of
size m

0 from eDS . Let hS = ERMH(eSS). By the Fundamental Theorem of Statistical Learning (e.g.
Theorem 6.8 in [25]) w.p. at least 1� ✏/4 over sampling eSS we have:

L eDS
(hS)  inf

h2H

L eDS
(h) + ✏/4  L eDS

(f⇤

D
) + ✏/4

= Px⇠D [Aens(S)(x) 6= f
⇤

D
(x)] + ✏/4 = LD⇤(Aens(S)) + ✏/4

On the other hand, observe that for all h:

LD⇤(h) = E
x⇠D

1{h(x) 6= f
⇤

D
(x)}

 E
x⇠D

(1{h(x) 6= Aens(S)(x)}+ 1{Aens(S)(x) 6= f
⇤

D
(x)})

= L eDS
(h) + LD⇤(Aens(S))

Overall we get that w.p. at least 1� ✏/4 over sampling eSS we have:

LD⇤(hS)  2LD⇤(Aens(S)) + ✏/4
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and therefore:
E

eSS⇠ eDm0
S

LD⇤(hS)  2LD⇤(Aens(S)) + ✏/2

Finally, using Theorem 10 we get:

E
S1,...,Sk,eS

LD⇤(h)  2 E
S1,...,Sk⇠Dm

LD⇤(Aens(S1, . . . , Sk)) + ✏/2  ✏

where h is the output of the Ensemble-Pseudo-Labeling algorithm.

To prove Theorem 12, we use the following Lemma:
Lemma 19. Assume that A is a teacher for some distribution D, with sample complexity em. Then,
for every ✏, � 2 (0, 1), taking m � em

⇣
✏
3 ,

�(D)
2

⌘
and k �

64
�(D)2 log

�
3
✏�

�
we get that w.p. at least

1� � over the choice of S1, . . . , Sk, it holds that:

Px⇠D

"
f
⇤

D
(x)

1

k

kX

i=1

A(Si)(x)  �(D)/4

#
 ✏

Proof. of Lemma 19. Let X 0
✓ X be the subset of points x 2 X satisfying the assumptions of

Lemma 18 with � = �(D)
2 and ⌧ = �(D)

4 . Observe that, using the union bound, and the properties of
the teacher A:

Px⇠D [x /2 X
0]

 Px⇠D

h
PA(Dm)

h
f
⇤

A(Dm)(x) | x
i
> PA(Dm)

h
�f

⇤

A(Dm)(x) | x
i
+ �

i

+ Px⇠D

h
f
⇤

A(Dm)(x) 6= f
⇤

D
(x)
i

 ✏/3 + LD⇤

⇣
f
⇤

A(Dm)

⌘


2✏

3

Let �0 = ✏�
3 . Fix some x 2 X

0, and from Lemma 18 we have:

E
S1,...,Sk⇠Dm

1{f⇤

D
(x)

1

k

X

i

Aens(Si)(x)  ⌧}  exp

✓
�
k(� � ⌧)2

4

◆
 �

0

Therefore, we get:

E
S1,...,Sk⇠Dm

P
x⇠D

"
f
⇤

D
(x)

1

k

X

i

Aens(Si)(x)  ⌧ | x 2 X
0

#

= E
x

"
E

S1,...,Sk⇠Dm
1{f⇤

D
(x)

1

k

X

i

Aens(Si)(x)  ⌧} | x 2 X
0

#
 �

0

Using Markov’s inequality we get that w.p. at least 1� 3�0

✏ we have

P
x⇠D

"
f
⇤

D
(x)

1

k

X

i

Aens(Si)(x)  ⌧ | x 2 X
0

#


✏

3

and in this case we have

P
x⇠D

"
f
⇤

D
(x)

1

k

X

i

Aens(Si)(x)  ⌧

#

 P
x⇠D

"
f
⇤

D
(x)

1

k

X

i

Aens(Si)(x)  ⌧ | x 2 X
0

#
+ P

x⇠D

[x /2 X
0]  ✏
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Proof. of Theorem 12. Fix ✏ > 0 and let ✏0 = �(D)✏
18 . Fix a sequence of k subsets of examples

S = (S1, . . . , Sk), and let eDS be the distribution over X ⇥ Y given by sampling x ⇠ D, sampling
i ⇠ {1, . . . , k} and returning (x, y) where y = A(Si)(x). Let eSS be an i.i.d. sample of size m0 from
eDS . Let hS = ERMH(eSS). By the Fundamental Theorem of Statistical Learning (e.g. Theorem 6.8
in [25]) w.p. at least 1� ✏

0 over sampling eSS we have:

L eDS
(hS)  inf

h2H

L eDS
(h) + ✏

0
 L eDS

(f⇤

D
) + ✏

0

= E
x⇠D

[1{f⇤

D
(x) 6= y}]  E

x⇠D

[1{f⇤

D
(x) 6= Aens(S)(x)}+ 1{Aens(S)(x) 6= y}] + ✏

0

= LD⇤(Aens(S)) + L eDS
(Aens(S)) + ✏

0

Claim: If S satisfies �✏0( eDS) > 0 then w.p. at least 1� ✏
0 over the choice of eSS ⇠ eDm0

S

LD⇤(hS)  (LD⇤(Aens(S)) + ✏
0)
⇣
1 + �✏0( eDS)

�1
⌘

Proof: W.p. at least 1� ✏
0 we have L eDS

(hS)  L eDS
(Aens(S)) + LD⇤(Aens(S)) + ✏

0. Notice that
by definition of eDS , we have that Aens(S) is the Bayes optimal classifier for eDS . Therefore, by
Lemma 3 we have L eD⇤

S
(hS) 

✏0+LD⇤ (Aens(S))

�✏0 ( eDS)
+ ✏

0. Now, we have:

LD⇤(hS) = E
x⇠D

[1{hS(x) 6= f
⇤

D
(x)}]

 E
x⇠D

[1{hS(x) 6= Aens(S)(x)}+ 1{Aens(S)(x) 6= f
⇤

D
(x)}]

= L eD⇤
S
(hS) + LD⇤(Aens(S)) 

✏
0 + LD⇤(Aens(S))

�✏0( eDS)
+ ✏

0 + LD⇤(Aens(S))

Claim: W.p. > 1� ✏
0 over the choice of S , we have �✏0( eDS) �

�(D)
4 and LD⇤(Aens(S))  ✏

0.

Proof: By Lemma 19, since m � em
⇣

✏0

3 ,
�(D)
2 ,

✏0

3

⌘
and k �

64
�(D)2 log

⇣
3

(✏0)2

⌘
we have, w.p. > 1�✏

0

over the choice of S , that

P
x⇠D


( P
i⇠[k]

[A(Si)(x) = f
⇤

D
(x)|x]� P

i⇠[k]
[A(Si)(x) = �f

⇤

D
(x)|x]) > �(D)/4

�

= P
x⇠D

"
f
⇤

D
(x)

1

k

X

i

A(Si)(x) > �(D)/4

#
 ✏

0

which immediately implies the required.

From the above two claims, w.p. at least 1� 2✏0 over the choice of S, eSS we have

LD⇤(hS)  2✏0
⇣
1 + �✏0( eDS)

�1
⌘


16✏0

�(D)

and therefore E
S,eSS

LD⇤(hS) 
16✏0

�(D) + 2✏0  18✏0

�(D) = ✏.

C Section 4 Additional Details and proofs

C.1 Well-Clustered Data and Lipschitz Classes

We now show that under certain clustering assumptions, many learning methods can be teachers.
First, we study a simplified case of a distribution supported on a finite set. The following theorem
shows that when the hypothesis class shatters the support of the distribution, ERMH is a teacher with
sample complexity Õ(k/✏).
Theorem 20. Fix some hypothesis class H, and let D be some distribution over X ⇥ Y such that
|supp(DX )| = k  VC(H) and the support of DX is shattered. Then, ERMH is a teacher, with
sample complexity em(✏, ⌧) = 2k log(2k/")

" .
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Contrast this with Theorem 2, where we show that when VC(H) = d, ERM is a learner with sample
complexity m(") = Õ

⇣
VC(H)
✏2�(D)2

⌘
. This shows that sampling can be achieved in this case without a

dependence on 1/�2, as would be needed in order to get a learner. In fact, Theorem 6 shows that the
dependence on 1/�2 in the sample complexity of a learner cannot be avoided.

We proceed to discuss a more general version of Theorem 20 where D is well-clustered in k balls of
small radius (similar to a Mixture of Gaussians with low variance). In this case, we study L-Lipschitz
hypothesis classes, defined as follows:

Definition 21. A hypothesis class H is L-Lipschitz if for every h 2 H there exists some ĥ : X ! R
such that ĥ is L-Lipschitz and h(x) = sign ĥ(x) for all x 2 X .

We note that a large family of learning methods such as bounded norm linear classifiers, ker-
nel machines and shallow neural networks with Lipschitz activations (e.g., ReLU) are Lipschitz
classes. For learning L-Lipschitz classes, we study the ERM rule with respect to the hinge-loss
(over the real-valued output) instead of the zero-one loss. Namely, we define ERMhinge

H
(S) =

argminh2H E(x,y)

h
`hinge

⇣
y, ĥ(x)

⌘i
, where `hinge(y, ŷ) = max(1� yŷ, 0).

We use the hinge-loss as it is often required that the output of a real-valued hypothesis separates
the data with some margin. Indeed, since the zero-one loss is invariant to scale, the L-Lipschitz
assumption under the zero-one loss is meaningless, since the hypothesis can always be scaled down
to satisfy any Lipschitz bound. So, when the data is well-clustered and the hypothesis class H is
L-Lipschitz, ERMhinge

H
is a teacher with sample complexity Õ( k

�2" ). While this bound does depend
on 1/�2, it still improves the sample complexity of learning derived from Theorem 2.
Theorem 22. For L-Lipschitz class H, and some �-Lipschitz distribution D s.t. supp(DX ) ✓

[
k
i=1B(ci, r), where r = �

2max(�,3L) and k  VC(H) so the set of balls B(ci, r) can be shattered.

Then, ERMhinge
H

is a teacher, with sample complexity em(✏, ⌧) = Õ(k log(2k/")
�2" ).

C.2 Proofs for Section 4

Using standard measure-theoretic arguments, we show that for any distribution D, such a cover exists:
Lemma 23. For a every distribution D over X ⇥ Y there exists a function mc : (0, 1)⇥ (0, 1) ! N
s.t. for every ✏, � 2 (0, 1) there exists a subset X 0

✓ X satisfying:

• Px⇠DX [x /2 X
0]  �

• If m � mc(✏, �), for all x 2 X
0 it holds that PS⇠D

m
X
[d(x, S) > ✏]  �.

Proof. of Lemma 23 Fix some ✏, � 2 (0, 1) and let �0 = �/2, ✏0 = ✏/2. For some x0 2 X and let
Br(x0) be the closed ball of radius r around x0, i.e.

Br(x0) = {x 2 X : d(x0,x)  r}

Now, for some x0 2 X , observe that X = [
1

r=1Br(x0), and therefore we have:

1 = DX (X ) = DX ([1

r=1Br(x0)) = lim
r!1

DX (Br(x0))

So, there exists some r s.t. DX (Br(x0)) � 1 � �
0. Now, since Br(x0) is closed and bounded

in (X , d), from the Heine-Borel property we get that Br(x0) is also compact. Since Br(x0) ✓

[x2Br(x0)B✏0(x), there exists some finite subset C ✓ Br(x0) such that Br(x0) ✓ [x2CB✏0(x).
Now, let C 0

✓ C be the subset of balls that have at least �0/ |C| mass under DX , namely:

C
0 =

⇢
x 2 C : DX (B✏0(x)) �

�
0

|C|

�

Let m =
l
|C|

�0 log
⇣

|C|

�0

⌘m
, and observe that for every x 2 C

0 we have:

PS⇠D
m
X
[S \B✏0(x) = ;] = Px0⇠DX [x0

/2 B✏0(x)]
m



✓
1�

�
0

|C|

◆m

 exp

✓
�
m�

0

|C|

◆


�
0

|C|
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Using the union bound, w.p. at least 1 � �
0 it holds that for all x 2 C

0 ther exists x0
2 S s.t.

x0
2 B✏0(x). Denote by X

0 all the points in X that are covered by C
0, namely X

0 = [x2C0B✏0(x).

Claim: X \ X
0
✓ (X \Br(x0)) [ ([x2C\C0B✏0(x))

Proof: Let x 2 X \X
0 and we need to show x 2 (X \Br(x0))[ ([x2C\C0B✏0(x)). If x /2 Br(x0)

we are done. Otherwise, if x 2 Br(x0), since Br(x0) ✓ [x02CB✏0(x) there exists some x0
2 C s.t.

x 2 B✏0(x0), and x0
/2 C

0 since otherwise we would have x 2 X
0.

Claim: Px⇠DX [x /2 X
0]  2�0

Proof: Using the union bound and the previous result:

Px⇠DX [x /2 X
0]  Px⇠DX [x /2 Br(x0)] +

X

x02C\C0

Px⇠DX [x 2 B✏0(x
0)]

 �
0 + |C \ C

0
|
�
0

|C|
 2�0

Claim: W.p. at least 1� �
0 over the choice of S ⇠ D

m
X

, for all x 2 X
0 it holds that d(x, S)  ✏.

Proof: From what we showed, w.p. at least 1� �
0, for all x 2 C

0 there exits x0
2 S s.t. x0

2 B✏0(x).
Assume this holds, and let x 2 X

0. By definition of X 0 there exists some x̂ 2 C
0 s.t. d(x, x̂)  ✏

0.
So, there is some x0

2 S s.t. d(x0
, x̂)  ✏

0, and therefore d(x,x0)  2✏0 = ✏ and we get the required.

Now, the required follows from the last two claims.

Proof. of Theorem 13.

Let D be some �-Lipschitz distribution. Let mc(·, ·) be a function satisfying the conditions guaranteed
by Lemma 23 for the distribution D. Then, we prove that the A1-NN is a sampler for D, with
distributional sample complexity em(✏) = mc

�
✏
2� ,

✏
12

�
.

Fix ✏ 2 (0, 1) and let ✏0 = ✏
2� , �

0 = ✏
12 . Let mc be the function guaranteed by Lemma 23, and let X 0

be the subset guaranteed by the same Theorem (given the choice of ✏0, �0). Fix some x 2 X
0. Denote

q := PS⇠Dm [d(x, S)  ✏
0] (the probability to get a good cover). By Lemma 23, for m = mc(✏0, �0)

we get that q � 1� �
0. For every y 2 Y , denote px(y) := PD[y|x], and we have:

��� P
S⇠Dm

[ANN(S)(x) = y]� px(y)
���  q

��� P
S⇠Dm

[ANN(S)(x) = y|d(x, S)  ✏]� px(y)
���

+ (1� q)
��� P
S⇠Dm

[ANN(S)(x) = y|d(x, S) > ✏]� px(y)
���



���P
D

[y|⇡(x, S), d(x, S)  ✏]� px(y)
���+ 2�0  �✏

0 + 2�0

From the above we get:

E
x

X

y

��� P
S⇠Dm

[ANN(S)(x)|x]� P[y|x]
���

 E
x|x2X 0

X

y

��� P
S⇠Dm

[ANN(S)(x)|x]� P[y|x]
���+ 2 |Y| P

x⇠D

[x /2 X ]

 �✏
0 + 6�0  ✏

and therefore the required follows.

Proof. of Theorem 14

Let D be some �-Lipschitz distribution. Let mc(·, ·) be a function satisfying the conditions guaranteed
by Lemma 23 for the distribution D. Then, we prove that the Ak-NN algorithm is a teacher for D,
with sample complexity em(✏, ⌧) = k ·mc

�
⌧
4� ,min

�
✏,

⌧
4k

 �
.

Fix ✏ 2 (0, 1), ⌧ 2 (0, �(D)) and let ✏0 = ⌧
4� , �

0 = min
�
✏,

⌧
4k

 
. Let mc be the function guaranteed

by Lemma 23, and let X 0 be the subset guaranteed by the same Theorem (given the choice of
✏
0
, �

0). Fix some x 2 X
0. Let S be the set of subsets of X such that SX 2 S if and only if for all

x0
2 k-⇡(x, SX ) it holds that d(x,x0)  ✏

0. Let m = k ·mc(✏0, �0).
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Claim: PS⇠Dm [SX 2 S] � 1� k�
0

Proof: For every set S ✓ X⇥Y of size m, split S to blocks of k examples S(1)
, . . . , S

(k) each of size
mc(✏0, �0). By Lemma 23, for every i it holds that PS(i)⇠Dm/k

h
d

⇣
x, S(i)

X

⌘
> ✏

0

i
 �

0. Using the

union bound, with probability at least 1� k�
0 if holds that for every i 2 [k] we have d

⇣
x, S(i)

X

⌘
 ✏

0,
in which case there are at least k examples in S with distance  ✏

0 to x, so SX 2 S .

Claim: PS⇠Dm [Ak-NN(S)(x) = f
⇤

D
(x)|SX 2 S] � 1

2 + �(D)
2 �

⌧
4

Proof: Fix some SX 2 S , and w.l.o.g. assume that k-⇡(x, SX ) = {x1,x2, . . . ,xk}. Then,

PS0⇠Dm [Ak-NN(S)(x) = f
⇤

D
(x) | S0

X
= SX ]

= PS0⇠Dm

"
sign

 
kX

i=1

yi

!
= f

⇤

D
(x) | S0

X
= SX

#

Denote pi = PS0⇠Dm [yi = f
⇤

D
(x)|S0

X
= SX ] = PD[f⇤

D
(x)|xi]. Now, observe that:

pi � P
D

[f⇤

D
(x)|x]� �d(x,xi) � P

D

[f⇤(x)|x]� �✏
0
�

1

2
+

�(D)

2
� �✏

0
�

1

2
+

�(D)

2
�

⌧

4

where the first inequality uses the �-Lipschitz property of D, and the third inequality is by definition
of �(D). Now, from the Conodorcet Jury Theorem in [3], it holds that:

PS0⇠Dm

"
sign

 
kX

i=1

yi

!
= f

⇤

D
(x) | S0

X
= SX

#
�

1

k

kX

i=1

pi �
1

2
+

�(D)

2
�

⌧

4

and the claim follows from the law of total probability.

Claim: For every x 2 X
0 it holds that PS⇠Dm [Ak-NN(S)(x) = f

⇤

D
(x)] � 1

2 + �(D)�⌧
2 .

Proof: Observe that, using the previous claims:

PS⇠Dm [Ak-NN(S)(x) 6= f
⇤

D
(x)]  PS⇠Dm [Ak-NN(S)(x) 6= f

⇤

D
(x)|SX 2 S] + PS⇠Dm [S /2 S]

<
1

2
�

�(D)

2
+

⌧

4
+ k�

0


1

2
�

�(D)� ⌧

2

By the previous claim, it follows that for all x 2 X
0 we have f

⇤

Ak-NN(Dm)(x) = f
⇤

D
(x), and using

the fact that Px⇠D [x /2 X
0]  �

0
 ✏ the first condition for teacher holds. Since we also have

Px⇠D [x /2 X
0]  �

0
 �, by the previous claim we get that ��(Ak-NN(Dm)) � �(D)� ⌧ , and the

second condition in the definition of teacher holds.

Proof. of Theorem 15.

In the one-dimensional case, i.e. when X = R, Theorem 3.3 from [24] shows that R(S) gives
the linear spline interpolation of the data points. Namely, let ✓̂ := R(S), and assume that S =
{(x1, y1), . . . , (xm, ym)} is sorted such that x1 < x2 < · · · < xm (assuming there are no repeated
samples). Then, for every i 2 [m] and for all x 2 [xi, xi+1] it holds that

h✓̂(x) = yi +
yi+1 � yi

xi+1 � xi
(x� xi)

In this case, it can be easily shown that for all x 2 [x1, xm] we have signh✓̂(x) = 1-NN(S)(x), so
training a network with bounded-norm weights (and unbounded width) behaves like nearest neighbour
classification over the range covered by the sample. Using this, we show that ReLU networks in this
setting are samplers.

Let ✏ > 0 and let "0 = "/4. We begin with the following claim:

Claim: There exist numbers a < b such that Px⇠D [x  a] = Px⇠D [x � b] = ✏
0.

Proof: By assumption the function F (a) = P[x  a] is continuous and lima!1 = 1, lima!�1 = 0
thus by the intermediate value theorem we have there exist a, b such that F (a) = P[x  a] = "

0 and
F (b) = P[x  b] = 1� "

0.
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Assume we sample S ⇠ D
m, and sort it s.t. S = ((x1, y1), . . . , (xm, ym)) where x1 < x2 < · · · <

xm.

Claim: Fix �
0
> 0, and assume that m �

log(2/�0)
✏0 . Then, w.p. at least 1� �

0 over the choice of S, it
holds that

Px⇠D [x /2 [x1, xm]]  2✏0

Proof: Let a, b be the numbers guaranteed by the previous claim. Then, we have

PS⇠Dm [x1 > a] = PS⇠Dm [8(x, y) 2 S , x > a] = (1� ✏
0)m  e

�✏0m


�
0

2

and similarly we get PS⇠Dm [xm < b]  �0

2 . So, from the union bound, w.p. at least 1� �
0 it holds

that x1  a and xm � b. In this case, we have:

Px⇠D [x /2 [x1, xm]]  Px⇠D [x /2 (a, b)] = 2✏0 = "/2

Claim: Split [a, b] to b�a
� intervals of equal size of � and denote the intervals by Ai = [a+ i�, a+

(i+ 1)�). Then, letting m �
6(b�a)

"� log(6(b� a)/"�) where � = "/12�.

P[9Ai s.t. x 2 Ai and 8xj 2 S, xj /2 Ai]  "/3.

Proof: Denote the above event by B. Now, let pi = P[x 2 Ai], by the union bound:

P(B) 
X

P[x 2 Ai, 8xj , xj /2 Ai]

=
X

i

pi(1� pi)
m



X

i

pie
�pim

=
X

i:pi< �
b�a "/6

pie
�pim +

X

i:pi�
�

b�a "/6

pie
�pim

 "/6 +
X

i:pi�
�

b�a "/6

e
�pim

Now, since we chose m �
6(b�a)

"� log(6(b� a)/"�) we have that,

P (B)  "/3.

Claim: When m defined as above, we have that,

E
x

"
X

y

��� P
S⇠Dm

[A(S)(x)|x]� P[y|x]
���
����x 2 [a, b]

#
 "/2

Proof. Let C be the event x 2 [a, b] intersected with B
c = ⌦ \ B. Then, denote by xi the nearest

neighbor of x in S and assume WLOG x 2 [xi, xi + 1]. Conditioned on C, x� xi  �, thus,

��h✓̂(x)� yi

�� =
����
yi+1 � yi

xi+1 � xi
(x� xi)

����


|yi+1 � yi|

2
 1

And consequently, the sign of x will be yi. Thus, (conditioning on C)

��� P
S⇠Dm

[A(S)(x)|x]� P[y|x]
��� 

��� P
S⇠Dm

[A(S)(x)|x]� P[y|xi]
���+ |P[y|xi]� P[y|x]|

 ��  "/12
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We thus can conclude that,

E
x

"
X

y

��� P
S⇠Dm

[A(S)(x)|x]� P[y|x]
���
����x 2 [a, b]

#

 P(B) + E
x

"
X

y

��� P
S⇠Dm

[A(S)(x)|x]� P[y|x]
���
����C
#
= "/2

Now combining all of the above conclude the proof of the Theorem.

Proof. of Theorem 20. First, we show that A = ERMH is a teacher when m = 2k log(2k/")
" . Let

S = {(xi, yi)}mi=1 ⇠ D
m be the sample set. Also, let B = {x 2 X | P(xi = x) 

"
2k} and

G = X \B. We first show that for every x 2 G we have P[x /2 S]  "
2k .

P[x /2 S|x 2 G]  (1� "/2k)m  e
� log(2k/") = "/2k

Now we can use the union bound to show that,

P[9xi 2 G \ S]  "/2

Using the union bound again, we can see that for a new example x0: P[x0
2 B] 

"
2 . Thus,

P[x0
2 B or 9xi 2 G \ S]  ". Now, for each x 2 S

T
G the label y(x) given by ERM can be seen

as a Condorcet Jury voting by the set of {yi|xi = x}. We can use Theorem 1 from [4] that shows
that Condorcet Jury voting is monotone in the number of votes. Thus, P[f⇤

D
(x0) = f

⇤

A(Dm)(x
0)] = 1

using the aforementioned conditioning. Similarly, we have that �"(A(Dm)) � �(D) (i.e., ⌧ = 0).
As we can condition as before and the CJT monotonicity Theorem implies that the margin can only
increase (as the probability of the top label increases).

Lemma 24. Let y1, . . . , yn be some independent random variables with yi 2 {±1} s.t. P(yi =
1) = pi, where either p1, . . . , pn 2 (1/2, 1] or p1, . . . , pn 2 [0, 1/2), and let � = mini |2pi � 1|.
Denote y

⇤ = sign(
Pn

i=1 yi), and let `(y) = 2 ·
Pn

i=1 1{yi 6= y
⇤
} and ˜̀(y, r) = n(1 � r) for

some 0 < r 
�
3 . Then, there exists some universal constant c > 0, s.t. for every � 2 (0, 1), if

n �
8 log(1/�)

�2 w.p. at least 1� � we have `(y) < ˜̀(y).

Proof. Let S =
Pn

i=1 yi. Observe that:

`(y) = 2
nX

i=1

1{yi 6= y
⇤
} = 2 ·

nX

i=1

✓
1

2
�

yiy
⇤

2

◆
= n� y

⇤

nX

i=1

yi = n� |S|

Also note that E[S] =
Pn

i=1(2pi � 1) so |E[S]| � n�. Now, from Hoeffding’s inequality:

P
⇣
|S � E[S]| � n�

2

⌘
 2 exp

�
�n�

2
/8
�
 �

So, w.p. at least 1� � we have:

`(y) = n� |S|  n� |E[S]|+ |S � E[S]|  n�
n�

2
< n� rn = ˜̀(y)

where we use the fact that r 
�
3 <

�
2 .

Proof. of Theorem 22.

Claim. The Bayes optimal classifier f⇤ on D is constant on each ball.
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Proof. Let x 2 B(ci, r) and let y1 =: f⇤(ci) be the argmaxPD [y|ci]. Using the margin condition
on ci we know that P(y1|ci) > P(y2|ci) + � (here y2 = �y1). Since x 2 B(ci) we know that
d(x, ci) < r and using the �-Lipschitzness of the distribution we get that,

P(y1|x) � P(y1|ci)� �r > P(y2|ci) + � � �r � P(y2|x) + � � 2�r � P(y2|x)
So f

⇤(x) = f
⇤(ci) thus f⇤ on B(ci, r) is determined by f

⇤(ci) and therefore constant on the ball.
In a similar fashion, we proceed to show that with high probability a hypothesis output by ERMhinge

H

is constant on each ball with significant probability mass.

Claim. Let h 2 H be some function that is not constant on B(ci, r). Then
���ĥ(x)

���  2Lr for every
x 2 B(ci, r).

Proof. Fix x 2 B(ci, r) and let x0
2 B(ci, r) s.t. sign ĥ(x) 6= sign ĥ(x0). Observe that���ĥ(x)� ĥ(x0)

���  L kx� x0
k  2Lr. So, if ĥ(x) > 0 we get that

ĥ(x)  ĥ(x)� ĥ(x0)  2Lr

otherwise if ĥ(x)  0 we get that

�ĥ(x)  ĥ(x0)� ĥ(x)  2Lr

Claim. For each ball B(ci, r) with P[x 2 B(ci, r)] � "/2k, if m �
16k log(2k/")

�2" we have w.p. at

least 1� "/2k that |S \B(ci, r)| � n where n = 8 log(2k/")
�2 .

Proof. Let S = {(xi, yi)}mi=1 and denote ⇠i = 1{xi 2 B(ci, r)}, and notice that |S \B(ci, r)| =Pm
i=1 ⇠i. It holds that: E [

Pm
i=1 ⇠i] �

m✏
2k . Note, similar to the argument in Theorem 20, if

m �
2k log(1/�)

" w.p. 1� � it holds that
Pm

i=1 ⇠i � 1. When m �
16k log(2k/") log(16k log(2k/")/"�2)

"�2

we can apply the same argument for each “block" of size 2k log(16k log(2k/")/"�2)
" . That is, we are

using � = "�2

16k log( 2k
" )

and the number of blocks is n = 8 log(2k/")
�2 to get that with probability

1� �n = 1� "
2k it holds that

Pm
i=1 ⇠i �

8 log(2k/")
�2 .

Claim. For each ball B(ci, r) with P[x 2 B(ci, r)] � "/2k the probability that ERMhinge
H

is
constant on B(ci, r) is at least 1� "/2k.

Proof. From the previous two claims it holds that f⇤ is constant on B(ci, r) and that with probability
� 1 � "/2k it holds that |S \ B(ci, r)| � 8 log(2k/")/�2. Let n = |S \B(ci, r)|, and denote
(x1, y1), . . . , (xn, yn) the examples in S \ B(ci, r). By definition of �(D) it holds that PD[ỹi =
1|ci] = pi with |2pi � 1| � �. Let y⇤ = sign(

Pn
i=1 yi) and let h⇤

2 H be a hypothesis s.t.
h
⇤(x) = y

⇤. Let h 2 H be some function that is not constant on B(ci, r). Then:
nX

i=1

`hinge(h
⇤(xi), yi) = 2

nX

i=1

1{yi 6= y
⇤
} = `(y)

Observe that from the previous claim we have |h(xi)|  2Lr < 1 and therefore:
nX

i=1

`hinge(h(xi), yi) �
nX

i=1

1� yih(xi) �
nX

i=1

(1� |h(xi)|) � n(1� 2Lr) = ˜̀(y, 2Lr)

Therefore, if r 
�
3L , w.p. at least 1� "/2 we have

nX

i=1

`hinge(h
⇤(xi), yi) 

nX

i=1

`hinge(h(xi), yi)

Thus, using the union bound we get that with with probability > 1 � ", ERMhinge
H

on each ball
with probability mass � "

2k will be constant. Now, since the Bayes is fixed on each ball, the output
hypothesis could be seen as Condorocet Jury voting on each ball independently thus proving (same
argument as Theorem-20) both condition 1 and 2.
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D Experimental Details

In this section, we elaborate the exact details used in our experiments. In all experiments, we train
ResNet-18 [13] with batch size 128 and 0.0005 weight decay. On CIFAR-10 [16] we train for 50
epochs and for CIFAR-5m we train for 1 epoch using cos-annealing learning rate that starts from
0.05 for both datasets. This optimization procedure achieves ⇡ 94% accuracy on CIFAR-10 when
train on clean data. However, we add 20% fixed label noise. With label noise the model (without
early stopping) has 81.3% accuracy on the clean test set. For each experiment in the body we use
(at-least) 10 random seeds. So for example, for the 10 random teachers experiment we train 100
teacher models and chose 10 fixed teachers at random for each student seed.
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