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Abstract

Getting robots to navigate to multiple objects autonomously is essential yet difficult
in robot applications. One of the key challenges is how to explore environments
efficiently with camera sensors only. Existing navigation methods mainly focus on
fixed cameras and few attempts have been made to navigate with active cameras.
As a result, the agent may take a very long time to perceive the environment
due to limited camera scope. In contrast, humans typically gain a larger field
of view by looking around for a better perception of the environment. How to
make robots perceive the environment as efficiently as humans is a fundamental
problem in robotics. In this paper, we consider navigating to multiple objects more
efficiently with active cameras. Specifically, we cast moving camera to a Markov
Decision Process and reformulate the active camera problem as a reinforcement
learning problem. However, we have to address two new challenges: 1) how to
learn a good camera policy in complex environments and 2) how to coordinate
it with the navigation policy. To address these, we carefully design a reward
function to encourage the agent to explore more areas by moving camera actively.
Moreover, we exploit human experience to infer a rule-based camera action to
guide the learning process. Last, to better coordinate two kinds of policies, the
camera policy takes navigation actions into account when making camera moving
decisions. Experimental results show our camera policy consistently improves the
performance of multi-object navigation over four baselines on two datasets.

1 Introduction

In the multi-object navigation task, an intelligent embodied agent needs to navigate to multiple
goal objects in a 3D environment. Typically, no pre-computed map is available and the agent
needs to use a stream of egocentric observations to perceive the environment. This navigation
ability is the basis for indoor robots and embodied AI. Significant recent progress on this problem
can be attributed to the availability of large-scale visually rich 3D datasets [71, 7, 66, 69, 32, 29],
developments in high-quality 3D simulators [71, 61, 46, 2, 30], and research on deep memory-
based architectures that combine geometry and semantics for learning representations of the 3D
environment [8, 68, 58, 19, 31].

Despite these advances, how to efficiently perceive the environment and locate goal objects is still an
unsolved problem. Agents in current research [9, 12, 49] perceive the environment via an RGB-D
camera. However, the camera is set to look forward and the range of its view is often limited. As a
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Figure 1: Illustration of an active-camera agent. The active-camera agent turns its camera to the left
actively to look for novel things, i.e., Goal-2, when walking towards Goal-1.

result, these agents can only perceive the environment in front of themselves within or slightly beyond
the view range [58]. As shown at the bottom-right in Figure 1, the agent keeps looking forward and
perceives redundant information which is nearly identical to the previous observations. In contrast,
we human beings may be attracted by surrounding things so that we turn our heads actively to receive
more information when keeping walking straight. In this way, we can not only reach the position in
front of ourselves efficiently but also get familiar with room arrangement and object location.

Motivated by the above observations, we design an agent which seeks to coordinate both camera and
navigation actions. The agent, called active-camera agent, employs two kinds of policies, namely
the navigation policy which determines where to go and a new camera policy which determines where
to look. As shown at the top-right in Figure 1, the agent has found an object, i.e., blue Goal-1, located
at the end of a corridor. Two kinds of policies cooperate and actuate the agent to move forward and
turn its camera to the left. As a result, the agent walks closer to the Goal-1 and locates another goal,
i.e., yellow Goal-2, for the following navigation process. However, it is nontrivial to learn a good
camera policy because of sophisticated RGB-D observations and complex indoor layouts. How to
extract useful information from observations to judge which direction is worth being explored is
difficult. Besides, the agent and the camera are moving simultaneously. How to coordinate these two
actions for both the navigation and exploration processes is still unknown.

In this paper, we propose an EXPloration-Oriented (EXPO) camera policy to determine camera
actions. Specifically, to better understand the sophisticated RGB-D observations, we transform them
to a top-down occupancy map. Each pixel indicates whether it is an unexplored, free or occupied
area. Such a map helps to simplify unstructured RGB-D observations and provides the necessary
information, e.g., explored areas and room layouts, for determining camera actions. Besides, to
reduce the learning difficulty, we propose a heuristic module to infer an expected camera direction
according to heuristic rules. We consider the heuristic module an expert and exploit it to guide the
learning process. We then feed three types of information, i.e., the progressively built map, the
expected camera direction, and the upcoming navigation action, into a neural network to predict a
camera action. The neural network considers both the heuristic rules and the navigation intention. We
use a reinforcement learning algorithm to train the neural network by awarding camera actions that
maximize the exploration area. We incorporate the EXPO camera policy with existing navigation
policies [58, 68] and train them in an end-to-end manner for the multi-object navigation task.
Extensive experiments on two benchmarks demonstrate the effectiveness of the proposed methods.

Our main contributions are threefold: 1) Unlike existing agents that are set to look forward, we
propose a navigation paradigm that an agent coordinates camera and navigation actions for efficiently
perceiving environments to solve the multi-object navigation task. 2) We propose to learn an EXPO
camera policy to determine camera actions. The camera policy leverages heuristic rules to reduce the
learning difficulty and takes into account the navigation intention to coordinate with the navigation
policy. Such a camera policy can be incorporated with most existing navigation methods. 3) Extensive
experiments demonstrate consistent improvement over four navigation methods on MatterPort3D [7]
and Gibson [71] datasets. More critically, the camera policy also exhibits promising transferability to
unseen scenes.
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2 Related Work

Visual indoor navigation. According to the types of goal, visual navigation tasks can be cate-
gorized into different classes such as PointGoal [33, 9] task where the goal is a given coordinate,
ObjectGoal [33, 68] task where the agent needs to navigate to an object given by language and
ImageGoal [12, 74] task where the object is specified by an image. The location of the goal is not
explicitly known in the last two categories of the above tasks and the agent is expected to explore the
environment to find the goals. Classical approaches [28, 67, 34, 63, 45] solve the navigation problem
via path planning [11, 34] on a constructed map, which usually requires handcraft design. Recent
works [74, 53, 73, 65, 68, 15, 64, 50, 56, 38] aim to use learning-based methods in an end-to-end
manner to learn a policy for navigation. Other works [9, 12, 58, 43, 47, 5, 48, 18, 52, 17, 27, 60, 23]
combine the classic and learning-based methods, which use a learned SLAM module with a spatial
map or topological map. We propose a camera policy, which seeks to move the camera actively and
can be incorporated with existing navigation methods, to improve the navigation performance.

Exploration for navigation. Common methods explore the environment based on heuristics like the
frontier-based exploration algorithm [72, 35, 24], which chooses a frontier point between explored
and unexplored areas as the exploration goal. Recent works tackle the exploration problem via
learning [9, 21, 6, 25, 22, 57, 36, 44, 54], which allows the agent to incorporate knowledge from
previously seen environments and generalize to novel environments. Specially, Chen et al. [21]
and Jayaraman et al. [40] use end-to-end reinforcement learning policy to maximize an external
reward (i.e., exploration area). Burda et al. [6] and Dean et al. [22] consider intrinsic rewards such as
curiosity for efficient exploration, which performs better when external rewards are sparse. Chaplot
et al. [9], Ramakrishnan [58] and Chen et al. [16] infer an exploration goal by a learned policy and
navigate to it using path planner, which avoids sample complexity problem in end-to-end training.
Elhafsi et al. [26] predict the map out of view range for better path planning. Unlike existing methods,
we try to actively control the camera direction for efficient exploration.

Active perception. Active perception [3] aims to change the state parameters of sensors according to
intelligent control strategies and gain more information about the environment. Common methods
guide the view selection using information-theoretic approaches, such as mutual information [42, 13,
14, 37]. Recent work applies this strategy on different tasks such as object recognition [41, 1, 39],
object localization [10, 74, 51, 55] and scene completion [40, 59]. We refer readers to [20] and [4]
for a detailed review. In this paper, we propose a camera control strategy for active camera moving to
help multi-object navigation.

3 Multi-object Navigation with Active Camera

3.1 Problem Formulation

Considering an agent equipped with one RGB-D camera in a novel environment, the multi-object
navigation task asks the agent to explore the environment to find multiple goal objects and then
navigate to them. During these processes, existing methods [68] design a navigation policy to
process the observations o from the environment and infer a navigation action an (i.e., FORWARD,
TURN-LEFT, TURN-RIGHT, and FOUND). The navigation action is responsible for moving toward
goal objects and indicates whether agents have found goals. However, these methods do not consider
moving the camera direction actively during the navigation process. Thus, agents can only perceive
the field along their navigation direction, which causes low efficiency in finding goal objects [58].

To resolve the above problem, we propose a new navigation paradigm that consists of a navigation
policy πnp¨q and a camera policy πcp¨q. We reformulate both the navigation and camera moving
process to a Partially Observable Markov Decision Process, where the observation o received by
the agent does not fully specify the state of the environment. At each time step, for a given state
estimated from o, these two policies predict a navigation action an „ πnp¨q together with a camera
action ac „ πcp¨q for active camera moving. The action space A for an is similar to the navigation
action space. The possible camera action includes {TURN-CAMERA-LEFT, TURN-CAMERA-RIGHT,
and KEEP}, where KEEP indicates the camera direction remains unchanged. After performing the
action, the policies will receive a reward r whose details can be found in Section 3.3. We call the
agent using this paradigm active-camera agent and the general scheme is shown in Figure 2.
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Figure 2: General scheme of an active-camera agent. The agent consists of two policies, namely the
exploration-oriented camera policy determining where to look and existing navigation policy [58, 68]
determining where to go.

3.2 Learning to Determine Camera Action

Learning a camera policy for determining camera actions is challenging because 1) it is difficult to
understand complex room structure from RGB-D observations; 2) the position of agents is changing
all the time so camera policies must coordinate with navigation policies. In this paper, we design
an EXPO camera policy that consists of three components, i.e., a mapper, a heuristic module, and a
policy network. The mapper transforms the RGB-D image to an occupancy top-down map, which
reveals the room layout and location of unexplored areas straightforwardly. The heuristic module
infers a heuristic direction that is worth exploring. The inferred direction can be served as a reference
for camera policy and reduce the learning difficulty. Then, a policy network predicts camera actions
considering the encoded features of the map, heuristic direction, and upcoming navigation action.
The upcoming navigation action informs the policy network of the next location of agents. The
overview of the camera policy is shown in Figure 2. Next, we introduce each component in detail.

Mapper. We follow existing work [58] to build an occupancy map by a mapper. Each map pixel
has three possible values, i.e., 0, 1, 2, indicating an unexplored, free or occupied area, respectively.
Specifically, the mapper takes RGB-D as input and predicts a local map Ml. This local map represents
a small area in front of the camera. Then we integrate the local map into a global map Mg via a
registration function Rp¨q, i.e., Mg “ RpMl,Mg, qq, where q is the camera’s pose representing its
position and orientation. The global map covers the whole explored environment.

Heuristic module. We seek to find a heuristic direction indicating which area is worth being explored
by using heuristic rules. The principle is to find a direction where the camera sight is not blocked by
occupancy (e.g., wall). Following this principle, we draw K points P “ tpiu

K
i“1 uniformly around

the agent. Each point is located at angle θi from the current navigation direction and r meters away
from the agent. We calculate geodesic distance D “ tDppiquKi“1 from agent to these points on the
progressively built global map Mg via A* path planning algorithm Dp¨q [34]. During path planning,
we consider both the free and unexplored areas navigable. If the geodesic distance di is smaller than
a threshold γ pγ ą rq and the point pi locates at unexplored areas in the global map, we denote these
points explorable because there is no obstacle locating between the agent and point pi. Moving the
camera to these explorable directions allows the agent to see unexplored parts of the environment. If
there exist such explorable points, we select one point closest to the camera direction and take its
angle θi as the heuristic direction θ˚. Otherwise, we set θ˚ “ 0, i.e., facing the navigation direction.

Policy network. With the progressively built map and inferred heuristic direction, we use a recurrent
network to aggregate this information at each time step. The network takes as input map features,
heuristic direction features, and navigation action features. Specifically, a convolutional neural
network is exploited to extract map features from an egocentric map which is cropped from the global
map. The other two types of features are encoded from the heuristic direction θ˚ and navigation
action an, respectively by using a learned embedding layer. The output state features from the
recurrent network are fed into an actor-critic network. The actor predicts a camera action and the
critic predicts the value of the agent’s current state.

4



Algorithm 1 Training method for active-camera agent.
Require: The parameters of the navigation policy πn

p¨q and camera policy πc
p¨q, a mapper mp¨q, the number

of points K, the radius r, the distance threshold γ, map registration function Rp¨q, A* algorithm Dp¨q,
angle selection function Sp¨q.

1: Initialize the parameters of πn
p¨q and πc

p¨q randomly.
2: Initialize an occupancy global map Mg

“ 0.
3: while not convergent do
4: Collect observation o from environment.
5: // Update the global map
6: Let local map Ml

“ mpoq and Mg
“ RpMl,Mg, qq, where q is agent’s pose.

7: Crop an egocentric map Me from Mg .
8: // Infer heuristic direction
9: Obtain K points P“tpiu

K
i“1 being r meters away from agent’s position at angles Θ“tθi|θi“

2πi
K

u
K
i“1.

10: Calculate geodesic distance from the agent to these points D “ tdi|di“Dppiqu
K
i“1 on Mg .

11: Select a index set of explorable point I “ ti | Mg
rpis“0, di ă γu.

12: Obtain heuristic direction θ˚
“Sptθi, i P Iuq, where S returns the closest direction to current camera

direction.
13: // Sample action and update policies
14: Sample navigation action an

„ πn
p¨|oq and camera action ac

„ πc
p¨|Me, θ˚, an

q.
15: Compute reward via Eq. (1).
16: Update the navigation and camera policies via PPO.
17: end while

3.3 Reward Function for Camera Policy

We expect the camera policy to help agents explore environments more efficiently. We achieve this
objective in two ways. On the one hand, we encourage the camera policy to follow the heuristic rules
by awarding actions that move cameras toward the heuristic direction. This heuristic reward is defined
as the reduction of s in successive time steps, i.e., rheuristic “st´1 ´ st. The s P r0˝, 180˝s represents
the angle between the camera direction and the heuristic direction. On the other hand, because it is
impractical to design a heuristic rule to cover all situations, we explicitly encourage the camera policy
to explore more areas by an area reward rarea “ ct ´ ct´1, which indicates the increase of explored
area c in successive time steps. The camera agent makes its own decision according to recommended
direction and occupancy map information. In addition, to avoid constant camera moving and reduce
energy consumption, we expect agents to execute camera motor for camera moving as less frequently
as possible by introducing a turn-penalty reward rturn-penalty “ 1rturn-cameras, where 1rturn-cameras

equals to 1 when the agent actuates camera motor to move a camera and otherwise equals to 0. The
detail about camera motor execution will be described in Section 3.4. To sum up, the reward for
camera policy is as follows:

r “ α ¨ rheuristic ` β ¨ rarea ´ rturn-penalty, (1)

where α and β are two scaling hyper-parameters. We train the camera policy to maximize such
exploration reward using PPO [62]. In this way, the EXPO camera policy is encouraged to take into
account heuristic rule-based decisions and to explore more areas by executing the camera motor as
less frequently as possible.

3.4 Combination of Navigation and Camera Policies

Navigation and camera actions execution. We assume the camera is attached to a mobile robot
platform using a revolute joint. The robot can move to a location using a wheel actuator and turn the
camera using a camera motor simultaneously. The action space in this paper is based on real-world
coordinates. The rotation angles for navigation and camera actions are set to the same. Thus, if both
navigation and camera actions tend to move to the same direction, e.g., turning the platform and
camera to the left, we only need to actuate the robot wheel and do not need to actuate the camera
motor.

Incorporating camera policy into existing navigation methods. Existing navigation methods
can be mainly categorized into two types, namely modular SLAM-based [58, 72] and end-to-end
learning-based [68, 70]. For the first type of navigation method, we use the existing navigation
policy to infer a navigation action, which is then fed to the proposed camera policy to infer a camera
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action. The paradigm is shown in Figure 2. In this case, it is worth mentioning that the camera
policy coordinates with the navigation policy by conditioning the output of the navigation policy.
The navigation policy decides navigation action by exploiting a progressively built map, which is
built from historical camera policy output. For the end-to-end learning-based navigation method,
the existing navigation policy typically contains the same recurrent network as our camera policy
and uses it to predict navigation action. To better coordinate two kinds of policies, we use one
recurrent network to predict both navigation action and camera action. Specifically, we feed this
recurrent network both camera policy input (i.e., map and heuristic direction) and navigation policy
input (typically RGB-D images). Unlike the paradigm in Figure 2, the recurrent network in this case
does not need the features of navigation action anymore because it predicts both types of actions at
the same time. We use the summation of exploration reward in Equation 1 and navigation reward
in existing methods (typically the distance reduced to goals) to evaluate the goodness of predicted
navigation-camera actions. The paradigm is shown in Figure ?? in Supplementary Materials.

4 Experiments

4.1 Experimental Setup

Task details. We follow MultiON [68] to place multiple goal objects in the environment randomly.
The objects are embodied with cylinders in different colors. In this way, We are free to decide
the location and the number of goal objects to adjust the task difficulty. The agent succeeds in an
episode if it calls FOUND action within a 1.5 meters radius of all objects in order. We call FOUND
automatically when the agent is near the current goal object because we focus on evaluating the
effectiveness of the agent finding objects and navigating to them. By default, we place three goal
objects and denote it 3-ON task. We also show results of 2-ON and 1-ON in Supplementary Materials.
We perform experiments on two photorealistic 3D indoor environments, i.e., Matterport3D [7] and
Gibson [71].

We follow the existing work [68] to evaluate the navigation success rate using Success and Progress
metrics. Success indicates the percentage of successfully finished episodes, while Progress indicates
the percentage of objects being successfully found. We also evaluate the navigation efficiency using
SPL and PPL, which are short for Success weighted by Path Length and Progress weighted by Path
Length, respectively. The weight is proportional to the navigation efficiency and is defined as d{d̄,
where d is the length of the ground-truth path and d̄ is the path length traveled by an agent.

Implementation details. For navigation and camera actions, a FORWARD action moves the agent
forward by 0.25 meters and a TURN action turns by 30˝. The maximum episode time step is
500 because an agent with a global ground-truth map (i.e., oracle agent) finishes more than 97%
of episodes within 500 steps. Our camera policy tries to narrow the performance gap between
such an oracle agent and the agent with a progressively built map. We set K “ 8, r “ 2.4,
γ “ rˆ1.2 “ 2.88 in heuristic module empirically. We use a mapper that outputs the ground-truth of
occupancy anticipation [58], because how to train a good mapper is orthogonal to our work. Reward
scaling factors α and β are set to 10 and 1 respectively such that three reward terms are in the same
order of magnitude at initialization. We evaluate models for five runs using the same set of random
seeds and report the mean results and standard deviation. More details are shown in Supplementary
Materials.

4.2 Baselines

Mapping + FBE [72]: This SLAM-based navigation method breaks the problem into mapping
and path planning. We use depth projection [21] for mapping and frontier-boundary-exploration
(FBE) method [72] to select an exploration point. Once the built map covers goal objects, the agent
navigates to them by taking deterministic actions [8] along the path planned by A* algorithm [34].

OccAnt [58]: This baseline is the same as the previous one except that we replace the depth projection
with an occupancy anticipation neural network [58]. Such a network can infer the occupancy state
beyond the visible regions. We assume the neural network is well-trained so that we use the ground-
truth occupancy state within the field of view for experiments.
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Table 1: Multi-object navigation results (%) for incorporating camera policy into different baselines
on Matterport3D and Gibson datasets.

MatterPort3D Gibson
Method SPL PPL Success Progress SPL PPL Success Progress

OccAnt 53.0˘0.0 57.7˘0.1 72.0˘0.1 80.2 ˘0.1 76.1˘0.1 77.8˘0.1 89.0˘0.1 91.8˘0.1

+ Naive Camera Action 48.7˘0.5 53.1˘0.4 69.1˘0.6 76.8˘0.2 69.9˘0.6 71.9˘0.4 84.8˘1.1 88.3˘0.8

+ Our Camera Policy 57.9˘0.5 62.1˘0.2 75.6˘0.5 82.6˘0.2 78.9˘0.5 80.7˘0.5 89.9˘0.5 92.4˘0.5

Mapping + FBE 40.1˘0.0 45.4˘0.1 62.3˘0.0 72.5˘0.2 62.1˘0.3 64.9˘0.2 80.9˘0.4 86.2˘0.4

+ Naive Camera Action 35.2˘1.1 41.2˘1.0 55.3˘1.4 66.9˘1.3 55.8˘0.5 58.5˘0.4 77.5˘0.6 83.1˘0.3

+ Our Camera Policy 44.6˘0.3 49.8˘0.1 64.2˘0.9 74.1˘0.3 68.7˘0.1 71.2˘0.1 84.4˘0.1 88.9˘0.4

MultiON 33.0˘0.5 43.8˘0.6 44.1˘0.6 60.5˘0.5 56.5˘0.3 62.2˘0.2 68.4˘0.1 77.3˘0.0

+ Naive Camera Action 32.4˘0.1 45.1˘0.2 41.9˘0.1 60.2˘0.8 54.1˘0.3 61.6˘0.0 64.5˘0.5 75.2˘0.2

+ Our Camera Policy 38.7˘0.7 49.5˘0.9 51.1˘0.0 67.3˘0.3 59.6˘0.3 66.8˘0.2 69.1˘0.3 79.0˘0.1

DD-PPO 16.7˘0.2 29.2˘0.2 22.2˘0.1 40.9˘0.3 30.1˘0.4 41.2˘0.4 39.4˘0.7 54.8˘0.5

+ Naive Camera Action 16.7˘0.1 30.4˘0.1 20.8˘0.3 39.2˘0.4 31.3˘0.3 43.4˘0.2 38.8˘0.6 54.5˘0.5

+ Our Camera Policy 19.1˘0.4 34.0˘0.4 24.0˘0.2 43.9˘0.3 33.9˘0.3 45.3˘0.3 40.5˘0.3 55.3˘0.3

DD-PPO [70]: This end-to-end learning-based baseline performs navigation using RL algorithm. It
consists of a recurrent policy network, which takes as input RGB-D images, goal object categories
and previous actions for predicting navigation action.

MultiON [68]: This is the variant of DD-PPO, with a progressively built object map as an extra
input. Each cell of the object map is a one-hot vector indicating the existence of the goal objects. We
store an object on the map once it is within the field of view of agents. We encode the egocentric
cropped object map and feed it to the policy network. This baseline is the same as OracleEgoMap
variant presented by [68].

4.3 Multi-object Navigation Results

Results on Matterport3D dataset. In Table 1, the agent with our EXPO camera policy performs
better on multi-object navigation task upon four baselines. Specifically, our agent increases Success
and Progress metrics for a large margin, indicating incorporating our camera policy helps agents
successfully navigate to more goal objects. We attribute the improvement to a better exploration
ability of our agent. With such ability, the agent finds more goal objects in a limited time step and
then navigates to them. Besides, the improvement on SPL and PPL indicates our agent navigates
to goal objects along a shorter path. The agent does not need to walk inside all rooms. Instead, the
actively moving camera allows the agent to perceive what is inside a room when it passes by. The
above results show our agent navigates to goal objects more efficiently with a higher success rate. We
encourage readers to see the visualization in Figure 4 and watch supplementary videos.

The camera action provides more movement freedom for the agent. We are interested in the question
that whether the improvement comes from simply extending the action space. To this end, we remove
our camera policy. The agent determines camera actions naively. Specifically, for SLAM-based
baselines, the agent chooses a camera action randomly. For learning-based baselines, the agent learns
to predict both camera and navigation actions using the original navigation input and rewards. In
Table 1, using these naive camera actions brings little improvement or even negative influence. This
is not surprising because it is nontrivial to coordinate the camera and navigation actions. Also, a
larger action space may increase the learning difficulty. These results further suggest the importance
of the proposed camera policy for determining a reasonable camera action.

Transferability of camera policy to Gibson dataset. We evaluate the transferability of the learned
camera policy on Gibson dataset. In Table 1, a similar trend is observed on all baselines, i.e., using
naive camera actions does not help for navigation while our EXPO camera policy performs better than
baselines. It is worth noting that the EXPO camera policy is trained on Matterport3D and has not been
fine-tuned on Gibson dataset. There are significant differences between these two datasets in scene
style and layout distribution [7, 71]. The consistent improvement demonstrates that our active-camera
agent has learned general exploration and navigation skills for the multi-object navigation task. It
also shows the possibility of transferring the agent to a real-world scene.
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Table 2: Ablation study on input information and
reward types of camera policy based on OccAnt
baseline.

Method SPL PPL Success Progress

w/o Map Input 55.9˘0.7 60.1˘0.6 73.2˘0.7 80.3˘0.5

w/o Heuristic Input 56.5˘0.6 60.4˘0.4 74.0˘0.3 80.7˘0.2

w/o NavAction Input 56.9˘0.4 60.7˘0.3 74.7˘0.5 81.2 ˘0.3

w/o Heuristic Reward 53.8˘0.5 58.1˘0.3 72.7˘0.7 80.3˘0.4

w/o Area Reward 56.9˘0.2 61.0˘0.2 74.3˘0.1 81.4˘0.5

w/o Turn Reward 57.2˘0.8 61.1˘0.5 74.6˘0.5 81.7˘0.4

Ours 57.9˘0.5 62.1˘0.2 75.6˘0.5 82.6˘0.2

Table 3: Comparison between rule-based camera
actions and learned camera policy based on two
types of baselines.

Method SPL PPL Success Progress

OccAnt 52.9˘0.0 57.7˘0.1 72.0˘0.1 80.2˘0.1

+ Random Action 48.7˘0.5 53.1˘0.4 69.1˘0.6 76.8˘0.2

+ Swing Action 55.6˘0.1 60.1˘0.0 73.1˘0.1 81.4˘0.1

+ Heuristic Action 56.3˘0.1 60.3˘0.1 74.0˘0.1 80.9˘0.1

+ Learned Policy 57.9˘0.5 62.1˘0.2 75.6˘0.5 82.6˘0.2

MultiON 33.0˘0.5 43.8˘0.6 44.1˘0.6 60.5˘0.5

+ Random Action 3.1˘0.6 10.2˘0.5 4.8˘0.9 19.8˘0.1

+ Swing Action 13.0˘0.8 25.4˘0.7 19.7˘1.3 41.1˘1.4

+ Heuristic Action 19.9˘0.7 32.2˘0.4 27.6˘0.8 46.3˘0.4

+ Learned Policy 38.7˘0.7 49.5˘0.9 51.1˘0.0 67.3˘0.3

4.4 Further Analysis

Rule-based camera actions vs. learned camera policy. In contrast to learning a neural network,
one may use handcrafted rules to decide camera actions. We compare the learned camera policy
with three types of rule-based camera actions, i.e., 1) selecting a random camera action; 2) forcing
the agent to look forward and swing within 90˝ around the navigation direction; 3) following the
heuristic direction inferred from the heuristic module.

The results upon a SLAM-based baseline, i.e., OccAnt, are shown in Table 3. Exploiting random
camera actions drops the performance because the agent often looks backward and captures redundant
useless information. The other two types of rule-based camera actions improve the performance
slightly. These camera actions help the agent build a map covering more areas. Consequently, the
SLAM-based navigation policy can plan a better path for navigation using a path-planning algorithm.
However, it is hard for us to design a robust rule covering all situations. For example, the swing
camera actions may miss some explorable areas because the agent has passed by these areas before the
camera swing to the direction pointing to them. Also, there exist false positive areas in the occupancy
map (e.g., free space behind a table is predicted as an obstacle). These areas may mislead the heuristic
module to consider an unexplored area as an explored one. Compared with these camera actions, our
learned camera policy brings a more significant improvement. We attribute the improvement to the
exploration reward in Equation 1. With such a reward, the agent is encouraged to take into account
not only the handcraft rules but also the noisy occupancy map to predict a better camera action.

As for learning-based baseline, i.e., MultiON, using these three types of rule-based camera actions
significantly drops the performance. In these experiments, it is worth noting that we have fed previous
camera action to inform the policy in which direction the observation is taken from. We suspect
the poor performance is because the camera movement decided by rules is uncontrollable by the
navigation policy. As a result, the navigation policy can not get desired observations for predicting
the next navigation action. In contrast, the learned camera policy, which is trained together with the
navigation policy, allows the agent to determine how to move its camera by itself. The above results
further demonstrate the importance of the learned EXPO camera policy.

Ablation study on camera policy inputs and rewards. We conduct this ablation study by removing
one of the inputs and rewards of a camera policy upon OccAnt baseline on MatterPort3D dataset. In
Table 2, removing any input or reward will drop the performance. We note that human knowledge
(i.e., heuristic input and reward) is important for the camera policy. Awarding the policy to follow this
knowledge can be considered as a form of regularization and guidance for learning. The egocentric
occupancy map input and area reward are also critical. They encourage the agent to explore more
areas. With a better exploration ability, the agent can find goal objects and navigate to them more
efficiently. The turn-penalty reward has little influence on navigation performance. However, it helps
to reduce the frequency of actuating camera motor described in Section 3.4. Experimental results
show that without this reward, agents actuate the camera motor for 12.41% of total time steps. Adding
turn-penalty reward decreases the number to 5.70%.

Does camera policy work with imperfect mapper? Our EXPO camera policy obtains indoor layout
information mainly from the progressively built map. In this subsection, we would like to evaluate
whether the proposed camera policy works with a noisy map. To this end, we use a learned neural
network [58] to predict the occupancy map from RGB-D images. The predicted map contains many
false positive points (e.g., predicting the free space as occupancy) and false negative points (e.g.,
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Figure 3: Exploration results. Left: success rate
of finding three objects. Right: explored areas
within limited time step. Standard deviation are
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Figure 4: Visualization of multi-object naviga-
tion. The start position: o . Goal order: 1 ■,
2 ■, 3 ■. Camera direction: §. Navigation di-
rection: §. When only § is displayed, the camera
and navigation directions are the same.

predicting a wall as free space). These noisy points may mislead the camera policy to make a wrong
camera action. Experimental results on the OccAnt baseline show that incorporating camera policy
brings consistent improvement. Specifically, SPL and PPL increase from 13.6 to 18.1 and from
20.5 to 25.4, respectively. Success and Progress increase from 18.39 to 24.0 and from 28.4 to 34.2,
respectively. These results demonstrate that the proposed EXPO camera policy is robust to the map
noise and can be deployed in a robot with no need for a ground-truth map.

Does improvement come from extra information? Compared with baselines, our active-camera
agent leverages extra information (i.e., occupancy map, heuristic direction and exploration reward)
for determining camera actions. For a fair comparison, we add this extra information into MultiON
to build an enhanced baseline. Results on MatterPort3D dataset demonstrate that the enhanced
baseline performs slightly better than MultiON baseline but worse than our active-camera agent.
Specifically, SPL, PPL, Success and Progress are 35.1, 45.9, 48.0, and 63.2, respectively. We suspect
the improvement of the enhanced baseline comes from the fact that heuristic direction provides
location information about unexplored areas. Also, the extra rewards encourage agents to explore
these areas. However, due to the limited action space, the agent in enhanced baseline can not
coordinate their camera and navigation actions well, which limits the performance.

Exploration performance. One of the critical abilities for the multi-object navigation task is
exploring the environment efficiently to locate all goal objects. To evaluate the exploration ability,
we place the agent in a novel environment with three goal objects located in different places. We
follow FBE method [72] to explore the environment. Given a limited time step budget, we evaluate
the success rate of finding all three goal objects and explored areas in Figures 3. Compared with the
baselines that the agent is always looking forward or moving its camera randomly, the agent with our
EXPO camera policy finds more goal objects and explores more areas. These results have the same
trend of navigation performance in Table 1, suggesting that our EXPO camera policy helps to explore
the environment more efficiently and consequently boosts the multi-object navigation performance.

Visualization. In Figure 4, both baseline (i.e., OccAnt) and our agent are navigating to Goal-1 at
the beginning. During this process, our agent moves its camera actively at time step t “ 16 and
t “ 26, finding Goal-2 and Goal-3 respectively. Knowing the location of goal objects, our agent
plans the shortest path for navigation. In contrast, the baseline agent goes straight to Goal-1, with the
camera looking forward constantly. Consequently, after it navigates to Goal-1, it cannot find other
goal objects and has to waste time exploring the environment again. Failure case analysis can be
found in Supplementary Materials.

5 Conclusion

In order to solve the uncoordinated camera-navigation actions problem of existing agents, we
propose a navigation paradigm in which agents can dynamically move their cameras for perceiving
environments more efficiently. Such exploration ability is important for multi-object navigation. To
determine the camera actions, we learn a camera policy via reinforcement learning by awarding it to
explore more areas. Also, we use heuristic rules to guide the learning process and reduce the learning
difficulty. The proposed camera policy can be incorporated into most existing navigation methods.
Experimental results show that our camera policy consistently improves the multi-object navigation
performance of multiple existing methods on two benchmark datasets.
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