
A Omitted Details from Section 1

A.1 Formal Definition of Learning Setting

Before we provide the formal definition of our learning model, we briefly discuss some basic notions
of measures and probabilities on Polish spaces. More comprehensive treatments of these topics can
be found in [Kec12, Coh13]. Our discussion follows [BHM+21].

A Polish space is a separable topological space that can be metrized by a complete metric. Examples
of such spaces include R

n, any compact metric space, any separable Banach space, etc. Also, Polish
spaces have the property that they are closed under any countable (or finite) product or disjoint union.

We move on to the discussion of universally measurable functions. Let F be the Borel �-field on
some Polish space X . Give some probability measure µ, we denote by Fµ the completion of F under
µ, i.e., the collections of all subsets of X that differ from a Borel set on a set of zero probability (at
most). We call a set B ✓ X universally measurable if B 2 Fµ for every probability measure µ.
Moreover, we call a function f : X ! Y universally measurable if f�1(B) is universally measurable,
for any universally measurable set B. Importantly, universally measurable sets and functions on
Polish spaces are the same as Borel sets, from a probabilistic perspective.

We are now ready to provide the (standard) definition regarding the measurability of a concept
class H.
Definition 4. We say that a concept class H of functions h : X ! {0, 1} on a Polish space X is
measurable if there is a Polish space ⇥ and a Borel-measurable map h : X ⇥⇥! {0, 1} so that
H = {h(✓, ·) : ✓ 2 ⇥}.

We note that the above definition is very general and it only requires that H can be parameterized in
some reasonable way.

To model the types of queries that the learner is allowed to ask, we let ⇥⇤ be a set such that ⇥ ✓ ⇥⇤,
and we extend the definition of h(·, ·) to ⇥⇤ in a way that guarantees, for every distribution P
realizable with respect to H, there is some ✓⇤ 2 ⇥⇤ with h(✓⇤, ·) a measurable function having
er(h(✓⇤, ·)) = 0. We remark that ⇥⇤ does not need to be structured, e.g. we do not require it to
be a Polish space. We also note that such a set ⇥⇤ always exists (e.g., we could choose ⇥⇤ to
parameterize the set of all measurable binary functions). Then, we allow the learner to ask binary
queries about any set ⇥̂ ✓ ⇥⇤: that is, a general binary-valued query in this context is formally
defined by choosing (possibly in a data-dependent way) any ⇥̂ ✓ ⇥⇤, and the query is answered
with 1 if ✓⇤ 2 ⇥̂ and otherwise is answered with 0. Importantly, these queries capture previously
studied interactive learning settings such as interactive learning with label queries (where ⇥⇤ may
represent the set of all binary functions, and a query ⇥̂ may represent the set of all such functions h
with h(x) = 1 for a given data point x), and interactive learning with comparison queries (where ⇥⇤

may represent a set of possible real-valued functions, and a query ⇥̂ may represent the set of all such
functions f such that f(x) � f(x0) for a given pair of data points x, x0).

A.2 Omitted Definitions

Definition 5 (Littlestone Tree [BHM+21]). A Littlestone tree for H ✓ {0, 1}X is a complete binary
tree of depth d 1 whose internal nodes are labeled by X , and whose two edges connecting a node
to its children are labeled by {0, 1}, such that every path of length at most d emanating from the root
is consistent with a concept h 2 H. Formally, a Littlestone tree is a collection[

0`<d

�
xu : u 2 {0, 1}`

= {x;} [{x0, x1} [{x00, x01, x10, x11} [. . .

such that for every path y 2 {0, 1}d and every finite n < d, there exists h 2 H so that h(xy`
) = y`+1

for 0 ` n. We say that H has an infinite Littlestone tree if there is a Littlestone tree for H of
depth d =1.
Definition 6 (VCL Tree [BHM+21]). A Vapnik-Chervonenkis-Littlestone (VCL) tree for H ✓

{0, 1}X of depth d 1 consists of a collection[

0`<d

{xu 2 X
`+1,u 2 {0, 1}⇥ {0, 1}2 ⇥ ...⇥ {0, 1}`}

14

such that for every finite level n < d, and y 2 {0, 1}⇥ {0, 1}2⇥ {0, 1}n+1, there exists some h 2 H

such that h(xi
yk

) = yik+1 for all 0 i k and 0 k n, where we denote

yk = (y01 , (y
0
2 , y

1
2), . . . , (y

0
k, . . . , y

k�1
k)), xyk

= (x0
yk

, . . . , xk
yk

).

We say that H has an infinite VCL tree if it has a VCL tree of depth d =1.
Definition 7 (VC Dimension of Partial Concept Classes [AHHM21]). For a partial concept class
F ✓ {0, 1, ?}X , the VC dimension of F is defined to be the largest number d 2 N such that
9(x1, . . . , xd) 2 X

d such that {(f(x1), . . . , f(xd)) : f 2 F} = {0, 1}d. Such a sequence
(x1, . . . , xd) is said to be shattered by F . If there is no bound on d we say that the VC dimen-
sion is1.

A.3 Omitted Preliminaries

Gale-Stewart Games. We briefly discuss some important facts about Gale-Stewart games. Our
discussion follows [BHM+21]. We refer to their work for further details and pointers. Let us fix
sequences of sets Xt,Yt for t � 1. We consider infinite games between two players where in each
round t � 1, the first player PA selects an element xt 2 Xt, and then player PL selects an element
yt 2 Yt. The rules of the game are determined by defining a set W ✓

Q
t�1(Xt ⇥ Yt) of winning

sequences for PL. This means that after an infinite sequence of consecutive plays x1, y1, x2, y2, . . .,
we say that PL wins if (x1, y1, x2, y2, . . .) 2W; otherwise the winner is PA.

A strategy is a rule used by a given player to determine the next move given the current state and the
history of the game. A strategy for PA is a sequence of functions ft :

Q
s<t(Xs⇥Ys)! Xt for t � 1,

so that PA plays xt = ft(x1, y1, . . . , xt�1, yt�1) in round t. Similarly, a strategy for PL is a sequence
of gt :

Q
s<t(Xs ⇥Ys)⇥Xt ! Yt for t � 1, so that PL plays yt = gt(x1, y1, . . . , xt�1, yt�1, xt) in

round t. A strategy for PA is called winning if playing that strategy always makes PA win the game
no matter what PL plays; a winning strategy for PL is defined similarly. The prominent question in
these infinite games is to come up with conditions under which one of the two players has a winning
strategy in the game. Such a condition was introduced by [GS53]: a W is finitely decidable if for
every sequence of plays (x1, y1, x2, y2, . . .) 2W , there exists some n <1 so that

(x1, y1, . . . , xn, yn, x
0
n+1, y

0
n+1, x

0
n+2, y

0
n+2, . . .) 2W

for all choices of x0
n+1, y

0
n+1, x

0
n+2, y

0
n+2, . . . In words, the condition that “W is finitely decidable”

means that if PL wins, then she knows that she won after playing a finite number of rounds. Conversely,
PA wins the game when PL does not win after any finite number of rounds.

An infinite game whose set W is finitely decidable is called a Gale-Stewart game. An important
result for Gale-Stewart games follows.
Remark 3. [GS53, HW+93, Kec12] In any Gale-Stewart game, either PA or PL has a winning
strategy.

The above existential result provides no information, however, about the complexity of the winning
strategies. Importantly, it is unclear whether winning strategies can be chosen to be measurable. The
next result addresses this concern.
Theorem 4 (Theorem B.1 from [BHM+21]). Let {Xt}t�1 be Polish spaces and {Yt}t�1 be count-
able sets. Consider a Gale-Stewart game whose set W ✓

Q
t�1(Xt ⇥ Yt) of winning strategies for

PL is finitely decidable and coanalytic. Then there is a universally measurable winning strategy.

The following remark shows that we can, equivalently, let the strategy of the the learner PL and the
adversary PA depend only on the choices of their opponent in the previous rounds.
Remark 4. [BHM+21] The strategy of PL is defined to be a sequence of functions yt =
ft(x1, y1, . . . , xt�1, yt�1) of the history of the game, where y1, . . . , yt�1 are defined similarly. Thus,
we can equivalently let yt = ft(x1, . . . , xt�1). The same holds for the strategy of PA.

Partial Concept Classes. The traditional PAC learning framework handles total concept classes,
i.e., classes of functions h : X ! {0, 1} that are defined on every point x 2 X . The caveat with
total functions is that they do not provide a direct way to express data-dependent assumptions. For
example, the space X might be high-dimensional but the data that the leaner has to classify could lie

15

in a low-dimensional space. A prominent application in which this holds is classification of images
of animals; the space X is the set of all possible values of the pixels of the image but most of these
configurations of the pixels do not even correspond to an image of an animal. [AHHM21] proposed
an extension of the PAC framework that allows one to capture such assumptions using partial concept
classes, i.e., sets of functions f : X ! {0, 1, ?}, where f(x) = ? means that f is undefined at x. A
lot of notions, such as PAC learnability and the VC dimension, are extended naturally from the setting
of total concept classes to the setting of partial concept classes (see, e.g., Definition 7). To illustrate
how one can use partial classes, to express data-dependent assumptions, we comment that the class
of d-dimensional linear classifiers with margin � > 0 can be formulated as a partial class: we say
that a sample (x1, y1), . . . , (xn, yn) 2 R

d
⇥ {0, 1} is (R, �)-separable if all the points x1, . . . , xn

lie in a (euclidean) ball of radius R, the 0-labeled examples and the 1-labeled examples are linearly
separable, and the (euclidean) distance between the 0-labeled examples and 1-labeled examples is at
least 2�. Then, the class

FR,� =
�
f : Rd

! {0, 1?} :(8x1, . . . , xn) 2 supp(f) :

(x1, (f(x1)), . . . , (xn, (f(xn)) is (R, �)� separable

,

where supp(f) is the set of all points where f(x) 6= ?, expresses the set of functions that satisfy these
constraints [AHHM21]. Remarkably, the VC dimension of F is bounded by O(R

2

�2) [AHHM21]. As
another example, we can formulate the constraint that the data have to lie in a low-dimensional space
by defining the partial concept class

F =
�
f : Rd

! {0, 1, ?} : dim (supp(f))⌧ d

,

where dim(S) captures the dimension of the set of points in S. Interestingly, even though the PAC
learnability of partial classes is characterized by the VC dimension (as it is the case with total classes),
the ERM algorithm provably fails to learn partial classes. Thus, the algorithmic landscape is much
richer compared to total classes. Moreover, there is no systematic way to extend a partial concept
class to a total concept class without significantly increasing its VC dimension. For details, we refer
to [AHHM21].

One-Inclusion Graph Algorithm. We state formally the guarantees of the one-inclusion graph
algorithm [HLW94].
Theorem 5 (One-Inclusion Graph Algorithm [HLW94]). For any (total) concept class H whose VC
dimension is bounded by d <1, there is an algorithm A : (X ⇥ {0, 1})⇤ ⇥ X ! {0, 1} such that
for any n 2 N and any sequence {(x1, y1), . . . , (xn, yn)} 2 (X ⇥ {0, 1})n that is realizable w.r.t.
H,

1

n!

X

�2Sym(n)

1{A(x�(1), y�(1), . . . , x�(n�1), y�(n�1), x�(n)) 6= y�(n)}
d

n
,

where Sym(n) denotes the symmetric group of permutations of {1, . . . , n}.

In particular, Theorem 5 implies immediately that if (x1, y1), . . . , (xn+1, yn+1) are i.i.d. from P
then the classifier h̃n(·) := A(x1, y1, . . . , xn, yn, ·) has E[er(h̃n)]

d
n+1 .

We remark that, as shown in [AHHM21], this results also holds for partial concept classes.

B Arbitrarily Fast Rates

We start with the proof of the first case of the trichotomy we have stated, i.e. that H is learnable at an
arbitrarily fast rate if and only if it does not have an infinite Littlestone tree. Our proof consists of
two parts. Firstly, we show that if H does not have an infinite Littlestone tree, then it is learnable at
an arbitrarily fast rate. Then, we show that whenever H has an infinite Littlestone tree, the best rate
we can hope for is exponential.

Online Adversarial Learning. We briefly describe the classical adversarial online learning setting.
It consists of a game that is played between two players, the adversary PA and the learner PL in a
sequence of discrete rounds, where in every round t 2 N player PA presents an instance xt 2 X to PL
who then has to guess its label. Subsequently, the adversary, who knows the choice of the learner,

16

reveals the true label yt 2 {0, 1} of the point xt. The constraint is that after every round t there has to
be some ht 2 H that is consistent with the execution of the game, i.e., ht(x⌧) = y⌧ , 1 ⌧ t. An
important component of our construction is an algorithm that guarantees a finite number of mistakes
for PL in the adversarial online game, when H does not have an infinite Littlestone tree.
Theorem 6 ([BHM+21]). Assume that H does not have an infinite Littlestone tree. Then, the
Standard Optimal Algorithm (SOA), extended appropriately to handle infinite ordinal Littlestone
dimensions, guarantees a finite number of mistakes in the online game.

Essentially, this algorithm works in the following way: in every round t player PL predicts the label
ŷt 2 {0, 1} so that the class

Hx1,y1,...,xt�1,yt�1,xt,ŷt := {h 2 H : h(xi) = yi, 1 i t� 1, h(xt) = ŷt},

has the largest ordinal Littlestone dimension. Roughly speaking, the ordinal Littlestone dimension
quantifies “how infinite” the Littlestone dimension of the class of consistent classifiers is. If there
is a uniform bound on the depth of the Littlestone tree, then this is just a finite number d 2 N, so
the notion of the ordinal Littlestone dimension coincides with the well-studied notion of Littlestone
dimesnsion. The intuition is that either PL will predict the correct label and, thus, will not make
a mistake, or if she makes a mistake the ordinal Littlestone dimension of the class of consistent
hypotheses will decrease. Importantly, [BHM+21] showed that if H does not an infinite Littlestone
tree then the ordinal Littlestone dimension does not admit decreasing chains of infinite length. Thus,
this strategy of the learner guarantees a finite number of mistakes.

The algorithm that achieves exponentially fast rates, given that H does not have an infinite Littlestone
tree, is outlined in Figure 2.
Theorem 7. If H does not have an infinite Littlestone tree, then it is interactively learnable with
arbitrarily fast rates.

Proof. From the stream of points {x1, x2, . . . , } the learner has access to, we define two sets S1 =
{x1, . . . , xm1} of m1 points, and S2 = {xm1+1, . . . , xm1+m2} of m2 points. We split up the
first set into b

p
m1c different batches where the ith batch is bi = {x(i�1)bpm1c+1, . . . , xibpm1c}.

For every batch bi, we consider the set of all its labeled prefixes in lexicographical order, i.e.,
(x(i�1)bpm1c+1, 0), (x(i�1)bpm1c+1, 1), (x(i�1)bpm1c+1, 0, x(i�1)bpm1c+2, 0), . . . , and denote by
bi,j , 1 j 2b

p
m1c+1, the jth labeled prefix of the batch bi. Suppose that H does not have an

infinite Littlestone tree. Let A0 be the ordinal SOA described in Theorem 6 and denote by A0(x; bi,j)
the output of the learner on point x assuming bi,j is the (labeled) set it has been trained on. Consider
the set of experts based on A0: that is, for every labeled batch bi,j , there is gi,j : X ! {0, 1}, such
that gi,j(x) := A0(x; bi,j), i.e., the output of the learner that is trained on bi,j . Ideally, we would
like to split all the gi,j into equivalence classes, so that each class consists of functions that have the
same output on X (except maybe for a measure-zero set). Since we do not have access to PX , we
execute this step approximately and we estimate the sets by evaluating the functions gi,j on the points
in the set S2. We define a set F of equivalence classes in the following way: gi,j and gi0,j0 are in the
same class iff they classify S2 the same. If we take m2 to be large enough, since the data in S2 are
i.i.d. from PX , we can guarantee that 8�1, "1 > 0 with probability at least 1� �1, for every F 2 F

we have that max gi,j , gi0,j0 2 FPX (x : gi,j(x) 6= gi0,j0(x)) "1. In particular, the probability that
a fixed pair gi,j , gi0,j0 with PX (x : gi,j(x) 6= gi0,j0(x)) � "1 falls into the same equivalence class
is bounded by (1 � "1)m2 e�"1m2 , so by taking a union bound over all the pairs of classifiers

we see that m2 �
ln(m12

2bpm1c+2/�1)
"1

suffices. The parameters "1, �1 will be defined later. Let E1
be this event. We condition on E1 for the rest of the proof. Moreover, if gi,j 2 F, gi0,j0 /2 F, then
PX (x : gi,j(x) 6= gi0,j0(x)) > 0, with probability one. For each F 2 F, we define

rank(F) = min

⇢
r : 9 1 i1 < i2 . . . < ibpm1c/3 b

p
m1c, k1, . . . , kbpm1c/3 2 [2r+1]

such that gij ,kj 2 F, 1 j b
p
m1c/3

�
,

where we let min{;} =13. Notice that there are at most 3 · 2r+1 different classes that have rank
r or smaller. We now consider an enumeration of the equivalence classes F = {F1,F2, . . .} so

3For simplicity, we assume bm1c is a multiple of 3.

17

that rank(F`) is non-decreasing in `, and we pick any f` 2 F` for each `. Let f1, f2, . . . , be these
functions. We now define an active learning algorithm. We are given a budget n on the number
of label queries. For each pair i, j b

p
nc, i 6= j, we query the label of some xs 2 S2 for which

fi(xs) 6= fj(xs). Notice that, by definition, such an element always exists since fi, fj are in different
equivalence classes. Hence, there is at most one fî, 1 î b

p
nc, that classifies correctly all

the points whose labels we queried. If such a classifier exists, we output fî, otherwise we output
any f`. To complete the proof, we need to show that there exists some i⇤ 2 N with er(fi⇤) "1
and fi⇤ is correct on all the queries, and hence for any n > (i⇤)2 we will output ĥn = fi⇤ . As
in [BHM+21], we know there is a finite distribution-dependent number m⇤ such that, running A0

sequentially through m⇤ i.i.d. labeled points Sm⇤ = (x1, y1, . . . , xm⇤ , ym⇤), we have that

Pr(er(A0(·;Sm⇤)) = 0) �
1

2
,

i.e., m⇤ is the median time of the last mistake by A0. Assume that b
p
m1c > m⇤ and let F ⇤ be the

equivalence class that contains the classifiers that have zero error. We will show that such a class
exists, with high probability, and has rank(F ⇤) m⇤. Since we are considering all the possible
labelings of i.i.d. data from PX , for every batch bi there is some ji⇤ 2 [2m

⇤+1] such that

Pr
�
er
�
gi,j⇤i

�
= 0

�
�

1

2
.

Thus, using Hoeffding’s inequality we see that with probability 1� e�bpm1c/18 at least b
p
m1c/3

of the classifiers gi,j will have zero error, where i 2 [b
p
m1c], j 2 [2m

⇤+1]. Let E2 be this event. We
condition on this event for the remaining of the proof. Now notice that with probability one, when
evaluated on S2, all these zero-error classifiers will produce the same output so they will be in the
same class F ⇤. Moreover, since j 2m

⇤+1 we have that rank(F ⇤) m⇤, so its position in the
enumeration will be at most i⇤ 3 · 2m

⇤+1. Now since F ⇤ contains a zero-error classifier we have
that the error rate of its representative is er(fi⇤) "1, under the event E1 \ E2. Putting everything
together, we see that if n >

�
3 · 2m

⇤+1
�2

then

E

h
er(ĥn)

i
 "1 + �1 + e�bpm1c/18.

In order to achieve learning rate R(n), we need to pick m1 > dln(R(n)�1)2e and "1, �1 = R(n).
Moreover, notice that since m1 is increasing in n, after some finite n⇤

2 N we have that b
p
m1c >

m⇤.

We remark that if the learner has access to PX all the steps in the proof in which we used data to
approximate the probability of some events can be executed exactly, so we get expected error rate
that is zero after a finite n 2 N.

B.1 Slower than arbitrarily fast is not faster than exponential

We now provide the lower bound that completes our characterization for the first case of the trichotomy.
More precisely, we show that if the class H has an infinite Littlestone tree, then no algorithm can
achieve a learning rate that is faster than exponential. Our approach leverages an impossibility result
from rate distortion theory. We first provide some definitions related to rate distortion theory.
Definition 8. Let D⇤ be an arbitrary collection of objects and D ✓ D

⇤ We define a code to be a
pair of measurable functions (C,D). The encoder C maps any element x 2 D to a binary sequence
C(x) 2

S1
q=0{0, 1}

q . The decoder D maps any element c 2
S1

q=0{0, 1}
q to an element D(c) 2 D

⇤.
Definition 9. Let (C,D) be a code. For any q 2 {0, 1, . . . , }, C(x) 2 {0, 1}q we let |C(x)| = q
be the length of C(x) and Ci(x) be the i�th bit of the codeword. The code is called prefix-free
if every x1, x2 2 D with x1 6= x2 and |C(x1)| |C(x2)| have Ci(x1) 6= Ci(x2) for some
i : 1 i |C(x1)|.

Let ⇢(·, ·) be a pseudo-metric on D
⇤. Let ⇡ be a probability measure on D (under the Borel �-algebra

induced on D by ⇢). The distortion of code (C,D) is defined as Ex⇤⇠⇡ [⇢(x⇤, D(C(x⇤))], while the
rate of code (C,D) is defined as Ex⇤⇠⇡[|C(x⇤)|].

The following result is very important in the derivation of our lower bounds. It effectively represents
a universal-rates variant of a type of result common to rate-distortion theory.

18

Lemma 1. Let D = D
⇤ be the set of all countably infinite binary sequences. Let ⇡ be the uniform

distribution over D (i.e., each bit is independent Bernoulli(1/2)). For any d 2 N, for x⇤, x 2

{0, 1}1, let ⇢d(x⇤, x) = 1
d

Pd
i=1 1[xi 6= x⇤

i]. Then, for any sequence of prefix-free codes (Cd, Dd)
with |Cd(x⇤)| d/32, with probability one,

lim inf
d!1

⇢d(x
⇤, Dd(Cd(x

⇤))) � 1/4.

Proof. Let x⇤
⇠ ⇡, and suppose (Cd, Dd) is a sequence of prefix-free codes with |Cd(x⇤)| d/32.

Let Vd = {Cd(x) : x 2 {0, 1}1}. Note that, since (Cd, Dd) is prefix-free, |Vd| 2d/32. For each
v 2 V , E[⇢d(x⇤, v)] = 1/2, and thus a Chernoff bound implies Pr(⇢d(x⇤, v) 1/4) e�d/16. By
the union bound,

Pr(9v 2 Vd : ⇢d(x
⇤, v) 1/4) |Vd|e

�d/16
 2d/32e�d/16

 e�d/32.

Altogether, we have that

Pr(⇢d(x
⇤, Dd(Cd(x

⇤))) 1/4) e�d/32.

Since
P

d2N
e�d/32 <1, the Borel-Cantelli lemma implies that with probability one,

lim inf
d!1

⇢d(x
⇤, Dd(Cd(x

⇤))) �
1

4
.

This completes the proof.

We now describe the intuition behind our lower bound. We define the target classification using
a randomly chosen path in the Littlestone tree (with some care to ensure this is a well-defined
classification). This sequence of left/right branches can be represented as an infinite binary string
x⇤. The binary responses to the learner’s queries represent a codeword, and the learner’s predictions
on the points along the target path represent the decoded output of a code. We define the marginal
distribution PX in a way that ensures that having ⇢d(x⇤, Dd(Cd(x⇤))) � 1

4 implies error rate lower
bounded by an exponential e�⌦(d). The result then follows from Lemma 1.

Before presenting the formal details, we first require a technical lemma, guaranteeing that we may
assume, without loss of generality, that the nodes of the infinite Littlestone tree are all distinct.
Lemma 2. If H has an infinite Littlestone tree, then it also has an infinite Littlestone tree {xu : 0
k <1,u 2 {0, 1}k} (in the notation of Definition 5) such that every xu and xu0 with u 6= u0 have
xu 6= xu0 : that is, all nodes in the tree are distinct.

Proof. Consider any infinite Littlestone tree for H. We will construct an infinite Littlestone tree for
which all nodes are distinct by modifying the tree in a breadth-first way. We keep the root node as is.
Then, for the purpose of an inductive construction, suppose we have already ensured that the first
n� 1 nodes in the breadth-first order are distinct – these points will remain unchanged forevermore
in this modification process – and that otherwise the rest of the tree remains a valid infinite Littlestone
tree for H. Next we wish to specify the nth node in this breadth-first order, and modify the tree to
remain a valid infinite Littlestone tree. For the subtree rooted at the node that is currently in the
nth position (in the current construction-so-far), since every node along any given infinite path of
descendants of this node must be distinct (otherwise branching in opposite ways for the two nodes
would not be realizable), there are necessarily an infinite number of distinct points x to be found
within its subtree. Since there are only n� 1 nodes that are “fixed” so far, there must exist points x
in this subtree that are distinct from all n � 1 previously chosen points. Choose some such x and
let Tx be the subsubtree rooted at x in the current tree. Now define a modified tree, in which the
nth node in the breadth-first order is replaced by this x, and the subtree rooted at this node is Tx;
everything else remains unchanged. By construction, the first n nodes in the breadth-first order are
now distinct. Moreover, every finite-depth path in the modified tree which does not pass through
this nth node is unchanged, and hence remains realizable. On the other hand, since the ancestors
and descendants of this new nth node in the modified tree were already ancestors and descentants,
respectively, in the tree before this modification, every finite-depth path in the modified tree which
passes through this nth node is a subset of a finite-depth path in the tree from before this modification;
since the tree before the modification was a valid infinite Littlestone tree for H, it must be that this

19

path was realizable, and therefore so is its sub-path that remains in the tree after the modification.
Thus, the tree remains a valid infinite Littlestone tree for H. Continuing this construction inductively,
we arrive at an infinite Littlestone tree such that all nodes are distinct (since otherwise, if two nodes
were identical, one would precede the other in the breadth-first order, contradicting the invariant
maintained by the induction).

We are now ready for the proof that classes with an infinite Littlestone tree are not interactively
learnable at rates faster that e�n.
Theorem 8. If H has an infinite Littlestone tree, then H is not interactively learnable at rate faster
than exponential: e�n. This holds even if PX is known to the learner.

Proof. As mentioned, the idea of the proof is to set up an equivalence to the coding problem stated
above in Lemma 1, where the binary responses to the learner’s queries are the code words. Suppose
H has an infinite Littlestone tree, and let T = {xu : 0 k <1,u 2 {0, 1}k} be any such infinite
tree for which the points xu are all distinct; such a tree is guaranteed to exist by Lemma 2. We begin
by specifying the marginal probability distribution PX on X . For the points xu with u 2 {0, 1}i�1

(i.e., nodes at depth i in the tree), we set PX ({xu}) = 21�2i. Since every xu is distinct, this value is
well-defined. Note that, since there are 2i�1 nodes at depth i (counting the root to be depth 1), the
total probability mass at depth i is 2�i, and hence PX (T) = 1, so that this completes the definition
of PX .

Next, we define the target labeling of the points via the probabilistic method. Let y = (y1, y2, . . . ,)
be a sequence of i.i.d. Bernoulli(1/2) random variables. We consider the random path of the tree that
is induced by y. Let x1, x2, . . . , be the elements that are on this path: that is, xi = x(y1,...,yi�1) in
the notation of the tree T . The target labels h⇤(xi) of these points are determined by y: h⇤(xi) = yi.

It remains to specify the target labels h⇤(x) for nodes x 2 T that are not among {x1, x2, . . .}. We
will specify their labels in a breadth-first manner, as follows. For each i 2 N, let hi be a classifier in
H that realizes these labels up to depth i: i.e., hi(xj) = yj for all j i. Such an hi must exist in H

for all i 2 N, since all finite-depth paths are realizable by H. We define V = {hi : i 2 N}. To specify
the target labels for the remaining points, we inductively follow a breadth-first traversal. Consider
the next point x in this traversal. To determine the label we assign for h⇤(x), if there are infinitely
many h 2 V with h(x) = 0, we set the label h⇤(x) = 0, and otherwise we set its label as h⇤(x) = 1.
Either way, we update V by discarding the classifiers that disagree with the label we assign for x. We
then continue on to the next x in the breadth-first traversal. Notice that by construction, V initially
contains an infinite number of functions, so at every x, either infinitely many h 2 V have h(x) = 0
or infinitely many h 2 V have h(x) = 1; either way, we assign a label that maintains the invariant
that V remains infinite after pruning the inconsistent functions. By induction, this specifies a target
classification h⇤(x) for every point in T . Moreover, since T is the (countable) support of PX , and
since V is always non-empty, even after constraining to agree with h⇤ labels on any finite number of
points in the breadth-first order, we find that PX and h⇤ together specify a realizable distribution on
X ⇥ {0, 1}. Moreover, by the definition of queries in this work, we know there exists a ✓⇤ 2 ⇥⇤ for
which h(✓⇤, ·) takes the h⇤ classifications of points in T ; thus, we may take this ✓⇤ value to define
h⇤ = h(✓⇤, ·), and the learner’s queries will receive responses consistent with this ✓⇤.

Now let A⇤ be any learning algorithm First, we will use this algorithm to create a sequence of codes
(Cd, Dd) for infinite binary strings, under the pseudo-metrics ⇢d from Lemma 1, where the query
budget n = nd := dd/32e � 1, and d > 32. Notice that our choice y of the path in the tree is
equivalent to choosing a binary string uniformly at random. Moreover, conditioned on the unlabeled
data, y completely determines the answers to any queries the learner could ask (since it determines
h⇤, and PX is considered fixed). For a budget nd on the number of queries, let Cd(y) be the string
of binary responses to the algorithm’s queries; in particular, |Cd(y)| nd < d/32. If we condition
on the unlabeled data and any internal randomness of A⇤, then Cd(y) will be purely determined
by y, and moreover, will be prefix-free, since (conditioned on the unlabeled data and the internal
randomness) a decision of whether to stop querying early could also only depend on the answers
returned for its queries up til then. Let ĥnd be the output of A⇤ for a budget of nd queries. Also
define a decoder Dd(Cd(y)) = (ĥnd(x1), ĥnd(x2), . . .).

Let K denote a random variable comprised of the unlabeled data and any internal randomness of
the learner A⇤. By Lemma 1 (applied under the conditional distribution given K) and the law of

20

total probability, with probability one, 9d0 2 N such that every d � d0 has ⇢d(y, Dd(Cd(y))) �
1
5 .

Again by the law of total probability, this further implies that there exists a choice of y such that,
conditioned on y, with conditional probability (over K) one, 9d0 2 N for which every d � d0 has

⇢d(y, Dd(Cd(y))) �
1

5
.

In particular, for any such d, there must be at least one i b(4/5)dc + 1 for which ĥnd(xi) 6= yi.
This implies

er(ĥnd) � 2�(8/5)d�1
� 2�(8/5)32nd�256/5�1.

Altogether, there exists a deterministic choice y⇤ of y such that, given y = y⇤, with probability one,
every sufficiently large d satisfies er(ĥnd) � e�cnd for a numerical constant c. Thus, by Fatou’s
lemma,

lim inf
d!1

ecnd
E

h
er(ĥnd)

���y = y⇤
i

� E

lim inf
d!1

ecnder(ĥnd)

����y = y⇤
�
� 1.

In other words, the expected error rate is lower bounded by (1� o(1))e�cnd for all sufficiently large
d. In particular, this implies that for this choice of y = y⇤, E[er(ĥn)] � (1� o(1))e�cn for infinitely
many n, so that A⇤ does not achieve a rate faster than e�n. This completes the proof.

C Exponential Rates

We now prove that if H does not have an infinite VCL tree, then it admits exponential learning rates.
The results presented in Appendix B show that when H has an infinite Littlestone tree, we cannot
achieve rates faster than exponential. Thus, these two results show that the optimal learning rate when
H has an infinite Littlestone tree but does not have an infinite VCL tree is exponential. Finally, we
provide a lower bound which shows that if H has an infinite VCL tree, then it only admits arbitrarily
slow rates. This completes our characterization.

C.1 The VCL game

An important component of our algorithm is a Gale-Stewart game from [BHM+21], called the VCL
game. Recall that every node of the VCL tree at depth n consists of n+ 1 points and there are 2n+1

edges attached to the node, which are labeled with one of the possible classifications of the points in
the node. Intuitively, the VCL game G generalizes the classical online adversarial game, in the sense
that instead of presenting to the learner one point in every round, the adversary selects a number of
points that increases linearly with the number of rounds. In every round ⌧ we have the following
interaction between the learner PL and the adversary PA:

• Player PA chooses points ⇠⌧ = (⇠0⌧ , . . . , ⇠
⌧�1
⌧) 2 X

⌧ .
• Player PL chooses labels ⌘⌧ = (⌘0⌧ , . . . , ⌘

⌧�1
⌧) 2 {0, 1}⌧ .

• Player PL wins the game in round ⌧ if

H⇠1,⌘1,...,⇠⌧ ,⌘⌧ := {h 2 H : h(⇠is) = ⌘is, 0 i < s, 1 s ⌧} = ;.

If the game does not terminate, then player PA wins. It is clear that G is a Gale-Stewart game since
the winning set of PL is finitely decidable. We use the following result from [BHM+21].
Lemma 3. [BHM+21] If H does not have an infinite VCL tree, then PL has a universally measurable
winning strategy in the game G.

The importance of this game is that it gives rise to a universally measurable pattern avoidance function.
Essentially, this function takes as input an unlabeled sequence of data points and returns a binary string
that does not correspond to a valid classification of these points. This is achieved using the algorithm
in Figure C.1. Following the notation in [BHM+21], we denote by ⌘⌧ :

Q⌧
�=1 X

�
! {0, 1}⌧ the

21

winning strategy of the learner4. We let N = bn/2c and we use N queries to find the labels of the
points x1, . . . , xN in order to simulate the VCL game.

VCLGameSubroutine [BHM+21]: Input is a labeled data sequence
{(x1, y1), . . . , (xN , yN)}.

1. Let ⌧0 0.
2. In every step t � 1 :

• If ⌘t⌧�1(⇠1, . . . , ⇠⌧t�1�1, xt�⌧t�1+1, . . . , xt) = (yt�⌧t�1+1, . . . , yt) :
– Let ⇠⌧t�1 (xt�⌧t�1+1, . . . , xt) and ⌧t ⌧t�1 + 1.

• Else, ⌧t ⌧t�1.

Essentially, this algorithm traverses the data sequence that is given as input and simulates the VCL
game that we described before. Every time the learner’s prediction is achieved by some subsequence
of the data, we proceed to the next round of the simulated game. The idea is that since H does not have
an infinite VCL tree, this game can only proceed a finite number of times. Hence, after some finite
timestep t⇤ 2 N, the learner’s strategy ⌘⌧t⇤ will output forbidden patterns in the data, with probability
one. Give a tuple (x1, . . . , x⌧t⇤) 2 X

⌧t⇤ we call a binary pattern (b1, . . . , b⌧t⇤) 2 {0, 1}⌧t⇤ forbidden
if it is not the correct labeling of the tuple (x1, . . . , x⌧t⇤). We denote by

ŷt�1(z1, . . . , z⌧t�1) := ⌘⌧t�1(⇠1, . . . , ⇠⌧t�1�1, z1, . . . , z⌧t�1)

the (universally measurable) function that is induced by Algorithm C.1. To understand the intuition
behind our approach, let us first assume we know t⇤. Then, for any labeled tuple of size N̂ = ⌧t⇤ , the
function ŷt⇤ produces a forbidden labeling. Since we have pinpointed a constraint that the data need
to satisfy, a natural thing to do is to express it via a partial concept class. We let

F̂ =
n
f : X ! {0, 1, ?} : 8(x1, . . . , xN̂) 2 X

N̂ , f(x1, . . . , xN̂) 6= ŷt⇤(x1, . . . , xN̂)
o

be the partial concept class that does not produce the forbidden labelings. Notice that, by definition,
the VC dimension of F̂ is bounded by N̂ . Thus, assuming access to t⇤ (which we will estimate later),
we have reduced our problem to interactively learning a partial concept class whose VC dimension is
bounded. In the next section we provide an algorithm for this task.

C.2 Interactive learning of partial concept classes with bounded VC dimension

The main result of this section is an algorithm which given access to a partial concept class F whose
VC dimension is bounded by d, achieves exponential learning rates in the interactive learning setting.
As in the rest of this work, we assume that P is realizable with respect F , i.e. inff2F er(f) = 0. In
particular, this means that for every finite sample S drawn i.i.d. from PX the set of functions f 2 F

that are not undefined on S is non-empty, with probability one. This can be seen as follows. Since
the distribution P is realizable, there exists a sequence of functions fk 2 F so that

P[fk(x) 6= y] <
1

2k
.

Let us fix m � 1. We have that
1X

k=1

Pr[9s m : fk(xs) 6= ys] m
1X

k=1

P[fk(x) 6= y] <1 ,

where the first inequality is due to union bound. By Borel-Cantelli, with probability one, there exists
for every m � 1 a hypothesis f 2 F so that f(xs) = ys for all s m.

Our result is summarized in the following theorem.
Theorem 9. There exists an interactive learning algorithm A for any partial concept class F whose
VC dimension is bounded by d that achieves exponential error rate: namely, E[er(ĥn)] Cde�cn/d

for universal constants C, c > 0.
4We can, equivalently, let the strategy of the learner depend only on the previous choices of the adversary (cf.

Remark 4).

22

We outline the algorithm that achieves this rate in Figure 3.

As we explained, with probability one, it holds that Ĥ|S 6= ;. Moreover, the labeled points
(x1, y1, . . . , xm, ym) are drawn i.i.d. from P. Since the one-inclusion graph algorithm guaran-
tees E[er(ĥm)] d

m+1 (cf. Theorem 5), the correctness of Step 5 implies Theorem 9. The next
lemma establishes it.
Lemma 4. For any m unlabeled points from X , and total concept class H on them with VC dimension
at most d, there exists an interactive learning algorithm A such that, for any unknown true labeling of
the m points that is realizable by H, the algorithm identifies all m labels using O(d logm) queries.

Proof. Since H has VC-dimension that is bounded by d, we know that there are at most N = O(md)
possible classifications for these points (this follows from Sauer’s lemma [Sau72]). We split these
into two disjoint sets Ŝ1, Ŝ2 that have size at most dN/2e. We submit a query asking whether the
correct classification is in Ŝ1. Depending on the answer, we pick the appropriate set and recurse.
Hence, after every query the size of the set of the possible classifications decreases by a factor of 2.
Thus, we see that O(d logm) queries suffice.

Notice that Lemma 4 shows that if we have a query budget n, we can find the labels of m = O(en/d)
points.

The proof of our result follows by feeding these m labeled points to the one-inclusion graph algo-
rithm [HLW94] which outputs a classifier ĥm with E[ĥm] d

m+1 (see Theorem 5). Substituting the
value of m, we get that E[er(ĥn)] O(de�n/d).

C.3 Exponential learning rates

As we alluded to before, the learner does not have access to the time after which the VCL game has
converged. Since the data that are used to simulate the game follow a distribution, the time t⇤ also
follows a distribution that is not known to the learner. Our approach to overcome this obstacle builds
upon some techniques developed in [BHM+21]. The idea is that given N labeled points, there is a
universally measurable strategy to estimate a batch size t̂N such that the VCL game executed on a
batch of size t̂N will have converged with probability 5/8. We first introduce some necessary notation
from [BHM+21]. Given some universally measurable pattern avoidance function g : X k

! {0, 1}k,
we define its error to be

per(g) = perk(g) := P
N

k[(x1, y1, . . . , xk, yk) : g(x1, . . . , xk) = (y1, . . . , yk)],

i.e., this is the probability that g will output a true pattern in the data (which is considered an error
since g is intended to specify forbidden patterns). The next lemma from [BHM+21] formalizes the
previous discussion.
Lemma 5. [BHM+21] For any N 2 N, there exists a universally measurable t̂N =
t̂n(x1, y1, ..., xbN/2c, ybN/2c) whose definition does not depend on P so that the following holds. Let
the critical time t⇤ 2 N (P-dependent) be such that

P [per(ŷt⇤)] > 0] 1/8 .

Then, there exist C, c > 0 that depend on P, t⇤ but not n so that

P[t̂N 2 T ?] � 1� Ce�cN ,

where
T ⇤ = {1 t t⇤ : P [per(ŷt) > 0] 3/8} .

We use the first bN/2c points to compute that estimate. Then, we proceed as follows: we split the
remaining labeled sequence into N̂ = bN/2t̂Nc batches of size t̂N and we know that, with high
probability, most of them will produce correct functions ŷi

t̂N
that avoid patterns in the data. However,

we do not know which of these functions are correct pattern avoidance functions. Hence, our approach
is to aggregate them and define a partial concept class F N̂

m that corresponds to the majority of them.
To be more precise, for 1 i N̂ , we let

Fi =
n
f : X ! {0, 1, ?} : 8(x1, . . . , x⌧ i

t̂N

) 2 X
⌧ i
t̂N , (f(x1), . . . , f(x⌧ i

t̂N

)) 6= ŷi
t̂n
(x1, . . . , x⌧ i

t̂N

)
o
,

23

be the partial concept class that is induced by playing the VCL game on the i-th batch of the data.
We define the majority class F N̂

m to be

F
N̂
m =

⇢
f : X ! {0, 1, ?} : 8` 2 N, 8(x1, . . . , x`) 2 X

`, 9 at least (9/16)N̂ classes Fj , 1 j N̂ s.t.

9f̂ 2 Fj with (f̂(x1), . . . , f̂(x`)) = (f(x1), . . . , f(x`))

�
.

Our goal is to execute the Algorithm 3 on F̂ N̂
m . Recall that this algorithm requires that the partial

concept class has bounded VC dimension. The next lemma establishes this result.

Lemma 6. The majority class F N̂
m has VC dimension that is bounded by some distribution-dependent

number d̂, with probability at least 1� e�cN̂ , for some absolute constant c > 0.

Proof. We know that there exists some d⇤ such that, with probability at least 9/10, the VC dimension
of any partial concept class Fi is at most d⇤. We let Xi = 1{VC dimension of Fi > d⇤}. Notice the
all the Xi’s are i.i.d. Bernoulli random variables with p 1/10, since the data that induce the classes
Fi are i.i.d.. Thus, we can use Hoeffding’s inequality to bound the probability that at least more than
2/10 of them have VC dimension greater than d⇤ as follows

Pr

2

4
N̂X

i=1

Xi � (2/10)N̂

3

5 = Pr

2

4
N̂X

i=1

Xi � (1/10)N̂ � (1/10)N̂

3

5 e�N̂/50.

We let E1 be the event above and we condition on it for the rest of the proof. So, we know that at
least 8/10N̂ of the partial concept classes Fi have VC dimension bounded by d⇤. We will bound the
size m of the largest set that F N̂

m shatters. For any sequence (x1, . . . , xm) 2 Xm that F N̂
m shatters,

we have that

1

2m

X

y2{0,1}m

1

8
<

:
1

N̂

N̂X

i=1

1{9f 2 Fi : (f(x1), . . . , f(xm)) = (y1, . . . , ym)} > 9/16

9
=

; = 1.

Using Markov’s inequality, we get that

1

2m

X

y2{0,1}m

1

N̂

N̂X

i=1

1{9f 2 Fi : (f(x1), . . . , f(xm)) = (y1, . . . , ym)} >
9

16
.

Swapping the summation gives us

1

N̂

N̂X

i=1

1

2m

X

y2{0,1}m

1{9f 2 Fi : (f(x1), . . . , f(xm)) = (y1, . . . , ym)} >
9

16
()

1

N̂

N̂X

i=1

1

2m

X

y2{0,1}m

1{@f 2 Fi : (f(x1), . . . , f(xm)) = (y1, . . . , ym)}
7

16
.

Using Markov’s inequality again, we get that

1

N̂

N̂X

i=1

1

8
<

:
1

2m

X

y2{0,1}m

1{@f 2 Fi : (f(x1), . . . , f(xm)) = (y1, . . . , ym)} > 9/16

9
=

;

16

9
·
1

N̂

N̂X

i=1

1

2m

X

y2{0,1}m

1{@f 2 Fi : (f(x1), . . . , f(xm)) = (y1, . . . , ym)}.

24

This implies that

1

N̂

N̂X

i=1

1

8
<

:
1

2m

X

y2{0,1}m

1{@f 2 Fi : (f(x1), . . . , f(xm)) = (y1, . . . , ym)} > 9/16

9
=

; < 7/9 ()

1

N̂

N̂X

i=1

1

8
<

:
1

2m

X

y2{0,1}m

1{9f 2 Fi : (f(x1), . . . , f(xm)) = (y1, . . . , ym)} � 7/16

9
=

; � 2/9.

Thus, at least 2/9 of the partial concept classes Fi realize at least 7/16 of all the possible classifi-
cations of (x1, . . . , xm). We know that some of them have VC dimension that is bounded by d⇤,
thus we get that (em/d⇤)d

⇤
� 2m�2 =) m = O(d⇤). Hence, the VC dimension of Fm is at most

O(d⇤) and this holds with probability 1� e�cN̂ .

Next, we define a sequence of universally measurable functions {G` : (X ⇥ {0, 1})` ! {0, 1}}`2N

where G`(x1, y1, . . . , x`, y`) = 1
n
9f 2 F

N̂
m : (f(x1), . . . , f(x`)) = (y1, . . . , y`)

o
. An equivalent

interpretation of the previous lemma is that the partial class on which {G`}`2N returns 1 has bounded
VC dimension, with high probability. The next lemma is a key component in the derivation of our
result and it states that {G`}`2N return 1 on all finite subsets of the true labeled data sequence, with
high probability.
Lemma 7. The {G`}`2N as defined above are universally measurable functions, and with probability
at least 1� Ce�cn, C, c > 0, the following hold:

• The class

FG = {f :X!{0, 1, ⇤} : 8`2N, 8(x1, . . . , x`)2X
` : G`(x1, f(x1), . . . , x`, f(x`)) = 1}

has VC dimension bounded by some distribution-dependent number d̂.

• 8` 2 N, for (x1, y1, . . . , x`, y`) ⇠ P`, G`(x1, y1, . . . , x`, y`) = 1 with conditional proba-
bility one (given G`).

Proof. We condition on the event E0 described in Lemma 6. Notice that, by definition, the class FG

shatters a sequence S = x1, . . . , x` 2 X
` if and only if F N̂

m shatters S. Hence, the bound on the
VC dimension follows immediately from Lemma 6. We also condition on the event E1 described in
Lemma 5. We now bound the probability that at least (13/32)N̂ of the functions ŷi

t̂n
have positive

probability of not avoiding patterns. For any t 2 T ⇤, using Hoeffding’s inequality we get that

Pr

2

4 1

N̂

N̂X

i=1

1
�
per(ŷi

t)>0

>

13

32

3

5 = Pr

2

4 1

N̂

N̂X

i=1

1
�
per(ŷi

t)>0

�

3

8
>

1

32

3

5 exp
⇣
�N̂/512

⌘
,

Since we know that t̂n t⇤, taking a union bound over all 1 t t⇤ we get that

Pr

2

4 1

N̂

N̂X

i=1

1
n
per(ŷi

t̂n
) > 0

o
>

13

32
, t̂n 2 T ⇤

3

5
X

t2T⇤

Pr

2

4 1

N̂

N̂X

i=1

1
�
per(ŷi

t) > 0

>

13

32

3

5

 t⇤ exp
⇣
�N̂/512

⌘
.

Thus, except for an event with exponentially small probability, at least 19/32 of the functions ŷi
t̂n

have zero error at avoiding patterns in the data, with probability one. Notice that, by definition, if
the partial class Fi that corresponds to such a function cannot produce a labeling y` 2 {0, 1}` of
some tuple x` 2 X

` where x` ⇠ P`
X , we can infer that this y` is not the correct labeling, and this

inference will be valid with probability one over the draw of x`. Thus, with probability one, if the
9/16-majority cannot produce some labeling we have that at least one such partial class Fj that
corresponds to a correct ŷj

t̂n
cannot produce this labeling, so it is not the correct one. As a result,

with probability one, if F N̂
m cannot produce y` for x` we know that this is not the correct labeling.

25

The measurability of {G`}`2N follows by the measurability of all the ŷi
t̂n
. The proof of the lemma

follows by noticing that the probability of all the events we have conditioned on can be bounded by
1� C 0e�c0N̂ and that N̂ = bn/2t̂nc � bn/2t⇤c.

Equipped with the previous result, we are now ready to describe the algorithm that achieves the
exponential learning rates in this setting.
Theorem 10. If H does not have an infinite VCL tree, then H is learnable at rate e�n.

Proof. We consider the execution of Algorithm 4. We condition on the event E0 described in
Lemma 7. Then, we have some partial concept class FG whose VC dimension is bounded by some
distribution-dependent number d̂ and has the property that 8` 2 N, for (x1, y1, . . . , x`, y`) ⇠ P`,
f(x1, y1, . . . , x`, y`) = 1 for some f 2 FG. Thus, the conditions of Theorem 9 are satisfied and the
conditional error rate of the output of our algorithm is E[er(ĥn)|E0] C 0d̂e�c0n/d̂. Since E0 happens
with probability at least 1� C̃e�c̃n, we see that the unconditional error of the output is E[er(ĥn)]

C 0d̂e�c0n/d̂ + C̃e�c̃n
 Ce�cn, for some distribution-dependent constants c, C > 0.

C.4 Slower than exponential is arbitrarily slow

In this section, we show that if the hypothesis class H admits an infinite VCL tree, then its learning
rate is arbitrarily slow.

As with the exponential lower bounds, our result is rooted in a lower bound for lossy coding. Recall
the definitions and notation for codes (C,D) from Section B.1. However, in this case, we consider a
slightly different scenario.
Lemma 8. Let D = D

⇤ be the set of all binary strings of a given length d � 128. Let ⇡ be the uniform
distribution over D. Let ⇢(x⇤, x) = 1

d

Pd
i=1 1[xi 6= x⇤

i]. Then, for any prefix-free code (C,D) that
achieves distortion Ex⇤⇠⇡[⇢(x⇤, D(C(x⇤)))] 1/8, its rate must satisfy Ex⇤⇠⇡[|C(x⇤)|] > d/128.

Proof. Let x⇤
⇠ ⇡, and suppose (C,D) is a prefix-free code with rate E[|C(x⇤)|] d/128. By

Markov’s inequality, Pr(|C(x⇤)| > d/32) 1/4. Consider the set V = {D(C(x)) : |C(x)|
d/32}. Note that, since (C,D) is prefix-free, |V | 2d/32. For each v 2 V , E[⇢(x⇤, v)] = 1/2, and
thus a Chernoff bound implies Pr(⇢(x⇤, v) 1/4) e�d/16. By the union bound,

Pr(9v 2 V : ⇢(x⇤, v) 1/4) |V |e�d/16
 2d/32e�d/16

 e�d/32
 e�2 < 1/4,

recalling that d � 128. Altogether, we have that

E[⇢(x⇤, D(C(x⇤)))] �
1

4
Pr(D(C(x⇤)) 2 V and @v 2 V : ⇢(x⇤, v) 1/4)

�
1

4
(Pr(@v 2 V : ⇢(x⇤, v) 1/4)� Pr(D(C(x⇤)) /2 V))

�
1

4
(1� Pr(9v 2 V : ⇢(x⇤, v) 1/4)� Pr(|C(x⇤)| > d/32))

>
1

4

✓
1�

1

4
�

1

4

◆
=

1

8
.

This completes the proof.

Before presenting the result on arbitrarily slow rates, we will first need the following simple observa-
tion about the structure of VCL trees.
Lemma 9. If H has an infinite VCL tree, then it also has an infinite VCL tree such that the points x
associated with any two nodes are disjoint: that is, xi

yk
6= xi0

y0
k0

for (i,yk) 6= (i0,y0
k0) (in the

notation of Definition 6).

Proof. Consider any infinite VCL tree for H. We will construct an infinite VCL tree having disjoint
nodes by modifying the tree in a breadth-first way. We keep the root node as is. Then, inductively,

26

suppose we have already ensured that the first n� 1 nodes in the breadth-first order are disjoint, and
consider now the nth node. Let k be the depth in the tree at which this node will appear. In the tree,
as it currently exists at this point, we consider the subtree Tn rooted at the current nth node in the
breadth-first order. Let N denote the number of points associated with the first n� 1 nodes in the
current tree. Since N must be a finite number, we may select within the subtree Tn a node with N +k
associated points (i.e., a node at depth N + k in the current tree). Associated with this node, there
must exist some k points that are not associated with any of the n� 1 previous nodes. We update the
tree by replacing the nth node in the tree with a node with these k points as its associated points. To
define the subtree rooted at this node, for each of the 2k classifications of these k points, we choose
one of the 2N subtrees that were associated with this classification in the original node (from depth
N + k). We repeat this for every node in each of these subtrees (in a breadth-first order), reducing
the number of associated points to an arbitrary subset of the appropriate size (corresponding to its
depth in this modified tree), and pruning all but one of its subtrees associated with each classification
of the reduced set of points. Continuing this process inductively, we construct the infinite tree that
never associates a point with more than one node.

We are now ready to prove that classes with an infinite VCL tree require arbitrarily slow rates.
Theorem 11. If H has an infinite VCL tree, then H is interactively learnable with arbitrarily slow
rates. This holds even if PX is known to the learner.

Proof. Suppose H has an infinite VCL tree. Let �(x) be any positive decreasing bijection [1,1)!
(0, 1] with �(x) ! 0 as x ! 1. We will show that the learning rate can be lower bounded by
�(256n), for infinitely many n 2 N. Since the rate of �(n)! 0 may be chosen as slow as we like,
this will establishes the result. For each i 2 N, we let Ni =

⌅
��1(2�i�3)

⇧
; for simplicity, suppose

N1 � 256 and that Ni is strictly increasing in i (both of which are satisfied as long as �(n) shrinks
slowly enough in n). Also, suppose �(x) 2�(2x), which again would be satisfied as long as �(x)
shrinks sufficiently slowly in x (i.e., slower than 1/x).

We first describe the marginal distribution PX on X . The distribution is supported on points in a
subtree of the infinite VCL tree of H. By Lemma 9, we may assume, without loss of generality, that
any point x is associated with at most one node in the infinite VCL tree. We construct a subtree of this
tree in a breadth-first manner. Set as the root node any node in the tree at depth N1: that is, a node
consisting of N1 elements. Then, inductively, asssume that some leaf node v in the construction-so-far
has k points associated with it; v will always be a node chosen from the original tree. We need to
attach 2k different children to v that correspond to all the possible classifications of the points of
this node. We add these nodes from the corresponding 2k subtrees rooted at the 2k children of v in
the original tree, one from each subtree, so that they are valid extensions. Specifically, for each of
the possible classifications, if the node we are adding for the corresponding branch will be the ith

node added to the tree under-construction so far (in total), then we choose it to be any node in the
corresponding subtree (of the original tree) at depth Ni: that is, a node with Ni associated points.
We add the nodes to the tree in this way, inductively, in a breadth-first manner: i.e., we attach all
of the children to each node in a given layer before moving on to repeat this process on the next
layer (which we have just finished adding). This completes the inductive construction of the special
subtree, which will be the support of the distribution PX . Finally, to define PX , for the ith node in
the breadth-first order of this subtree (i.e., the ith node added in the above construction), we assign
2�i/Ni probability mass to each point x associated with this node. Since the sets of points associated
with nodes are disjoint across nodes, this assignment is well-defined. Moreover, since the ith node
has Ni associated points, this defines a probability measure on X .

Now let us define the target labeling. For every infinite path from the root of the subtree constructed
above, let us define a classification of all points associated with nodes in the subtree. The points
x 2 X associated with nodes on the path will take the classification implied by the path, which is
well-defined since each branch from each node corresponds to a classification of all points associated
with that node. For points in the subtree that are not found in nodes on the path, we define their
classification (corresponding to this path) in a breadth-first manner, as follows. We let hi be a
classifier in H that realizes the classifications of all points associated with nodes on the chosen path,
up to depth i; such an hi exists, since there are a finite number of such points, and the paths are
finitely realizable by definition (since they are subsets of paths in the original infinite VCL tree). We
also let V = {hi : i 2 N}. We inductively follow a breadth-first traversal (left-to-right order of the

27

nodes, and some order of points within each node); consider the next point x in this traversal. To
determine the label we assign (corresponding to the chosen path), if there are infinitely many h 2 V
with h(x) = 0, we set the label of x to 0, and otherwise we set its label to be 1. We update V by
discarding the classifiers that disagree with the label we assign. We then continue on to the next
x in the breadth-first traversal. Notice that by construction, V initially contains an infinite number
of functions, so at every x, either infinitely many h 2 V have h(x) = 0 or infinitely many h 2 V
have h(x) = 1; either way, we assign a label that maintains the invariant that V remains infinite
after pruning the inconsistent functions. By induction, for every path from the root, this defines a
corresponding classification of the entire subtree. Moreover, since the support of PX is contained
in the tree, and since V is always non-empty, even after constraining to agree with the above labels
on any finite number of points in the breadth-first order, we find that PX together with the specified
classification specify a realizable distribution on X ⇥ {0, 1}.

We pick the target labeling via the probabilistic method, choosing a path in the constructed subtree
uniformly at random, and classifying the points associated with the subtree according to the corre-
sponding classification, as defined above. Moreover, by the definition of queries in this work, we
know there exists a ✓⇤ 2 ⇥⇤ for which h(✓⇤, ·) takes these h⇤ target classifications of points in the
support; thus, we may take this ✓⇤ value to define h⇤ = h(✓⇤, ·), and the learner’s queries will receive
responses consistent with this ✓⇤.

Notice that along the target path in this subtree, all nodes have some number of points Ni, whose
labels are conditionally uniform random (given the event that the target path passes through that
node). Hence, conditional on the target path passing through the ith node, we may regard the target
classification of the associated Ni points as a uniform random bit string of length Ni. Fix any learning
algorithm ĥn. Let H(sNi , ŝNi) be the Hamming distance of two bit strings sNi , ŝNi that correspond
to the target labels and predicted labels (by ĥn), respectively, of the Ni points associated with the
ith node in the subtree in its breadth-first order. Then, based on the definition of PX , we know that
any classifier ĥn has er(ĥn) �

2�i

Ni
H(sNi , ŝNi). Consider n = dNi/256e, which is strictly less than

Ni/128 since Ni � 256. By Lemma 8, conditioned on the unlabeled data and internal randomness
of the learner (if any) and the event that the target path passes through the ith node in the breadth-first
order of the subtree, the conditional expectation of H(sNi , ŝNi) is greater than Ni/8, so that for
X ⇠ PX independent of the data, learner, and random draw of the target labeling h⇤, the conditional
probability that X is among the Ni points associated with this ith node and ĥn(X) 6= h⇤(X) is
greater than 2�i�3

� �(Ni) � �(256n), by the definition of Ni and by monotonicity of �. Moreover,
by the law of total expectation, the same is true if we average over the internal randomness of the
learner: that is, we only condition on the event that the target path passes through the ith node of the
subtree.

So far we have proven a lower bound on the conditional expected error of any algorithm, assuming
the target path passes through a node that has roughly 256n points. However, for any fixed n, the
probability that the target path passes through such a node can be very small. But notice that, to show
the lower bound, we merely need to argue that there exists a (realizable) target labeling for which
E[er(ĥn)] � �(256n) for infinitely many n, which would be implied by showing

E

2

4lim sup
n!1

E

h
er
⇣
ĥn

⌘���h⇤
i

�(256n)

3

5 � 1

when h⇤ is the target labeling sampled randomly as described above.

Let Vd,h⇤ be the set of (unlabeled) points x associated with the node at depth d of the target path, let
|Vd,h⇤ | be the size of that node, and define nd,h⇤ = d|Vd,h⇤ |/256e. We have that

E

2

4lim sup
n!1

E

h
er
⇣
ĥn

⌘ ��h⇤
i

�(256n)

3

5 � E

2

4lim sup
d!1

E

h
er
⇣
ĥnd,h⇤

⌘ ��h⇤
i

�(256nd,h⇤)

3

5

� E

2

4lim sup
d!1

Pr
⇣
ĥnd,h⇤(X) 6= h⇤(X) ^X 2 Vd,h⇤

��h⇤
⌘

�(256nd,h⇤)

3

5 ,

28

where X is an independent PX -distributed point. Now note that

Pr
⇣
ĥnd,h⇤(X) 6= h⇤(X) ^X 2 Vd,h⇤

��h⇤
⌘
 Pr

�
X 2 Vd,h⇤

��h⇤�
 16�(256nd,h⇤)

where the rightmost inequality holds due to the fact that Pr
�
X 2 Vd,h⇤

��h⇤� = 2�i for some i,
and hence, since Ni = b��1(2�i�3)c and � is decreasing, and nd,h⇤ = dNi/256e, we have
2�i
 8�(Ni) 8�(128nd,h⇤) 16�(256nd,h⇤) (where the second inequality is due to Ni � 256

implying nd,h⇤ Ni/128, and the final inequality is due to �(x) 2�(2x)).

Thus, we have shown that the ratio in the lim sup is bounded, and therefore, Fatou’s lemma implies
that

E

2

4lim sup
d!1

Pr
⇣
ĥnd,h⇤(X) 6= h⇤(X) ^X 2 Vd,h⇤

��h⇤
⌘

�(256nd,h⇤)

3

5

� lim sup
d!1

E

2

4
Pr

⇣
ĥnd,h⇤(X) 6= h⇤(X) ^X 2 Vd,h⇤

��h⇤
⌘

�(256nd,h⇤)

3

5

= lim sup
d!1

E

2

4E

2

4
Pr

⇣
ĥnd,h⇤(X) 6= h⇤(X) ^X 2 Vd,h⇤

��h⇤
⌘

�(256nd,h⇤)

����Vd,h⇤

3

5

3

5

= lim sup
d!1

E

2

4
Pr

⇣
ĥnd,h⇤(X) 6= h⇤(X) ^X 2 Vd,h⇤

��Vd,h⇤

⌘

�(256nd,h⇤)

3

5 .

We have already argued above that

Pr
⇣
ĥnd,h⇤(X) 6= h⇤(X) ^X 2 Vd,h⇤

��Vd,h⇤

⌘
� �(256nd,h⇤).

Altogether, we have that

E

2

4lim sup
n!1

E

h
er
⇣
ĥn

⌘ ��h⇤
i

�(256n)

3

5 � 1.

In particular, this implies that for any learning algorithm ĥn, there exists a deterministic choice of
target labeling h⇤ such that E

h
er
⇣
ĥn

⌘i
� �(256n) for infinitely many n 2 N. This concludes the

proof.

29

	Introduction
	Main Results
	Examples
	Techniques

	Overview of the Proofs of the Main Result
	Conclusion and Future Directions
	Omitted Details from Section 1
	Formal Definition of Learning Setting
	Omitted Definitions
	Omitted Preliminaries

	Arbitrarily Fast Rates
	Slower than arbitrarily fast is not faster than exponential

	Exponential Rates
	The VCL game
	Interactive learning of partial concept classes with bounded VC dimension
	Exponential learning rates
	Slower than exponential is arbitrarily slow

