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Abstract

Consider the task of learning an unknown concept from a given concept class; to
what extent does interacting with a domain expert accelerate the learning process?
It is common to measure the effectiveness of learning algorithms by plotting the
"learning curve", that is, the decay of the error rate as a function of the algorithm’s
resources (examples, queries, etc). Thus, the overarching question in this work is
whether (and which kind of) interaction accelerates the learning curve. Previous
work in interactive learning focused on uniform bounds on the learning rates which
only capture the upper envelope of the learning curves over families of data distribu-
tions. We thus formalize our overarching question within the distribution dependent
framework of universal learning, which aims to understand the performance of
learning algorithms on every data distribution, but without requiring a single upper
bound which applies uniformly to all distributions. Our main result reveals a
fundamental trichotomy of interactive learning rates, thus providing a complete
characterization of universal interactive learning. As a corollary we deduce a strong
affirmative answer to our overarching question, showing that interaction is benefi-
cial. Remarkably, we show that in important cases such benefits are realized with
label queries, that is, by active learning algorithms. On the other hand, our lower
bounds apply to arbitrary binary queries and, hence, they hold in any interactive
learning setting.

1 Introduction

In supervised learning, arguably the most commonly studied variation of machine learning, we
consider a learning algorithm that is typically given access to a training set of n labeled examples,
sampled from an unknown distribution. Based on this training set, the goal of the algorithm is to
learn to output a concept/function that maps data points to labels so that the probability of making a
mistake on unseen (unlabeled) data, drawn from the same distribution, is minimized. However, this
passive setting does not capture a lot of applications in which there is an abundance of unlabeled
data where labels are not readily available but the learner can interact with the domain expert (such
as a human annotator) to acquire more information about the data. Consider, for example, the task
of email spam filtering. Service providers, such as Google, have easily access to billions of emails.
However, obtaining labels (i.e., spam or not) usually requires a human to read the content of those
emails, a process that is quite costly. One way to model such tasks is through the interactive learning
framework where the learning algorithm is given access to a large (potentially infinite) stream of
unlabeled examples from which it can then submit n queries to an expert in order to gain information
about these examples. Such queries may include, but are not limited to, asking the labels of those
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examples (e.g., is this email spam?) or comparing examples with one another (e.g., between these
two emails which one looks more like spam?).

In this paper we would like to understand to what extent interacting with an expert who knows
the target concept can accelerate the learning process. It is common to measure the effectiveness
of passive supervised learning processes by plotting the "learning curve", that is, the decay of the
error rate as a function of the number of training examples. Analogously, for interactive learning
algorithms one measures the decay of the error rate as a function of the number of queries the
algorithm submitted to the domain expert. The setting in which the learner is limited to asking label
queries is called active learning. The overarching question in this work is whether (and which kinds
of) interaction accelerates the learning curve?

Previous work on interactive learning has given rise to a large collection of general theories
[KMT93, Das05, BBL09, Han07b, Han07a, DHM07, Han09, YHC10, BH12, Han14, HY15,
BHLZ16, KLMZ17] establishing guarantees on the error rate as a function of the number of queries of
various types. However, most of these theories are primarily concerned with capturing a uniform (i.e.,
minimax) guarantee on the rates of convergence: that is, error bounds holding in the worst case over
some family of distributions.1 Even though these theories give rise to a clean and elegant mathemati-
cal framework, they do not fully explain the behavior of learning curves: due to the minimax nature
of the guarantees they consider, they can only capture the upper envelope of the learning curves over
a family of data distributions. The minimax perspective does not match practical and experimental
machine learning, where the target distribution is fixed and the number of training examples and
queries varies according to the learner’s resources and desired accuracy [CT90, CT92]. In contrast, in
order to observe the learning curve that corresponds to uniform/minimax guarantees one would have
to vary the data-generating distribution as the constraint on the number of queries the learner can
make increases. We therefore formalize our overarching question within the distribution dependent
framework of universal learning [BHM+21], a framework designed to understand optimal rates of
convergence for learning curves. This framework aims to understand the best possible asymptotic
rate of convergence that can hold for every data distribution, but without requiring an upper bound
which applies uniformly to all of these distributions. While there have been a few past works to study
universal rates for the special case of active learning (i.e., label queries) [BHW08, Han12, YH13],
none have yet provided a complete characterization, and none have considered more general forms of
interactive learning.

The main result of this paper is a complete characterization of universal interactive learning rates,
for learners able to make arbitrary yes/no queries. Specifically, for such learners, we prove there is
a fundamental trichotomy of possible optimal universal learning rates: any given concept class has
an optimal rate decaying at either (i) arbitrarily fast rates, (ii) exponential rates, or (iii) arbitrarily
slow rates. Moreover, the optimal rates for classes of type (i) can be attained by learning rules whose
interaction is restricted to querying the labels of points in the (unlabeled) input sample. In other
words, active learning with arbitrarily fast rates is possible for a variety of classes including, and
rather surprisingly, for some classes with infinite VC dimension.

Furthermore, we pinpoint complexity measures to precisely categorize any concept class into one of
the above three categories of optimal rate. Indeed, since these same complexity measures were also
found by [BHM+21] to characterize a trichotomy of rates for passive supervised learning, our results
are directly comparable, and reveal a strong benefit from interactive learning: namely, classes with
optimal rate 1

n for supervised learning have optimal rate e�n for interactive learning (category ii),
while classes with optimal rate e�n for supervised learning have optimal rates that are arbitrarily fast
for interactive learning (category i).

In addition to these strong positive results, including for learning with simple label queries, we also
note that our lower bounds on the achievable universal rates are quite powerful, as they apply to any
interactive learning setting with binary-valued responses: for instance, in addition to label queries and
general membership queries, they also apply to learners based on comparison queries [KLMZ17].

1To be clear, while many of these theories express distribution-dependent guarantees, the guarantees are
typically formulated with the intent of matching some kind of lower bound on the minimax performance over a
family of distributions subject to some parameter value (e.g., disagreement coefficient). For instance, most of
these results involve a factor based on the VC dimension or covering numbers, both of which could be unbounded,
even in the most-favorable scenarios discussed in the present work. As a result, the distribution-dependent
guarantees in these works do not capture optimal universal rates.
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Finally, novel algorithmic principles arise from our universal interactive learning framework. Recall
that passive learning in the distribution-free PAC setting boils down to the Empirical Risk Mini-
mization (ERM) principle via uniform convergence. Analogously, traditional interactive learning
gives rise to simple querying policies such as the disagreement-based CAL algorithm [CAL94]
algorithm for label queries (which queries the labels of points that are uncertain), or general binary
search strategies in a cover of the class [KMT93] in the case of general yes/no queries. Similarly to
the ERM principle, these strategies achieve near-optimal distribution-free uniform rates, for their
respective types of queries. In contrast, in the universal setting the algorithmic landscape is richer
and the design of learning algorithms able to achieve the optimal rates requires great care. Indeed,
the learning rules we use to prove our main results rely on techniques only recently introduced to the
learning theory literature, such as Gale-Stewart sequential games and adversarial online learning with
infinite ordinal-valued Littlestone dimensions [GS53, BHM+21]. Thus, the universal learning setting
motivates the development of a richer variety of algorithmic techniques.

Uniform vs. Universal Rates. To make the distinction between uniform and universal rates more
concrete, we first recall what uniform learnability means. (The notation will be introduced formally
below.) A concept class H is uniformly learnable at rate R(n) if there exists a learning rule ĥn such
that �

9C, c > 0
��
8P 2 RE(H)

�
it holds that E[er(ĥn)]  CR(cn), 8n 2 N.

In words, there exists a learning rule ĥn and distribution-independent constants C, c > 0 so that
for every realizable data-generating distribution P 2 RE(H) the expected error of the classifier
E[er(ĥn)] is bounded by CR(cn). The definition of universal learnability is obtained by a simple
rearrangement of the quantifiers of the previous definition. A concept class H is universally learnable
at some rate R(n) if there exists a learning rule ĥn such that

�
8P 2 RE(H)

��
9C, c > 0

�
such that E[er(ĥn)]  CR(cn), 8n 2 N.

Importantly, this subtle change in the definition allows the constants C, c to be distribution- dependent.
As is evident from our main result below, this, seemingly minor, change makes the landscape of the
admissible learning rates of interactive learning algorithms vastly different.

1.1 Main Results

We next present the key definitions and summarize the main results of this work.

The learning problem consists of a domain X , where we assume X to be a Polish space, and a non-
empty concept class H ✓ {0, 1}X . We assume that H satisfies standard measurability assumptions
(see Appendix A.1).

A classifier is a universally measurable function h : X ! {0, 1}, whose error rate is defined to be
er(h) = erP(h) := P{(x, y) : h(x) 6= y}, where P is a probability distribution over X ⇥ {0, 1}.
We say that P is realizable with respect to H if infh2H er(h) = 0. We denote with PX its marginal
distribution on X .

We define an interactive learning algorithm to be a sequence of universally measurable functions
which, given access to an infinite stream of unlabeled data points from X that are drawn i.i.d. from
PX and a query budget n, output a classifier ĥn : X ⇥ {0, 1}; we restrict the algorithm to depend on
only a finite (though unbounded) number of the i.i.d. unlabeled examples. The goal of this algorithm
is to come up with classifiers whose expected error E[er(ĥn)] decays as fast as possible as a function
of the number of queries n.

The aim of this paper is to characterize the learning rates achievable by a learning algorithm in a
general interactive setting, where the algorithm can ask arbitrary binary-valued queries: i.e., any
yes/no questions. These include, but are not limited to, label queries and comparison queries for data
points, membership queries for any x 2 X , or any other query having a binary answer. The formal
abstraction for this notion of query is provided in Appendix A.1.

We now formalize the notion of achievable learning rates in the universal learning model [BHM+21].

Definition 1. [BHM+21] Fix a concept class H, and let R : N ! [0, 1], R(n)
n!1
�! 0 be a rate

function.
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• H is learnable at rate R if there is a learning algorithm ĥn such that for every realiz-
able distribution P, there exist distribution-dependent c, C > 0, for which E[er(ĥn)] 
CR(cn), 8n 2 N.

• H is not learnable at rate faster than R if for all learning algorithms ĥn there exists a
realizable distribution P and c, C > 0, for which E[er(ĥn)] � CR(cn), for infinitely many
n 2 N.

• H is learnable with optimal rate R if it is learnable at rate R and it is not learnable at rate
faster than R.

• H admits arbitrarily fast rates if for all rate functions R, it is learnable at rate R.

• H requires arbitrarily slow rates if for all rate functions R, it is not learnable at rate faster
than R.

It is known that, unlike the PAC model, in the universal learning setting every concept class H is
learnable [Han21, HKSW21, BHM+21]. Nevertheless, H might require arbitrarily slow learning
rates in some cases [DGL96]. While most of the above definitions parallel the definitions from the
work of [BHM+21] on supervised learning, the case of arbitrarily fast rates is new to the present
work. While technically it would also arise in passive learning in the trivial cases of |H| = 1 or
H = {h, 1� h}, it arises as a highly non-trivial and important case in interactive learning, with many
interesting classes, even of infinite cardinality. Moreover, our proofs establishing arbitrarily fast rates
develop a novel active learning technique (based purely on label queries).

We are now ready to state one of the main results of this work: a fundamental trichotomy of optimal
learning rates. That is, we show there are three possible optimal learning rates that a class H can
admit in the interactive learning setting.
Theorem 1. For every concept class H, exactly one of the following cases holds.

• H is interactively learnable with arbitrarily fast rates.

• H is interactively learnable at an optimal rate e�n.

• H requires arbitrarily slow rates for interactive learning.

Our next result characterizes exactly when these rates occur by specifying combinatorial measures
of H that give rise to each one of these cases. Before we state this result, we need to discuss these
combinatorial measures. We refer the reader to Appendix A.2 for the formal definitions. We first
describe infinite Littlestone trees, which were introduced in [BHM+21]. (Finite versions were studied
previously by [Lit88]).
Definition 2 (Informal (see Definition 5)). A Littlestone tree for H ✓ {0, 1}X is a complete binary
tree of depth d  1 whose nodes are labeled by elements of X and the edges to the left, right child
are labeled by 0, 1, respectively. We require that for every level 0  n < d and every path from the
root to a node at level n+ 1 there is some h 2 H that realizes this path. We say that H has an infinite
Littlestone tree if it has a Littlestone tree of depth d = 1.

For some intuition, we refer the reader to Figure 1a. We remark that this notion is closely related to
the Littlestone dimension of H. The Littlestone dimension is defined to be the largest d 2 N such
that H has a Littlestone tree of depth d and it is 1 if there are Littlestone trees of arbitrary depth.
However, this does not necessarily imply that there is a single tree whose depth is infinite, so having
infinite Littlestone dimension is not the same as having an infinite Littlestone tree.

We next discuss the notion of a VCL tree introduced by [BHM+21].
Definition 3 (Informal (see Definition 6)). A VCL tree for H ✓ {0, 1}X is a complete tree of depth
d  1 such that every level 0  n < d has nodes that are labeled by X

n+1 with branching
factor 2n+1 and whose 2n+1 edges connecting a node to its children are labeled by the elements of
{0, 1}n+1. We require that for every node at any finite level 1  n  d, the path from the root to this
node is realized by some h 2 H. We say that H has an infinite VCL tree if it has a VCL tree of depth
d = 1.

For a pictorial representation of a VCL tree, we refer the reader to Figure 1b. Intuitively, the difference
between a Littlestone tree and a VCL tree is that in the latter, the size of the nodes is increasing
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Figure 1: (a) A Littlestone tree of depth 3 is illustrated. (b) A VCL tree of depth 3 is illustrated.
Figures are reproduced from [BHM+21] with permission.

linearly with the depth of the tree and the branching factor is increasing exponentially. Recall that in
a Littlestone tree both quantities are constant. Intuitively, as we move further down the VCL tree
along any path, the class H needs to be able to shatter sets of increasing size, while respecting label
constraints imposed by all previous levels of the path.

We now state our characterization on the optimal rates achievable by interactive learning algorithms.
Theorem 2. For every concept class H the following hold:

• If H does not have an infinite Littlestone tree, then it is interactively learnable at an
arbitrarily fast rate.

• If H has an infinite Littlestone tree but does not have an infinite VCL tree, then it is
interactively learnable with optimal rate e�n.

• If H has an infinite VCL tree, then it requires arbitrarily slow rates.

The proof of this theorem is divided into two parts. In Appendix B we provide the bounds relating to
Littlestone trees and in Appendix C we prove the bounds relating to VCL trees. It is easy to see that
Theorem 2 implies Theorem 1.

We remark that when the learner has access to PX and not just to an infinite stream of i.i.d. data from
it, then we can improve the first rate of the trichotomy.
Remark 1. If the learner has access to the marginal distribution PX and H does not have an infinite
Littlestone tree, then it can achieve E[er(ĥn)] = 0, after a finite (P-dependent) number n 2 N.

As mentioned above, the algorithm which achieves the arbitrarily fast rates requires only label queries,
which are, arguably, the simplest type of queries: that is, queries that select any unlabeled example
Xi from the i.i.d. stream and request the target concept’s label for Xi. Hence, this result applies to
the traditional active learning setting.
Remark 2. If H does not have an infinite Littlestone tree, then there exists an algorithm that achieves
arbitrarily fast rates using only label queries.

Interactive vs. Passive Learning. We remark that our results can be directly compared to the
optimal universal rates for passive supervised learning, as characterized by [BHM+21]. Specifically,
[BHM+21] provide the following characterization for the optimal rates achievable by a learner that
has access to n labeled examples that are drawn i.i.d. from P.

Theorem 3. [BHM+21] For every concept class H (with |H| � 3) the following hold:

• If H does not have an infinite Littlestone tree, then it is passively learnable with optimal rate
e�n

• If H has an infinite Littlestone tree but does not have an infinite VCL tree, then it is passively
learnable with optimal rate 1

n .

• If H has an infinite VCL tree, then it requires arbitrarily slow rates.
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Our results illustrate the power of interactive learning algorithms compared to their passive counter-
parts. Notably, if H does not have an infinite Littlestone tree, the rate is improved from exponential to
arbitrarily fast; again, this is even achieved by an algorithm based purely on label queries. Moreover,
using an interactive learning algorithm we achieve an exponential improvement in the case where H

does not have an infinite VCL tree but has an infinite Littlestone tree: reducing a 1
n rate for passive

learning to an e�n rate for interactive learning. Finally, when H has an infinite VCL tree we cannot
achieve any improvement even in the interactive setting.

Another important comparison is between the rates achievable in the universal vs uniform setting.
Specifically, results of [KMT93] imply that for interactive learning with arbitrary binary-valued
queries, the optimal uniform rate is (i) 0 after a bounded number of queries if |H| < 1, (ii) e�n when
|H| = 1 but the VC dimension of H is finite, or (iii) does not converge to 0 when the VC dimension
of H is infinite. Comparing to our result in Theorem 2, we note that the optimal universal rates allow
richer families in each of the cases: that is, the category of any H in the universal rates trichotomy
is never worse than its category in the uniform rates trichotomy, and is often better. For instance,
finite VC dimension certainly implies there is no infinite VCL tree, but the opposite is not true, and
indeed there are classes of infinite VC dimension which do not even have an infinite Littlestone tree
[BHM+21], so that the uniform rates are vaccuous while the universal rates are arbitrarily fast.

1.2 Examples

Here we present examples of various hypothesis classes that illustrate the three possible optimal rates.
Example 1 (Finite classes). Let H be a finite hypothesis class over some domain X . It follows
immediately that this class has no infinite Littlestone tree. Thus, arbitrarily fast rates are achievable.
Recall that for passive learning, the optimal rate was e�n for this scenario. This illustrates the
improvement compared to the passive universal learning setting, where the best achievable universal
rate is exponential [BHM+21].

We then consider threshold classifiers over the natural numbers.
Example 2 (Threshold classifiers over N). Let X = N and consider H = {ht : t 2 N, ht = 1x�t}.
Notice that even though there are Littlestone trees of arbitrary depth, there is no infinite Littlestone
tree [BHM+21]. Hence, it is learnable at an abitrarily fast rate in the interactive setting.

In the next example we consider threshold classifiers over the real numbers.
Example 3 (Threshold classifiers over R.). Let X = R and H be the class of all threshold classifiers
over the real line, i.e. H = {ht : t 2 R, ht = 1x�t}. This class has an infinite Littlestone tree.
However, since its VC dimension is finite, we know there is no infinite VCL tree, and hence the optimal
rate is e�n.

Next, an example with infinite VC dimension, which nevertheless is interactively learnable at an
arbitrarily fast rate:
Example 4 (Unions of finite sets.). Let X = [kXk be the disjoint union of the sets Xk, where
|Xk| = k. We also let H = [kHk, where Hk = {1S : S ✓ Xk}. The VC dimension of H is infinite.
However, notice that this class does not have an infinite Littlestone tree [BHM+21]. Indeed, let
x 2 Xk be the root of the tree. Then, only h 2 Hk can have h(x) = 1. Thus, there are finitely many
hypotheses consistent with this branch from the root, implying the depth is always limited by the
choice of root node. Thus, this class is actively learnable at an arbitrarily fast rate.

Finally, we present an example that requires arbitrarily slow rates.
Example 5. Let H be the class of all measurable functions over X = N. This class admits an infinite
VCL tree [BHM+21], hence the learning rate in our setting is arbitrarily slow.

1.3 Techniques

In this section we briefly highlight some techniques that are important for our results. For a more
extensive discussion, we refer the reader to Appendix A.3.

Gale-Stewart Games. An important tool that our algorithms build upon is the theory of Gale-Stewart
games [GS53]. These games consist of two players, a learner PL and an adversary PA, that interact
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over an infinite sequence of discrete timesteps. In every round t � 1, the adversary presents an
element xt 2 Xt to the learner and, subsequently, she picks an element yt 2 Yt, where Xt,Yt are
some sets. If some predetermined condition is met at some finite round t 2 N (e.g. a set of functions
that are consistent with the choices of the players becomes empty), then player PL wins. If the
interactions repeat for an infinite number of steps, then player PA wins. Thus, we can see that the
winning strategy of PL is finitely decidable, which means that the learner knows she has won the game
after a finite number of steps. The fundamental property that characterizes these games is that either
the learner or the adversary has a winning strategy, i.e., playing according to this strategy makes them
win the game irrespective of their opponent’s moves [GS53, HW+93, Kec12]. In this work, we use
Gale-Stewart games where PA chooses subsets of data and PL chooses labels for the points, such
that the possible play-outs correspond to either Littlestone or VCL trees.

One-Inclusion Graph Predictor [HLW94]. Another important component that we use is the one-
inclusion graph predictor. This is a passive learning algorithm that takes as input n labeled points
that are drawn i.i.d. from P and an unlabeled example drawn from PX and returns the correct label
with probability 1�O(d/n), where d is the VC dimension of a given function class F for which P
is realizable; indeed, F may in fact be any partial concept class (see below).

Partial Concept Classes. The final building block that we use is a subroutine that interactively learns
partial concept classes. A partial concept class F is a set of partial functions f : X ! {0, 1, ?}, where
f(x) = ? means that f is undefined at point x. Essentially, partial concepts provide a framework to
express data-dependent assumptions [AHHM21]. We design an algorithm that achieves exponential
rates when learning a partial concept class F whose VC dimension is bounded (cf. Appendix C.2).
In our proofs of the universal rates, this class F is actually constructed algorithmically given a class
H and the i.i.d. unlabeled data.

2 Overview of the Proofs of the Main Result

In this section we provide an outline of the proof of the main results. We refer the reader to
Appendix B, C for the full proofs.

Our lower bounds rely on establishing a connection between paths in the infinite tree and a family
of possible target concepts. Since the paths can be specified by binary strings, our lower bound
results follow from lower bounds we prove for lossy coding, representing a universal variant of
rate-distortion theory. We leave the details for the appendix, and spend the remainder of this section
on outlining the upper bounds, to focus on the novel algorithmic aspects of this work.

Arbitrarily Fast Rates. We first design an algorithm that achieves arbitrarily fast rates whenever H
does not have an infinite Littlestone tree. A key subroutine of our algorithm is the ordinal Standard
Optimal Algorithm (SOA) [BHM+21]. Essentially, this algorithm generalizes the SOA [Lit88]
to handle the case of finite, but not uniformly bounded, Littlestone trees. For a more extensive
discussion we kindly refer to Appendix B. Importantly, when this algorithm is executed on a
(realizable)2 sequence of labeled data (x1, y1, x2, y2, . . .) it will stop making mistakes after a finite
time t⇤. However, t⇤ depends on the sequence and there is no bound on how big it is. Our approach
that achieves the arbitrarily fast rates is outlined in Figure 2.

The intuition behind our algorithm is the following. If we take a large enough number of unlabeled
points m1 and consider all of their 2m1 possible classifications, there will be one that is correct.
Let S⇤

1 be the correctly labeled set. For large enough m1, we know that the ordinal SOA trained
on S⇤

1 will output a classifier that is always correct. The issues are that (i) we do not have access
to the correct classification, and (ii) we do not know how large m1 needs to be. Since the data are
generated by some distribution, the time of the last mistake also follows a distribution which can,
potentially, have heavy tails. However, there is some (distribution-dependent) number m⇤

2 N for
which, when the ordinal SOA is trained on a sequence of size m⇤, with probability at least 1/2, it
will output a classifier that is correct on every point x 2 X . Thus, if we consider a lot of batches that
have size at least m⇤ and train the ordinal SOA using these batches, at least 1/3 of the executions
will produce an always correct classifier, with high probability. To overcome the issue that we only
have unlabeled data, we consider all the possible classifications of these batches and run the ordinal
SOA on each one of them. Moreover, we know that all the correct classifiers produce the same

2This means that for every t � 1, there is some ht 2 H such that ht(x⌧ ) = y⌧ , 1  ⌧  t.
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ArbitrarilyFastRates: Input is a unlabeled data sequence x1, x2, . . . , and a query budget n.
1. Create sets S1 = x1, . . . , xm1 , S2 = xm1+1, . . . , xm2 .
2. Split S1 into bpm1c batches of size bpm1c and consider all the labeled prefixes of the batches in

lexicographical order: bi,j denotes the i-th batch with the labeled prefix j, 1  j  2b
p
m1c+1.

3. Let A0(·; bi,j) be the output of the ordinal SOA trained on bi,j and denote gi,j(x) = A0(x; bi,j).
4. Evaluate the classifiers gi,j(·) on the points in S2.
5. Define a set F of equivalence classes: gi,j and gi0,j0 are in the same class iff they classify S2 the same.
6. For each F 2 F, define

rank(F ) = min

⇢
r : 9 1  i1 < i2 . . . < ibpm1c/3  b

p
m1c, k1, . . . , kbpm1c/3 2 [2r+1]

such that gij ,kj 2 F, 1  j  b
p
m1c/3

�
,

or rank(F ) = 1 if no such r exists.
7. Enumerate F = {F1,F2, . . .} so that rank(F`) is non-decreasing in `, and pick any f` 2 F` for each `.
8. For each distinct i, j  b

p
nc query the label of any point in S2 on which fi, fj disagree.

9. If there is some fˆ̀ which is correct on all the points we queried, return fˆ̀.
10. Otherwise, return any f`.

Figure 2: Arbitrarily Fast Rates Algorithm

output when executed on a new set of unlabeled data. This is why we use points from S2 and create
equivalence classes of classifiers that have the same output on S2; this guarantees that all the correct
classifiers will be in the same class F`⇤ , with probability one. By taking S2 to be large enough, we
can make the probability that two classifiers which are in the same equivalence class differ on some
x 2 X arbitrarily small. Thus, it suffices to consider one representative f` from every equivalence
class F`. Finally, we show that there is an ordering of these representatives which guarantees that,
with arbitrarily high probability, the representative f`⇤ of the class F`⇤ (which the correct classifiers
belong to) has ranking at most i⇤, where i⇤ is a distribution-dependent constant. Thus, by requesting
the labels of points on which pairs fi, fj , 1  i, j 

p
n, disagree, we can just output the one that is

correct on all these points, and if b
p
nc � i⇤, such an fi will exist and will be f`⇤ , with arbitrarily

high probability.

We emphasize that this algorithm uses only label queries, so it also applies to the traditional active
learning setting. Moreover, if the learner has access to the marginal distribution PX , then all the
steps in the algorithm can be implemented exactly, i.e. with probability one, so the output will be a
classifier that has zero error rate with probability one.

Exponential Rates. We now move to the algorithm that achieves exponential rates whenever H does
not have an infinite VCL tree. As we discussed before, the fact that H does not have an infinite
Littlestone tree gives rise to an algorithm that makes a finite number of mistakes on any realizable
sequence (x1, y1, . . .). In the case of finite VCL trees, [BHM+21] provide an algorithm, which
given such a sequence, learns after a finite number of steps to rule out patterns in the data. This
means that, for some n⇤

2 N there is a function g : Xn⇤
! {0, 1}n

⇤
such that g(x1, . . . , xn⇤)

are not the correct labels of the points (x1, . . . , xn⇤). [BHM+21] obtain this function by defining
an appropriate Gale-Stewart game, called the VCL game. In every round t � 1 of this game, the
adversary selects a tuple (x0

t , x
1
t , . . . , x

t�1
t ) 2 X

t of t unlabeled points and the learner picks their
labels (y0t , y1t , . . . , y

t�1
t ) 2 {0, 1}t. The goal of the learner is to make the set of concepts from H

that are consistent with the execution of the game empty. [BHM+21] show that if H does not have an
infinite VCL tree, then the learner has a winning strategy and this strategy gives rise to the pattern
avoidance function g we described earlier. Importantly, the pattern avoidance function helps us define
a partial concept class whose VC dimension is finite. For details, we refer to Appendix C.1.

The first step in our algorithm, presented in Figure 4, is to use half of the query budget to find the
labels of bn/2c points in order to simulate the VCL game. The eventually correct pattern avoidance
function g we described before, induces some data-dependent constraints. To make the idea of our
approach easier to grasp, let us assume that we have access to both the function g and to the number
n⇤. Then, the next step is to consider the partial concept class

F
⇤ = {f : X ! {0, 1, ?} : 8(x1, . . . , xn⇤) 2 X

n⇤
, (f(x1), . . . , f(xn⇤)) 6= g(x1, . . . , xn⇤)}.
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Importantly, the VC dimension of F⇤ is bounded by n⇤
� 1, since it does not shatter any sequence of

length n⇤. Thus, we have reduced the problem to interactively learning a partial concept class whose
VC dimension is bounded. We provide such an algorithm in Figure 3.

PartialInteractiveLearning: Input is an unlabeled data stream {x1, . . . , } and a query budget
n.

1. Take a large enough sample of unlabeled data S = {x1, . . . , xm}.
2. Let Ĥ|S to be the total concept class of the functions in F that are not undefined on S,

i.e.,

Ĥ|S = {f 2 F : f(x) 6= ?, 8x 2 S},

whose domain is restricted to be S. ## this is a total class with
VC dimension bounded by d.

3. If Ĥ = ;, return an arbitrary classifier (e.g. the all-zero classifier).
4. Consider the set Ŝ of all the O(md) possible classifications of S.
5. Since the learner is allowed to use arbitrary binary queries, it can figure out the labels

of all points using O(d logm) queries as follows:
• Divide Ŝ into two sets of equal size Ŝ1, Ŝ2 and ask whether the true classification

is in Ŝ1. Based on the answer of the query, recurse to the appropriate set.
6. The last step is to use these m labeled points as the training set for the one-inclusion

graph supervised learning method of [HLW94] for the class F .

Figure 3: Interactive Learning with Partial Concept Classes

The idea of the approach is to take a large enough sample S of m unlabeled points and consider the
total concept class H⇤

✓ F
⇤ of the functions that are not undefined on S, whose domain restricted is

S. Then, H⇤ also has VC dimension that is bounded by n⇤
� 1, so there are at most O(mn⇤

) possible
classifications of these points. The next step is to find the correct classification of these points using
O(n⇤ logm) binary queries in total. Finally, using these exponentially many labeled points as the
training set for the one-inclusion graph algorithm (cf. Theorem 5), we are able to get a classifier
whose error rate decreases exponentially fast.

An important difficulty we need to overcome is that we do not know how long we need to run the
VCL game for in order to get a correct pattern avoidance function g. Our approach, described in
Figure 5, is to use N = bn/2c of our query budget to request the labels of some points in order to
run the VCL game on. Then, utilizing a result from [BHM+21], we use bN/2c of the data in order
to obtain some estimators t̂N such that running the game on t̂N points produces a correct g with
probability at least 5/8 (cf. Lemma 5). Having obtained these estimators, we split the remaining
bN/2c into N̂ = bN/(2t̂N )c batches of size t̂N . Subsequently, we run the VCL game on each
batch and obtain the functions ŷi

N̂
, 1  i  bN/(2t̂N )c. The choice of t̂n guarantees that, with high

probability, at least 9/16 of these functions will be correct pattern avoidance functions. Then, we
consider the partial concept classes Fi that are induced by these functions, in a similar manner as we
described before. Finally, we aggregate all these classes into a majority class

F
N̂
m =

⇢
f : X ! {0, 1, ?} : 8` 2 N, 8(x1, . . . , x`) 2 X

`, 9 at least (9/16)N̂ classes Fj , 1  j  N̂ s.t.

9f̂ 2 Fj with (f̂(x1), . . . , f̂(x`)) = (f(x1), . . . , f(x`))

�
.

The motivation behind aggregating the classes is that (i) we can show that F N̂
m has bounded VC

dimension, and (ii) if F N̂
m cannot produce a labeling for an unlabeled tuple, then this is not the

correct labeling (cf. Lemma 7). An equivalent way to describe F
N̂
m is through a sequence of

universally-measurable functions
�
G` : (X ⇥ {0, 1})` ! {0, 1}

 
`2N

, where

G`(x1, y1, . . . , x`, y`) = 1
n
9f 2 F

N̂
m : (f(x1), . . . , f(x`)) = (y1, . . . , y`)

o
.
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ExponentialRates: Input is an unlabeled data stream {x1, . . . , } and a query budget n.
1. Use bn/2c of the query budget to get the labels of {x1, . . . , xbn/2c}.
2. Call the GSubroutine (cf. Figure 5) with points {(x1, y1), . . . , (xbn/2c, ybn/2c)}.
3. Create the partial concept class

FG = {f : X ! {0, 1, ?} : 8` 2 N, 8(x1, . . . , x`) 2 X `, G`(x1, f(x1), . . . , x`, f(x`)) = 1}.

4. Run Algorithm 3 on the partial class FG with budget bn/2c and return its output.

Figure 4: Exponential Rates Algorithm

GSubroutine: Input is a labeled data sequence {(x1, y1), . . . , (xN , yN )}.

1. Use bN/2c of the data to estimate t̂N (cf. Lemma 5.). Let N̂ = bN/2t̂Nc.
2. Use the remaining bN/2c of the data to run the VCL game (cf. Algorithm C.1) and obtain

ŷi
t̂N

, 1  i  N̂ .

3. Estimate for 1  i  N̂

Fi =
�
f :X !{0, 1, ⇤} : 8(x1, . . . , x⌧t̂N

) 2 X ⌧t̂N , (f(x1), . . . , f(x⌧t̂N
)) 6= ŷi

t̂N
(x1, . . . , x⌧t̂N

)
 
.

4. Estimate the 9/16�majority class

F N̂
m =

⇢
f : X ! {0, 1, ?} : 8` 2 N, 8(x1, . . . , x`) 2 X `, 9 at least (9/16)N̂ classes Fj , 1  j  N̂ s.t.

9f̂ 2 Fj with (f̂(x1), . . . , f̂(x`)) = (f(x1), . . . , f(x`))

�
.

5. Return
�
G` : (X ⇥ {0, 1})` ! {0, 1}

 
`2N

where

G`(x1, y1, . . . , x`, y`) = 1
n
9f 2 F N̂

m : (f(x1), . . . , f(x`)) = (y1, . . . , y`)
o
.

Figure 5: Aggregate Function Subroutine

This leads us to the last step in our algorithm. So far, we have produced a partial concept class
F

N̂
m with bounded VC dimension, that produces the correct labelings for any (finite) tuple. Thus, it

suffices to use the interactive learning algorithm with the bn/2c remaining queries that learns partial
concept classes at an exponential rate, which we described before (cf. Figure 3).

3 Conclusion and Future Directions

In this paper we provide a complete characterization of universal interactive learning and reveal a
fundamental trichotomy of interactive learning rates. Moreover, we specify exactly which properties
of the hypothesis class give rise to each case in the trichotomy. The general interactive model we
consider makes our lower bounds particularly strong. We believe that there are important questions
in this line of work that are beyond the scope of our paper and need to be addressed, such as
characterizing the unlabeled sample complexity, studying weaker types of interactions such as label
queries and comparison queries, and designing efficient and practical algorithms for natural classes.
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